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WELL-POSEDNESS OF THE FREE-BOUNDARY COMPRESSIBLE
3-D EULER EQUATIONS WITH SURFACE TENSION AND THE
ZERO SURFACE TENSION LIMIT*
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Abstract. We prove that the three-dimensional compressible Euler equations with surface ten-
sion along the moving free-boundary are well-posed; we then establish the limit as surface tension
tends to zero. Specifically, we consider isentropic dynamics and consider an equation of state, mod-
eling a liquid, given by Courant and Friedrichs [Supersonic Flow and Shock Waves, Appl. Math.
Sci. 21, Springer-Verlag, New York, 1976] as p(p) = ap” — B for consants v > 1 and «,8 > 0.
The analysis is made difficult by two competing nonlinearities associated with the potential energy:
compression in the bulk and surface area dynamics on the free-boundary. Unlike the analysis of
the incompressible Euler equations, wherein boundary regularity controls regularity in the interior,
the compressible Euler equation requires the additional analysis of nonlinear wave equations gener-
ating sound waves. An existence theory is developed by a specially chosen parabolic regularization
together with the vanishing viscosity method. The artificial parabolic term is chosen so as to be
asymptotically consistent with the Euler equations in the limit of zero viscosity. Having solutions
for the positive surface tension problem, we proceed to obtain a priori estimates which are indepen-
dent of the surface tension parameter. This requires choosing initial data which satisfy the Taylor
sign condition. By passing to the limit of zero surface tension, we prove the well-posedness of the
compressible Euler system without surface on the free-boundary and without derivative loss.
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1. Introduction.

1.1. The compressible Euler equations in Eulerian variables. The motion
of an inviscid compressible liquid with a moving free-boundary is modeled by the Euler
equations:

(1.1a) O¢(pu) +divipu @ u+pld) =0 in Q(2),
(1.1b) Op + div(pu) =0 in Q(t),
(1.1c) p=ocH(t) onT(¢),
(1.1d) V(I(t)) = u-n(t),

(1.1¢) (u,p) = (0, p0)  om 0(0),
(1.1f) Q(0) = Q,

where Q(t) denotes an open and bounded subset of R3, T'(t) = 9€Q(t) is the moving
free-boundary, and ¢ € [0, T] denotes time. We use the notation V(I'(¢)) for the normal
velocity of boundary I'(¢), which is equal to the normal component of the fluid velocity
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u - n, where n(t) is the outward-pointing unit normal to I'(¢), u = (u1, us2, u3) denotes
the velocity field, p denotes the pressure, and p denotes the density.

The first two equations are conservation laws for momentum and mass. The
boundary condition (1.1c) is often referred to as the Laplace—Young condition, stating
that the fluid stress is proportional to the mean curvature H (t) of the moving surface,
the proportionality constant defining the surface tension parameter . The last two
equations provide the initial conditions for the dynamics. The initial data consists
of the initial domain 2, the initial density function pg, and the initial velocity vector
field wug.

In order to model the motion of a compressible liquid, we use the equation-of-state
given by Courant and Friedrichs [8] as

(1.2) p(z,t) = ap(z,t)” = for v > 1,

where a > 0 and 3 > 0. For convenience, we set a = 1.1
Using the equation of state (1.2), the momentum equations (1.1a) and Laplace—
Young boundary condition (1.1c) are equivalently written as

(1.3a) plOwu + (u- D)u] + Dp¥ = in Q(¢),
(1.3b) p'=p+0cH onl(t).

We assume that the initial density function is strictly positive and that
po>A>0 in Q.

In the absence of surface tension, we further require the initial pressure function pg
to satisfy the Taylor sign condition (see, for example, [30] and [26]), given by
Ipo

<
O<rv< N onl',

where N denotes the outward unit normal to I'. This is equivalent to

(1.4) 0<1/§—8— onl.
n

1.2. Prior results on the Euler equations with moving free-boundary.

1.2.1. The incompressible setting. There has been a recent explosion of in-
terest in the analysis of the free-boundary incompressible Euler equations, particularly
in irrotational form, that has produced a number of different methodologies for ob-
taining a priori estimates. The accompanying existence theories have relied mostly
on the Nash—Moser iteration to deal with derivative loss in linearized equations when
arbitrary domains are considered, or on complex analysis tools for the irrotational
problem with infinite depth. We refer the reader to [2, 3, 11, 14, 21, 22, 27, 36, 37, 40]
for a partial list of papers on this topic. For the viscous case, see [15, 28, 29, 39].

