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1. Problem 3.2. Let f(z) = z+2z%sin(1/x) for z # 0 and f(0) = 0. We prove that f is not locally
integrable near x = 0. Observe that for x # 0 the derivative of f exists and

() =1+ 4xsin(1/z) — 2cos(1/x).

Furthermore, notice that

= 1.

- 2sin
F(0) = }%M i h+2h : (1/h)

So f'(0) = 1 # 0. Hence, although f is differentiable, the lim, ,o f’(x) does not exist so f ¢
C'(R). As a result, the inverse function theorem does not apply.

Next, to show that f is not invertible near = 0, consider the points 1/((2n+ 1)) < 1/((2n +
1/2)m) < 1/(2nm) with n a positive integer. Then f(1/((2n + 1)7)) < f(1/((2n + 1/2)7)) and
f(1/((2n+1)7)) < f(1/(2n7)). However, a computation shows that

F 1 iy 1\ (16 —27%)n —7*/2
(2n +1/2)m 2nw ) (4n)(2n +1/2)272"°

which is greater than 0 for n > 2. Thus, f(1/((2n+ 1)7)) < f(1/(2n7)) < f(1/((2n+ 1/2)7)).
Ergo, the intermediate value theorem implies there exists a point ¢, € (1/((2n+ 1)7),1/((2n +
1/2)m)) such that f(c,) = f(1/(2nm)).
Therefore, for any open neighborhood U containing 0, there exists an integer n such that
[1/((2n + 1)7),1/(2n7)] C U. Since U contains both ¢, and 1/(2nw), we deduce that f is not
invertible on U. Consequently, f is not invertible on any open neighborhood of 0. We conclude
the desired result.

2. Problem 3.3. Let L : R* — R™ be a linear isomorphism and let f(x) = L(z) + g(x), where

g : R" — R" with the property that ||g(z)|| < M||z||* and f € C'(R™, R". We prove that f is
locally invertible near x = 0.
By Problem 2.4 we know that ¢ is differentiable at x = 0 and Dg(0) is the zero map. Further-
more, L(z) is differentiable with derivative DL(0) = L. Since L is a linear isomorphism, det(L) #
0. Hence, by linearity of the derivative and multilinearity of the determinant det(Df(0)) =
det(L) # 0. Thus, the inverse function theorem guarantees there exists an open neighborhood
A containing the origin such that f is invertible on A.
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3. Problem 3.4. We show that the system

u(z,y,z) =+ zyz

v(z,y,2) =y +axy
w(x,y, 2) = z + 22 + 327

can be solved for (z,y,z) in terms of (u,v,w) near (z,y,2) = (0,0,0). Let f : R® — R? be
defined by f(z,y, z) = (u,v,w). Then the Jacobian of f at (0,0,0) is

1+yz 2 Ty 100
Df(0,0,0) = Y 1+ 0 =010
2 0 1+62 2 01

z,y,2=0

Since det(D f(0,0,0)) # 0 the inverse function theorem guarantees that in some open neighbor-
hood of (0,0,0) we have a differentiable inverse of f, which means that we can solve for z,y, z
in terms of u, v, w.

. Problem 3.6. Consider the equation
dy

Then the zero function y = 0 trivially satisfies the equation. If y(tg) > 0 for some ¢y € R then
there exists an € > 0 sufficiently small such that y(t) > 0 for all t € U := (typ — €,tg + €). Then

for all t € U we have
dy

y(t)

Integrating the above equality shows that 24/y(t) = t 4+ C. Since y(0) = 0 it follows that C' = 0,
whence y(t) = t?/2 in U. Hence, we conclude that the only admissible nontrivial solution of (1)

with this property in U is
0, t<0,
y(t) =9 ¢

5, t>0.

= dt.

The fundamental theorem of ordinary differential equations is not contradicted since the function
V/J is not Lipschitz. That is, the slope of the curve c¢(y) = /¥y is unbounded as y — 07 as
evidenced by the fact that for y > 0 we have (y) = ﬁy

. Problem 3.8. Let B be an n x n matrix and consider the linear system

dy n
D Boyln), yn) R &)
We show that a solution is given by
(t) = Py(0), where e? := i 5
Observe that
d .z d [~t"B" L "B B
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Hence, we have found a solution that holds for all £ > 0.
We prove the result directly from the fundamental theorem of ODEs.
Let yo = y(0) and define the sequence {y,(t)}22; of vectors in R" by

yn(t) = 5(0) + / F(yns(s), s)ds = y(0) + B - / Yo (5)ds,

where the integral is defined componentwise on y,,_1(s). Then lim,, . y,(t) = ¢Py(0). To prove
that the sequence {y,(t)} indeed converges to the solution of (2), by the proof of the fundamental
theorem of ODEs, it suffices to determine the domain of ¢ € R for which the sequence {y,}»
converges.

Let F(y(t),t) = B -y(t) with yo = y(0), r > 0 and a > 0 so F : B(yo,r) x [—a,a] — R™. Notice
that B represents a bounded linear map B : R®™ — R” that is continuous. That is, there exists
a constant K such that for all y € R™ we have ||Byl|| < K||y||. In particular,

|1 F(y1,t) = Fyz, )| = [|Byr = y2)ll < Kllya = 9ell,  ¥y1,92 € Blyo, 7).t € [~a,al.
Furthermore, since B and y are continuous, we know that

_sup [F(y, )| = M < o0
yE€B(yo,r),t€[—a,a]

since B(yo,r) and [—a, a] are compact. Thus, if we choose b < min{a,r/M,1/K} then we have
met all the hypotheses of the fundamental theorem of ODEs. Observe that such a b does not
depend on a or r. So for t € [-1/K,1/K] we have the desired convergence of the sequence

{yn(t) -
By applying the fundamental theorem of ODEs again, this time at ¢ = 1/ K with initial condition

y(1/K), we see again that {y,(t)}, converges to the solution of (2) for ¢ € [0,2/K]. Repeated
applications of the fundamental theorem guarantees that e/Zy(0) is a solution of (2) for all ¢ > 0.



