
MAT 125B
Spring 2011

Problem Set 6 Solutions

Kevin Schenthal

May 18, 2011

1. Problem 2.16. Let f : (−1, 1)→ R be defined by

f(x) =

{
x2 sin(1/x), x ∈ (−1, 0) ∪ (0, 1),
0 x = 0.

To apply Taylor’s theorem we must determine the nonnegative integer k for which f ∈ Ck(−1, 1).

Observe by the squeeze theorem that limx→0 x
2 sin(1/x) = 0. So k ≥ 0.

Next, notice that for x = 0, we have

f ′(x) = 2x sin(1/x)− cos(1/x).

Since the limit limx→0 f
′(x) does not exist, we conclude that f ∈ C0(−1, 1).

Thus, Taylor’s theorem for f about the point x = 0 asserts that

f(h) = 0 +R0(x, h)

with

lim
h→0

R0(x, h)

|h|
= 0.

2. Problem 2.17. We determine the Taylor series of f(x) = log(1 − x) for x ∈ (−1, 1) and equals
f(x) for each such x.

Observe that for x < 1 we have by the power rule and the chain rule that

f (k)(x) = − (k − 1)!

(1− x)k
, k ∈ N.

Since log(1− x) ∈ C∞(−1, 1) Taylor’s theorem implies that the Taylor series around x0 = 0 is
given by

f(x) = −
∞∑
k=1

xk

k
.
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It remains to prove the series converges uniformly on any closed subinterval of (−1, 1). Let
[a, b] ⊂ (−1, 1) be arbitrary. Take 0 < M = max{|a|, |b|} < 1. Then for x0 ∈ [a, b] we have∣∣∣∣f (k)(0)

k!
(x− 0)k

∣∣∣∣ =

∣∣∣∣xkk
∣∣∣∣ ≤ M

k
→ 0 as k →∞.

Thus, by Example 2.51, we conclude that the series converges uniformly on any closed subinterval
of (−1, 1).

3. Problem 2.18. We verify that if the conditions in Example 2.51. are met then we can differentiate
the Taylor series term by term to obtain f ′(x). Let f(x) = T (x) for all x ∈ [x0−1, x0 + 1] where
T (x) is the Taylor series centered at x0 given by

T (x) =
∞∑
k=0

1

k!
f (k)(x0)(x− x0)k.

Since |f (k)(x)| ≤M for all k and all x ∈ [x0 − 1, x0 + 1] we see that

∞∑
k=0

∣∣∣∣ 1

k!
f (k)(x0)

∣∣∣∣ |x− x0|k ≤ ∞∑
k=0

M

k!
<∞.

Thus, the series is absolutely summable and converges uniformly on [x0 − 1, x0 + 1] to f(x) by
the Weierstrass M -test. Hence, we may interchange the order of differentiation and summation
(Rosenlicht, p.150), i.e.,

f ′(x) =
d

dx

∞∑
k=0

1

k!
f (k)(x0)(x−x0)k =

∞∑
k=0

d

dx

1

k!
f (k)(x0)(x−x0)k =

∞∑
k=1

1

(k − 1)!
f (k)(x0)(x−x0)k−1.

This proves the result.

4. Problem 2.19. We investigate the nature of the critical point (0, 0) of

f(x, y) = x2 + 2xy + y2 + 6 = (x+ y)2 + 6

Observe that

∂f

∂x
(x, y) = 2x+ 2y

∂f

∂y
(x, y) = 2x+ 2y

So (0, 0) is indeed a critical point of f and

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

∂2f

∂x2
(x, y) =

∂2f

∂y2
(x, y) = 2.

Thus,

D2f(0, 0) =

(
2 2
2 2

)
.
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Since 2 > 0 anddet(D2f(0, 0)) = 0 we deduce that D2f(0, 0) is positive-semidefinite. Hence,
(0, 0) is a local minimum, as can be seen by determining the principal directions and principal
curvatures. Observe that the eigenvalues of D2f(0, 0) are found by solving∣∣∣∣λ− 2 −2

−2 λ− 2

∣∣∣∣ = λ(λ− 4) = 0.

So λ = 0, 4. For each λ, we solve the system of linear equations(
2 2
2 2

)(
v1
v2

)
= λ

(
v1
v2

)
.

The unnormalized eigenvectors of λ = 0 and λ = 4 are determined to be v = (v1, v2) = (−1, 1)
and v′ = (1, 1) respectively. Thus, in the direction v at (0, 0), our function f is neither increasing
nor decreasing. While in the direction v′ the function is increasing at its fastest possible rate.
Therefore, we conclude that the local minima are attained along the span of v′.

5. Problem 2.20. We determine the nature of the critical point (0, 0) of the function

f(x, y) = x3 + 2xy2 − y4 + x2 + 3xy + y2 + 10.

Notice that

∂f

∂x
(x, y) = 3x2 + 2y2 + 2x+ 3y

∂f

∂y
(x, y) = 4xy − 4y3 + 3x+ 2y.

So (0, 0) is in fact a critical point. Furthermore,

∂2f

∂x2
(x, y) = 6x+ 2

∂2f

∂y2
(x, y) = 4x+ 12y2 + 2

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 4y + 3.

Thus, with respect to the standard basis we have

D2f(0, 0) =

(
2 3
3 2

)
.

Thus, det(D2f(0, 0)) = −5. Since 2 > 0 and det(D2f(0, 0)) < 0 we know that D2f(0, 0) is
neither positive-definite nor negative-definite. So (0, 0) is a saddle point. We can see this result
geometrically by determining the principal directions and principal curvatures for D2f(0, 0).
The principal curvatures are found by finding the roots of∣∣∣∣λ− 2 −3

−3 λ− 2

∣∣∣∣ = (λ− 5)(λ+ 1).
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So λ = 5,−1. For each λ, we solve the system of linear equations(
2 3
3 2

)(
v1
v2

)
= λ

(
v1
v2

)
.

The unnormalized eigenvectors of λ = 5 and λ = −1 are determined to be v = (v1, v2) = (1, 1)
and v′ = (−1, 1) respectively. We deduce that the graph of f is increasing at (0, 0) in the
direction (1, 1) while f is decreasing at (0, 0) in the direction (−1, 1). Thus, we conclude that
the point (0, 0) is a saddle point.
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