1.2.2. The compressible setting. The mathematical analysis of moving hy-
persurfaces in the multidimensional compressible Euler equations began with the ex-
istence and stability of the shock-front solution initiated in [24] and was extensively
studied by [16, 17, 18, 25]. (See the references in these articles for a thorough re-
view of the literature in this area). More delicate than the noncharacteristic case

1Using (1.2), liquid water is modeled using the values v = 7, a = 3001, and 8 = 3000.
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of the shock-front solution, the characteristic boundary case is encountered in the
study of vortex sheets or current vortex sheets. This class of problems has been
studied by [4, 6, 7, 33, 35] (and see the references therein); the linearization of the
two-dimensional compressible vortex-sheet problem produces derivative loss, similar
to that experienced by many authors in the setting of incompressible flow (for both
irrotational flows and for flows with vorticity).

The problem of the expansion of a compressible gas with the so-called physical
vacuum singularity has been studied in [9, 12, 13, 19, 20, 38] and is degenerate because
of the vanishing of the density function on the moving free-boundary.

For the model of a compressible liquid considered in this paper, the Euler equa-
tions are uniformly hyperbolic thanks to the equation-of-state (1.2). In the absence
of surface tension, an existence theory was given in [23] using Lagrangian coordinates
and a Nash—Moser construction, but the estimates had derivative loss. Using the
theory of symmetric hyperbolic systems, the paper [34] gave a different proof for the
existence of solutions, also with derivative loss. We prove well-posedness for the mo-
tion of a compressible liquid with and without surface tension, and with no derivative
loss. We also establish the asymptotic limit of zero surface tension.

1.3. Fixing the domain and Lagrangian variables. To transform the system
(1.1) into Lagrangian variables, we let 7(x,t) denote the flow of a fluid particle = at
time ¢. We define 7n(z,t) as the solution of the following differential equation:

o =wuonfort>0 and 7(x,0)=x,

where o denotes composition, so that [uon)(z,t) = u(n(z,t),t). We then introduce
the following Lagrangian variables on the reference domain :

v=uon (Lagrangian velocity),

f=pon (Lagrangian density),

A=1[Dn]"" (inverse of the deformation tensor),
J=detDn (Jacobian determinant),

a=JA (cofactor matriz of the deformation tensor).

Using the notation for partial-derivatives and summation defined below in section 2.1.2,

the Lagrangian version of (1.1) on the fixed domain € is given by

1.5a) foi+ AFfY =0 in Q x (0,7),

1.5b) fi+ fAIV ;=0 in Q % (0,77,

1.5¢) fr=B+0H(n) on ' x (0,7,

15d) (nvvvf)|t:0 = (eaanPO) on Qv

where I' = 0Q and e(z) = = denotes the identity map on €. _
Time-differentiating the Jacobian determinant yields J; = alv’,; (see 2.5 below).

Since f satisfies (1.5b), and since n(x,0) = z, we see that the Lagrangian density
function f satisfies the important identity

(1.6) f=pod ",

so that the initial density function appears only as a parameter in the Lagrangian
description of the flow. It is convenient to set v = 2 so that p(p) = p? or q(f) = f>.
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In this case, we write the compressible Euler equations (1.5) as

(1.7a) povt + @i (pg ] ) =0 in Q x (0,77,
(1.7b) peJ 2=B+cH(n)  onT x (0,T),
(1.7¢) (n,v)]i=0 = (e, up) on Q.

For ¢ > 0, we shall refer to (1.7a—c) as the surface tension problem. The function
H(n) is defined in (2.13).

For reference, since AF = J
equivalent to

~LaF we see that the momentum equations (1.7a) are

(1.8) vl +2A%(poJ N =0 in Qx (0,7
For general values of 7 > 1, we can replace the density variable with the enthalpy
variable and recover the analysis of the case that v = 2.

1.4. The higher-order energy functions E(t) and E(t). While the physical
energy [ [po3|v|? + p3J ! + BJ] + o A(t), A(t) denoting the surface area of T'(t), is
a conserved quantity, it is too weak to control the regularity of the evolving free
boundary.

We define the higher-order energy functions E(t) and E(t) to, respectively, corre-
spond with the surface tension problem and the zero surface tension limit. Although
neither E(t) or €(f) is conserved, we will establish that each of sup,c(o ) E(t) and
sup;eo,r] €(t) is bounded on a sufficiently small time-interval of existence [0, 77.

1.4.1. The higher-order energy function for o > 0. We define the higher-
order energy function (or norm) E(t) as

5 2
(19)  E@t) =1+ Y_[on(®)|3—a + [veee - n(O)F + D [0°07v - n(t)[5.5_q-

a=0 a=0
We let My > 0 denote a generic constant given by a polynomial function P of E(0):
(1.10) My = P (E(0)).

1.4.2. The higher-order energy function for o = 0. We define the higher-
order energy function &(t) as

7 5
(L11) &) =1+ 105 g0+ DI T DI 5- 3, + 0PI DI
a=0 a=0

We let My > 0 denote a generic constant given by a polynomial function P of £(0):
(1.12) My = P (€(0)).

Section 2.1 explains the notation for the norms used in (1.9) and (1.11).

