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1. Problem 3.2. Let f(x) = x+ 2x2 sin(1/x) for x 6= 0 and f(0) = 0. We prove that f is not locally
integrable near x = 0. Observe that for x 6= 0 the derivative of f exists and

f ′(x) = 1 + 4x sin(1/x)− 2 cos(1/x).

Furthermore, notice that

f ′(0) = lim
h→0

f(h)− f(0)

h
= lim

h→0

h+ 2h2 sin(1/h)

h
= 1.

So f ′(0) = 1 6= 0. Hence, although f is differentiable, the limx→0 f
′(x) does not exist so f /∈

C1(R). As a result, the inverse function theorem does not apply.

Next, to show that f is not invertible near x = 0, consider the points 1/((2n+ 1)π) < 1/((2n+
1/2)π) < 1/(2nπ) with n a positive integer. Then f(1/((2n + 1)π)) < f(1/((2n + 1/2)π)) and
f(1/((2n+ 1)π)) < f(1/(2nπ)). However, a computation shows that

f

(
1

(2n+ 1/2)π

)
− f

(
1

2nπ

)
=

(16− 2π2)n− π2/2

(4n)(2n+ 1/2)2π2
,

which is greater than 0 for n ≥ 2. Thus, f(1/((2n+ 1)π)) < f(1/(2nπ)) < f(1/((2n+ 1/2)π)).
Ergo, the intermediate value theorem implies there exists a point cn ∈ (1/((2n+ 1)π), 1/((2n+
1/2)π)) such that f(cn) = f(1/(2nπ)).

Therefore, for any open neighborhood U containing 0, there exists an integer n such that
[1/((2n + 1)π), 1/(2nπ)] ⊂ U. Since U contains both cn and 1/(2nπ), we deduce that f is not
invertible on U. Consequently, f is not invertible on any open neighborhood of 0. We conclude
the desired result.

2. Problem 3.3. Let L : Rn → Rn be a linear isomorphism and let f(x) = L(x) + g(x), where
g : Rn → Rn with the property that ||g(x)|| ≤ M ||x||2 and f ∈ C1(Rn,Rn. We prove that f is
locally invertible near x = 0.

By Problem 2.4 we know that g is differentiable at x = 0 and Dg(0) is the zero map. Further-
more, L(x) is differentiable with derivative DL(0) = L. Since L is a linear isomorphism, det(L) 6=
0. Hence, by linearity of the derivative and multilinearity of the determinant det(Df(0)) =
det(L) 6= 0. Thus, the inverse function theorem guarantees there exists an open neighborhood
A containing the origin such that f is invertible on A.
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3. Problem 3.4. We show that the system

u(x, y, z) = x+ xyz

v(x, y, z) = y + xy

w(x, y, z) = z + 2x+ 3z2

can be solved for (x, y, z) in terms of (u, v, w) near (x, y, z) = (0, 0, 0). Let f : R3 → R3 be
defined by f(x, y, z) = (u, v, w). Then the Jacobian of f at (0, 0, 0) is

Df(0, 0, 0) =

1 + yz xz xy
y 1 + x 0
2 0 1 + 6z

∣∣∣∣∣∣
x,y,z=0

=

1 0 0
0 1 0
2 0 1

 .

Since det(Df(0, 0, 0)) 6= 0 the inverse function theorem guarantees that in some open neighbor-
hood of (0, 0, 0) we have a differentiable inverse of f, which means that we can solve for x, y, z
in terms of u, v, w.

4. Problem 3.6. Consider the equation
dy

dt
=
√
y. (1)

Then the zero function y ≡ 0 trivially satisfies the equation. If y(t0) > 0 for some t0 ∈ R then
there exists an ε > 0 sufficiently small such that y(t) > 0 for all t ∈ U := (t0 − ε, t0 + ε). Then
for all t ∈ U we have

dy√
y(t)

= dt.

Integrating the above equality shows that 2
√
y(t) = t+C. Since y(0) = 0 it follows that C = 0,

whence y(t) = t2/2 in U. Hence, we conclude that the only admissible nontrivial solution of (1)
with this property in U is

y(t) =

{
0, t ≤ 0,
t2

2
, t > 0.

The fundamental theorem of ordinary differential equations is not contradicted since the function√
y is not Lipschitz. That is, the slope of the curve c(y) =

√
y is unbounded as y → 0+ as

evidenced by the fact that for y > 0 we have c′(y) = 1
2
√
y
.

5. Problem 3.8. Let B be an n× n matrix and consider the linear system

dy

dt
= B · y(t), y(t) ∈ Rn. (2)

We show that a solution is given by

y(t) = etBy(0), where eB :=
∞∑
n=0

Bn

n!

Observe that

d

dt
etBy(0) =

d

dt

(
∞∑
n=0

tnBn

n!

)
y(0) = B

(
∞∑
n=0

tnBn

n!

)
y(0) = B · etBy(0).

2



Hence, we have found a solution that holds for all t ≥ 0.

We prove the result directly from the fundamental theorem of ODEs.

Let y0 = y(0) and define the sequence {yn(t)}∞n=1 of vectors in Rn by

yn(t) = y(0) +

∫ t

0

F (yn−1(s), s)ds = y(0) +B ·
∫ t

0

yn−1(s)ds,

where the integral is defined componentwise on yn−1(s). Then limn→∞ yn(t) = etBy(0). To prove
that the sequence {yn(t)} indeed converges to the solution of (2), by the proof of the fundamental
theorem of ODEs, it suffices to determine the domain of t ∈ R for which the sequence {yn}n
converges.

Let F (y(t), t) = B · y(t) with y0 = y(0), r > 0 and a > 0 so F : B̄(y0, r)× [−a, a]→ Rn. Notice
that B represents a bounded linear map B : Rn → Rn that is continuous. That is, there exists
a constant K such that for all y ∈ Rn we have ||By|| ≤ K||y||. In particular,

||F (y1, t)− F (y2, t)|| = ||B(y1 − y2)|| ≤ K||y1 − y2||, ∀y1, y2 ∈ B̄(y0, r), t ∈ [−a, a].

Furthermore, since B and y are continuous, we know that

sup
y∈B̄(y0,r),t∈[−a,a]

||F (y, t)|| = M <∞,

since B̄(y0, r) and [−a, a] are compact. Thus, if we choose b < min{a, r/M, 1/K} then we have
met all the hypotheses of the fundamental theorem of ODEs. Observe that such a b does not
depend on a or r. So for t ∈ [−1/K, 1/K] we have the desired convergence of the sequence
{yn(t)}n.
By applying the fundamental theorem of ODEs again, this time at t = 1/K with initial condition
y(1/K), we see again that {yn(t)}n converges to the solution of (2) for t ∈ [0, 2/K]. Repeated
applications of the fundamental theorem guarantees that etBy(0) is a solution of (2) for all t ≥ 0.
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