1.5. Compatibility conditions for initial data (pg, ug, 2). We assume that
po and ug are given and sufficiently smooth. We require that the initial density pg
satisty

(1.13) po>2X2>0 inQ.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/13 to 163.1.62.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

3694 DANIEL COUTAND, JASON HOLE, AND STEVE SHKOLLER
Using the identities n(0) = e and J; = afv",s, we let Jy be defined by
Ji1 = 0(J2)(0) = —2div ug.
We let v; and ve be the vectors, respectively, given by
vi = —=20ipo and vy = —py ' [3i(pg 1) + Oraf (0)(pR) ik ],
where 9;a(0) is a smooth function of Dug. We define, as a function of pg and uy,
Jo =0T ) |4=o fora=0,1,2,3.

1.5.1. The case of positive surface tension. For ¢ > 0, we assume that 2
is an H°-class domain and that py and ug are in H*(2). We define, as a function of
po and ug,

H,=0}H()|t=0 fora=0,1,2,3.
We require that the initial data satisfy the following compatibility conditions:
(1.14) ngazafﬁ—i—aHa on I fora=0,1,2,3.
For § as in (1.2) and A as in (1.13), when a = 0 in (1.14), we see that H must satisfy
oHy > 4X* — 3.

1.5.2. The case of zero surface tension. For ¢ = 0, we assume that () is an
H*5_class domain and that pg is in H*®(Q) and ug is in H*(Q).
We require that py and € satisfy the Taylor sign condition:
o 2
(1.15) 0<2V§—8—?\? on I

We require that the initial data satisfy the following compatibility conditions:
(1.16) pedy =083 onTl fora=0,...,6.

Remark 1. The twice-mean-curvature function H(7) is not present in the zero
surface tension limit of (1.7). Accordingly, there is no restriction on the curvature of
the initial surface I'.

1.6. Main results. The main results of this paper are the existence and unique-
ness of solutions to the compressible Euler equations with and without surface tension.
THEOREM 1.1 (existence and uniqueness for o > 0). Suppose that the initial data
(pos 0, 2) verify
1. My = P(E(0)) < oo,
2. the lower-bound condition (1.13), and
3. the compatibility conditions (1.14).
Then for some T > 0, there exists a solution to (1.7) on the time-interval [0,T] such
that p(t) > X in Q(t), cH(t) > —3 on T(t), and

sup E(t) < 2M,.
te[0,T)
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Furthermore, the solution is unique if the initial data is such that

3
Z 10£1(0)§—a + lvreee - n(O)[F + Y 10%05v - n(0)]3 5_4 < 00

a=0

After establishing Theorem 1.1, we prove o-independent estimates for solutions to
the surface tension problem under an additional Rayleigh—Taylor stability condition
on the initial data. By passing to the limit as ¢ — 0, we establish the following.

THEOREM 1.2 (existence and uniqueness for o = 0). Suppose that the initial data
(o, uo, ) verify

1. My = P(&(0)) < oo,
2. the lower-bound condition (1.13),
3. the Taylor sign condition (1.15), and
4. the compatibility conditions (1.16).
Then for some T > 0, there exists a solution to (1.7) with o = 0 on the time-interval

[0, T] such that p(t) > X in Q(t), — Bn((tt)) >v onT(t), and

sup E&(t) < 2M,.
t€[0,T]

Furthermore, the solution is unique if the initial data is such that
leatﬁ )|[F 5,_a+2||3t (O3 5-14 + 17T (O)]F < oo

Remark 2. The proofs of Theorems 1.1 and 1.2 do not rely on our choice of v = 2
and as such are valid for general v > 1, since by introducing a new enthalpy-type
variable to replace the density function, (1.5), we can reduce the case of general v > 1
to the case that v = 2.

1.7. Structure of the proofs of Theorems 1.1 and 1.2.

1.7.1. Existence for the surface tension problem (1.7). An existence the-
ory is obtained via the vanishing viscosity method, but with a very special choice of
artificial viscosity which does not alter the vorticity equation, given in Lagrangian
coordinates as

curl, vy = 0,

where the Lagrangian curl operator curl,, is defined below in section 2.1.3. By defining
a parabolic approximation of the Euler equations (1.7a) which preserves the vorticity
equation, we ensure that the vorticity estimates for the approximate problem are
independent of the parabolic approximation parameter x. The parabolic approximate
k-problem defined in section 3.

The structure of the Euler equation (1.7a) shows that an a priori estimate for v,
provides an estimate for the gradient of .J, which then yields an estimate for the gradi-
ent of divn. As such, yet another constraint on the choice of parabolic regularization
operator is that its presence must still permit estimates for D divn whenever esti-
mates for v; are known. We choose our k-parabolic operator so that the parabolically
regularized momentum equations have the form

F+/€Ft:G
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for F representing the Lagrangian gradient of J. Such a structure allows us to obtain
k-independent estimates for F', given estimates for G. We must further add parabolic
regularization to the surface tension boundary conditions (1.7b), which also have the
same structure, in order to infer the maximal regularity of the free-boundary.

Our strategy is to obtain energy estimates for the highest number of time-deriva-
tives in the problem and then use the structure of the momentum equations to infer
estimates for the divergence of the time-differentiated velocity vectors and flow map.
In conjunction with curl-estimates and boundary regularity, we boot-strap the full
regularity of the velocity, its time-derivatives, and the flow map 7.

In section 4, we perform energy estimates in the fourth (highest) time-differenti-
ated approximate k-problem. From these energy estimates, we are able to close esti-
mates for vy (t) in L2(Q) and vy (t) in HY(2). We then infer the optimal regularity
of vy and v;. This, in turn, enables us to get the optimal regularity for v and n. All
estimates are found to be independent of the artificial viscosity parameter k.

In section 5, we construct smooth solutions to the approximate k-problem. We
utilize (the Lagrangian variables version of) the basic vector identity —A = curl curl —
Ddiv in order to replace the gradient of the divergence of v with the Laplacian of
v, modulo lower-order terms. Additionally, we use the fact that a sufficiently regular
vector field £ satisfies

NIAIAFE ) = /gT eurl, &) x n + /gJ " (div, &)n + b(&, 1),

where b(£,n) is a first-order differential boundary operator with respect to £ and a
second-order differential boundary operator with respect to n. In our approximation
scheme, the regularity of the flow map 7 is limited by the regularity of the velocity v;
hence, we employ a horizontal convolution-by-layers operator (first introduced in [11])
in order to view b(v,n) as a lower-order term. With the horizontal convolution-by-
layers approximation in place, solutions can be found via the existence theory for uni-
formly parabolic second-order equations. We must then find estimates for such solu-
tions which are indeed independent of the convolution parameter and pass to the limit.
In section 6, we use the x-independent a priori estimates established in section 4
and the construction of solutions to our approximate x-problem in section 5 to estab-
lish the existence and uniqueness of solutions to the surface tension problem (1.7).

1.7.2. The zero surface tension limit. In section 7, we establish our existence
theory for the zero surface tension limit of (1.7) via o-independent a priori estimates.
For initial data satisfying the Taylor sign condition (1.15), we show that independently
of 0 > 0,

O<1//|5417-n|2<oo
r
on a sufficiently small time-interval [0,7]. This estimate allows us to obtain o-
independent a priori estimates and hence pass to the limit as ¢ — 0.
2. Preliminaries.
2.1. Notation.

2.1.1. The three-dimensional gradient vector. Throughout this paper the
symbol D will be used to denote the three-dimensional gradient vector

0 0 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/13 to 163.1.62.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

COMPRESSIBLE EULER EQUATIONS 3697

2.1.2. Notation for partial differentiation and Einstein’s summation
convention. The kth partial derivative of F' will be denoted by F,; = BBTFk' Re-
peated Latin indices i, j, k, etc., are summed from 1 to 3, and repeated Greek in-

2
dices a, 3,7, etc., are summed from 1 to 2. For example, F,; = >0, %, and

; i _ 3 2 2 9F? oG"
Fi o I*PG g=%" [ >° ) 2 B=1 Fas Iaﬁ@'

2.1.3. The divergence and curl operators. We use the notation divu to
denote the divergence of a vector field u on €,

dive = ul +u?0 +u,3,
and we use the notation curl u to denote the curl of a vector u on €2,
curlu = (u3,2 —u? g uty—udy U’ —ul,z) .
We recall that the permutation symbol ;51 is defined by

1, even permutation of {1,2,3},
gijk = —1, odd permutation of {1,2,3},
0 otherwise.

This allows for the curl of a vector field u to be expressed as curlu = £.,u”,;. Letting
v = u(n) for a given flow map 7, we use the notation div, v to denote the Lagrangian
divergence of v on 2,

div,v = Ajv" s,
and we use the notation curl, v to denote the Lagrangian curl of v on €,
curl, v = s.jkAjvk,s .

2.1.4. The scalar- and cross-product of vectors in R3. Let u and v be
vectors in R3. The scalar-product of u and v, denoted u - v, is defined as

(2.1) u-v = u'v! + u? + udv®,
The cross-product of 4 and v, denoted u X v, is defined as
(2.2) uxv=c vk

2.1.5. Local coordinates near I'. We let Q C R?® denote an open, bounded
subset of class H® for s > 4, and we let {U;}/£, denote an open covering of I' = 99,
such that for each [ € {1,2,..., K} with

B, = B(0,r;), denoting the open ball of radius r; centered at the origin,
BlJr = BN {xs > 0},
D, =8B N {!E3 = 0},

there exists an H®-class chart 6; satisfying

0,: B — U; is an H® diffeomorphism,
9;(8?) =U; N,
el(Dl) =U;nT.
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U

Fic. 2.1. Indexing convention for the open cover {Ul}l‘r‘:1 of Q.

For L > K, we let {U}{x,, denote a family of open balls of radius r; properly
contained in  such that {U;}£, is an open cover of Q (see Fig. 2.1). We let

{&}E, denote a C™ partition-of-unity subordinate to the open covering of Q.

2.1.6. Tangential derivatives. On each U;N$Q, for 1 < < L, we let 9; denote
the local tangential-derivative. That is, for a differentiable function f on €2, the ath
component of the local tangential-derivative of f is defined in U; N by

o = (gl o0l) 007 = ((DF oS ) o077,

(6% xOL
where for K,"‘ 1 <1< L, we have set 6; to be the identity map e.
We let 9 denote the tangential-derivative whose ath component is given by

L
504 - Z flél,a-
=1

We use O, f or f,, to denote the components of the tangential-derivative of f.

2.1.7. Geometry of the moving surface I'(¢t). The vectors 7, for a = 1,2,
span the tangent space to the moving surface I'(t) = n(T', t) in R3. The surface metric
g on I'(t) has components

Jap = a8 -

We let gy denote the surface metric of the initial surface I'. The components of the
inverse metric [g] ™! are denoted by g*”. We use /g to denote /det g; we note that

V9 = In,1 Xn,2 |, so that n = [n,1 xn,2]/,/g. Equivalently,
(23) \/g'fl =T XT]?Z .

The Laplace-Beltrami operator A, is defined on I' as

Ay = \/giléa[\/ggaﬂgﬂ]'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/13 to 163.1.62.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

COMPRESSIBLE EULER EQUATIONS 3699

2.1.8. Sobolev spaces on 2. For integers £ > 0 and a smooth, open domain
Q of R?, we define the Sobolev space H*(€2) (H*(€2;R?)) to be the closure of C*°(Q)
(C>(Q;R?)) in the norm

nmzzéwww

la|<k

for a multiindex a € Z:j’r with the convention that |a| = a1 + a2+ a3. For real numbers
s > 0, the Sobolev spaces H*(2) and the norms || - ||s are defined by interpolation.
We will write H*(Q) instead of H*(£2;R3) for vector-valued functions. We use H*(2)’
to denote the dual space of H*(2).

2.1.9. Sobolev spaces on I'. For functions v € H*(T'), k > 0, we set

> [

Juli =
la|<k

for a multiindex a € Z2. For real s > 0, the Hilbert space H*(I') and the boundary
norm | - |5 is defined by interpolation. The negative-order Sobolev spaces H*(I") are
defined via duality. That is, for real s > 0,

H=*(T) = H (T,

Remark 3. Throughout this paper, we suppress the Euclidean measure dx by
letting [, represent [, dz. Similarly, the notation [ represents [.dSp, where dSy =
V9odr1dxs is the surface measure of the initial surface I'. Equally, the time integral

t t
J, should be read as [; ds.
Remark 4. We let | - |s,p, denote the H*(D;)-norm.

2.2. Differentiation and geometric identities and properties.

2.2.1. An identity for the Jacobian determinant J. With dimQ = 3, we
have that the Jacobian determinant J is written as

2.4 —
(2.4) J dimQ[am,]

which follows from the definition of the cofactor matrix a in section 1.3.

2.2.2. Time-differentiating the Jacobian determinant J and the cofac-
tor matrix a. We record the following basic differentiation formulas:

(2.5) O = ajv",s,

(2.6) orak = J asal — asafu s .
Using (2.5) and (2.6) and the fact that a = JA, we have that
(2.7) A = — Az ARV

We note that the time-differentiation formulas (2.5)—(2.7) at once become formulas
for tangential-differentiation by replacing v",s with dn",s in the right-hand sides of
(2.5)—(2.7).
The formulas (2.5) and (2.6) imply the following scaling relations:
Oy J ~ aDw, dya ~ a’Dv,
02J ~ a*(Dv)? + aDvy,  0?a ~ a®(Dv)? 4 a®*Duy.

These scaling relations are particularly useful when estimating error-terms.
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2.2.3. The Piola identity. Columns of every cofactor matrix are divergence-
free. Thus,
(2.8) af ., =0.

2.2.4. Relating the normal vectors of I and I'(t). With N as the outward
unit normal to the reference surface I', the outward-normal direction of the moving
surface I'(¢) is

aka = |’r]71 X1,2 |nZ
The identity \/g = v/det g = 0,1 Xn,2 | implies that
(2.9) afN* = \/gn'.

2.2.5. Derivatives of the inverse metric g®?, Jacobian v/9, and unit
normal n. A tangential-derivative of the inverse metric g®?, Jacobian determinant
/9, and moving outward normal unit vector n are given by the formulas

(2.10a) 9g*’ = —g** g g"’,
(2.10b) VG = 5/99" Gy
(2.10¢) On = —g"°[0n,s 1l -
Also,

(2.11a) 0rg™" = —g*"Orgung"”,
(2.11b) NG = 599" OrGuw,
(2.11c) On = —g"[v,s5 -],y -

Remark 5. The right-hand side of (2.10c) and (2.11c) is a vector that is tangent
to the embedded surface.

2.2.6. Relating the Laplace—Beltrami operator A, to the unit normal n.
With the formulas (2.10a) and (2.10b), we have that the Laplace-Beltrami operator
Ay = \/g_fléa[\/ggo‘ﬁ 53] applied to the particle flow 17 decomposes into normal and
tangential components as

VIDG(M) = /T (9180 —spia M 979708 ) F3/ T e 1 (97" — g** 9" )5

9°8M,ap-nln

We therefore have the identity

(2.12) VIBe(1) = /99" .0 n]n.
For reference, we recall the identity A,(n) = —H(n)n or, equivalently,
(2.13) Hn) = B, (n) - n.

2.3. Two identities for the Euler equations in Lagrangian variables.

2.3.1. The Lagrangian vorticity equation. With the operator curl,, defined
in section 2.1.3,

2.14 curl,v; =0 in Q.
( "

The identity (2.14) is obtained by taking the Lagrangian curl of the Euler equations
(1.8).
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2.3.2. A tangential identity for v; on the boundary I'. Setting o =1,
(2.15) VMo = f 1 0a(g" [Ny n]) on T.

The identity (2.15) is established using the Euler equations (1.8), the Laplace—Young
boundary condition (1.7b), and the formula (2.12).

2.4. General inequalities.

2.4.1. Trace estimates. For s > % and some constant C' independent of w €

H*(f2), the trace theorem [1] states that the trace of w is defined in H*2(I') with
the estimate

wl,_y < Cllwl.

LEMMA 2.1. Let w € L*(0,T; HY(Q)) N L>°(0,T; L3(Q)). Then for § > 0,

T T
(2.16) [ ol <6 [l 4657 swp Jwo
0 0 te[0,T]

where the constant Cs depends on 1/4.
Proof. Using interpolation and Young’s inequality with § > 0, we have that

T ) T 1 3 T ) )
| ol <0 [ heldlulf < [ ol + 67 sw u,
0 0 0 t€[0,7]

The proof is complete thanks to the trace theorem. O

LEMMA 2.2 (normal trace theorem). Let w be a vector field defined on € such
that Ow € L*(Q) and divw € L?*(Q), and let N denote the outward unit normal vector
to I'. Then the normal trace Ow - N exists in H=9°(I') with the estimate

(2.17) 9w N2 o5 < C[10ullfeg) + I divel 3

for some constant C independent of w.

See [32] for the proof of Lemma 2.2 in the case that dw is replaced by w. For
¢ € HY(Q), [0w-npdS = [, 0w - Dodx — [, divwdpde because we can integrate
by parts with d without any boundary contributions. Thus, the identical proof given
in [32] proves Lemma 2.2. Similarly, we have the following.

LEMMA 2.3 (tangential trace theorem). Let w be a vector field defined on Q such
that Ow € L%*(Q) and curlw € L?(Q), and let 71, > denote the unit tangent vectors to
T', so that any vector field u on T' can be uniquely written as u®t,. Then the tangential
trace Ow - 7, exists in H~>(T) with the estimate

(2.18) 0 7205 < C [|00] 320 + | cwrlw][f g

for some constant C independent of w.
See [5] for the proof of Lemma 2.3.

2.4.2. An elliptic estimate which is independent of k. The following
lemma is used to establish our k-independent a priori estimates. The proof is given
in section 6 of [10].
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LEMMA 2.4. Let k >0, s >0, and g € L>(0,T; H*(Q)) be given. Suppose that
f e HY0,T; H*(Q)) satisfies

(2.19) fH+efi=g inQx(0,7T).
Then,

£l oo 0,125 (2)) < C max{|| f(0)]|s, [|gll o= (0,725 (2)) }-

2.4.3. A technical lemma. The following technical lemma is established in
[11].
LEMMA 2.5. There exists a constant C such that

”5wHH045(Q)’ < CH’U}”HOs(Q) Ywe HO5(Q)

2.4.4. The Hodge decomposition elliptic estimates. The following Hodge-
type elliptic estimate is well known and follows from the identity —Aw = curl curl w—
D divw, together with estimates of divergence-form elliptic operators with Sobolev-
class coefficients.

PROPOSITION 2.1. For an H"-class domain 0, v > 3, if w € L?*(Q;R3) with
curlw € H Y (4 R3), divw € H*1(Q), and w- N|p € H*"2(T) for 1 < s <r, then
there exists a constant C' > 0 depending only on Q0 such that

lwlls < € {llwllo + [ carlw]s—1 + || divw] -1 + 0w N|,_3 ],

where N denotes the outward unit-normal to IT. -
When the domain is smooth and the boundary norm [Ow- N|,_ 3 is replaced with
|lw- N |S_%, this is the classical Hodge decomposition, and we refer the reader to sec-

tion 5.9 of [31] for a review. On the other hand, using the boundary norm |Ow - Nls_z
is already sufficient to establish the full regularity of the vector field w, whenever the
divergence and curl of F' are estimated. The stated Sobolev-class regularity of the
domain follows immediately from using the identity —Aw = curl curlw — D div w and
the analysis of second-order elliptic operators with Sobolev-class coefficients.

2.4.5. A polynomial-type inequality. For a constant M > 0, suppose f: ¢ —>
f(t) > 0 continuously and satisfies

(2.20) fit)y < M +tP(f(t)), t>0,
where P denotes a generic polynomial function. Then for ¢ taken sufficiently small,
ft) <2M.

3. A parabolic k-approximation of the surface tension problem (1.7).
In this section, we define a parabolic approximation of the surface tension problem
(1.7), which we term the k-problem. The k-problem is defined by adding artificial
viscosity terms to the Euler equations and the Laplace—Young boundary condition.
The salient feature of the s-problem is its compatibility with our energy-estimates
methodology based on Proposition 2.1 in that (1) the transport structure of the Eu-
ler equations is maintained and (2) the momentum equations of the x-problem are
equivalently expressed in the form f + xf; = ¢g with f equalling the gradient of J.
These structural properties of the k-problem, respectively, yield the s-independent
curl- and divergence-estimates.
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3.1. Smoothing the initial data. For the purpose of constructing of solu-
tions to the surface tension problem (1.7), it is convenient to smooth our initial data
(po, uo, ) (which has limited Sobolev regularity). This smoothing process must pro-
duce C*°-class data and satisfy the conditions (1.13) and (1.14), so standard smooth-
ing via convolution alone does not suffice. We explain our smoothing process in
Appendix A; this permits us to use C'*°-class data for our construction. Later, in
section 6.2, we recover the optimal Sobolev-class regularity of the initial data stated
in Theorem 1.1.

3.2. The parabolic approximation of the surface tension problem (1.7).
We recall that an equivalent expression of the surface tension problem (1.7) is
vi +2A%(poJ 1)k =0 in Q x (0,7),
e 2=p5— Ugo"er],ag ‘n on T x (0,7).
We have used the identity H(n) = —g®? 1,08 -1 in writing the boundary condition.
The variables in the following problem a priori depend on the parabolic parameter

k. To indicate this dependence, we place the symbol ~ above each of the variables.
DEFINITION 3.1 (the k-problem). For k > 0, we define ¥ as the solution of

(3.1a) oi + 24%(poJ V) ok —KAF (po i)k =0 in Q x (0,T,],
(3.1b) pgj_Q — Hp%j_ljt = H, on T' x (0,T,],
(3.1c) (7,9)|4=0 = (e, up) on Q.

The function H, appearing in the right-hand side of (3.1b) is defined as

(3.2) H, = B(t) — 03P fap 1t — kG D,ap -,

where the function B(t) appearing in the right-hand side of (3.2) is defined as
3 4a o
(3:3) B(t) = B+ kD =08 | = oI i + 5B 7 li=o.
a=0

Remark 6. The particular artificial viscosity term —/@Zlf (pojt),k appearing in
(3.1a) preserves the transport structure of the Euler equations; in particular, taking
the Lagrangian curl of momentum equations produces the same vorticity evolution
as for the original Euler system. In comparison, an artificial viscosity of the form
—/@Zl{ [Affﬂ,k ],; would not preserve the transport structure of the Euler equations.

Remark 7. The sum over a in (3.3) is used to ensure that the initial data satisfy
the compatibility conditions (1.14).

3.3. The constant-in-time vectors v, for a = 1,2,3,4. The vector field
Ut|t=0 18 computed using the momentum equations (3.1a), as follows:

Utli=0 = (KA.k(Pojt),k —QAE(Poj_l),k) lt=0 = D(kpo divug — 2pp).
Similarly, for all a € N,

8(1—1
T ot

8840 (/-;AF(pOJ}),k —221%(poj—1),k) l,_, onQ.
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This formula makes it clear that each 9f0|;— is a function of space-derivatives of the
initial data ug and pg. We define the constant-in-time vectors v, as

8a—1
atafl

(3.4) Vo = (/@/Nl{“(pgjt),k —2121{“(,00‘?_1),;@) ‘t:o fora=1,2,3,4.
Since 24%(poJ ~1),x = pg @k (p2J2),1, we have that v, — v, a = 1,2, as k — 0,
1.5.

where v, are defined in section We use (3.1b) to compute the followmg identities:
fora=0,1,2,3,

(3:5)  OfpgT % — kppd PJ|,_y = OFIB(E) — 0GP fhap it — £GP Drag ]|,

4. A priori estimates for the k-problem (3.1). We establish our k-indepen-
dent a priori estimates in this section; the precise estimate is stated below in Lemma 4.1.
The existence of solutions to the x-problem (3.1) is established in section 5.

For k > 0, we define the following higher-order energy function:

5 2
E*(t) =1+ Y 08715 + [Buee - (O + D 10°07 - (t)]5 50

a=0 a=0

T T
+/ |VEDTytar - 7| +/ VKDt |3
0 0
3 2
(4.1) + ) |kOfE . + > k00T - ()35
a=0 a=0

Remark 8. The inequality stated in Theorem 5.1 ensures that E*(¢) is continuous
in time.

We make the following definition to allow for constants to depend on 1/4.

DEFINITION 4.1 (notational convention for constants depending on 1/6 > 0).
We let P denote a generic polynomial with constant and coefficients depending on
1/6 > 0.

We define the constant Ny > 0 by

(4.2) No = P([[uollr00, | poll100)-

We let R denote generic lower-order terms satisfying
T
R<No+4d sup E*(t)+ TP( sup E“(t)).
0 te[0,T) te[0,T]

The artificially high H1°°(Q)-norm in defining \j is acceptable as the initial data
(po, uo, ) is of C*°-class. We shall assume that

i3y
(4.3) <J<3v

t € [0,T] here and z € Q.

M|F‘

The bounds (4.3) are possible by taking 7" > 0 sufficiently small, since thanks to
Theorem 5.1,

t
(4.4) [T =1 o) < OH/ d,J|| <CVT.
0
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THEOREM 4.1 (a priori k-independent estimates for the approximate x-problem).

We let © solve the k-problem (3.1) on a time-interval [0,T] for some T = T, > 0.
Then independent of k > 0,

(4.5) sup EN(t / R

te[0,T

The proof of Theorem 4.1 is divided into six steps.

Step 1: The k-independent curl-estimates. Following the proofs of Lemma
10.1 in [11] and Proposition 3 in [13] and in establishing
LEMMA 4.1 (the k-independent curl-estimates).

T
up S el 0O + [ IR
0

te[0,7] , -
, T
+ sup Zanurlat ||47a§/ R.
0

t€[0,T] ;. —o
Proof. The Lagrangian curl of (3.1a) yields curl; oy = 0. Setting
B(A,Dv) = e.;; A",

we find that (curl; ), = B(A, D?). By the fundamental theorem of calculus,
t ~
(4.6) curl; 9(t) = curluy + / B(A, Dv).
0

Applying the gradient operator D to (4.6) and a second application of the fundamental
theorem of calculus, we find that

t
D curlq(t) = tD curlug — s.jiDﬁi,s/ As}
0

t ot
(4.7) +a.ﬁ/ [A:Dif' —DA;W,SH/O /0 DB(A, Do

where we have used the identity curl; Dij = curl Dij + €., Dij’ f(f fltj.
The differentiation formula (2.7) equally holds for when the gradient D replaces
O¢; hence, the first three terms on the right-hand side of (4.7) are, with respect to the

action of D3, each bounded by fOT R
We next analyze the highest-order term created in fot fot D*B(A, Dv). With (2.7),

B(A,Db) = —£.;[AIDV" 4 A3’ s + A% g ASDV s +07,4 0 ,s D(AZAD)],
from which it follows that the highest-order term of D*B(A, D) is
topt' o _ ~ ‘
—8.3‘1‘/ / [A§D41~)T,q At + AT, AsD% ).
o Jo

With a relaxation of the precise structure of the summands in the integrands of the
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highest-order terms of D*B(A, D7), we highlight the derivative count that results
from integration by parts in time by writing

t ot t et t
// D4B(A,Df;):—// D%(D@flfl)t—k/ DD A A.
0 JO 0 JO 0

With such a temporal-integration-by-parts computation, the action of D? in (4.7)
yields

T
(438) sup || curl ()| < / R,
te[0,T] 0

and by the same arguments, the action of D3 and kD* in (4.6) yield

T
(4.9) sup || curl5(8)2 + sup Hmuﬂa(t)n;ig/ R.
+€[0,T) +€[0,T) 0

By returning to the Lagrangian vorticity equation curl; o = 0, we find that
. t ~
(4.10) curl vy = €j-ﬂ7,7£73/0 A3,
and by considering the action of D? and xD? in the identity (4.10), we infer that

T
(4.11) sup || curl o (t)||3 + sup ||xcurld(t)]3 < / R.
te[0,T te[0,T] 0

By considering the action of Do, 82, kD?0;, kDJ?, and /kd} in (4.10), and
using the fundamental-theorem-of-calculus identity 080 = 0f04|t—o + fot P4, in
the lower-order terms, we establish that

1

(4.12)  sup Z | curl 9804 ()13
t€[0,7] ,—p

1 T T
—l—Zanurl@ff)tt(t)Hg_a—i—/ ||/<acurlz7tttt(t)||(2)§/ R.
0 0

a=0
The sum of the inequalities (4.8)—(4.12) completes the proof. O
Step 2: The k-independent estimates for vy and vee. We equivalently

write the momentum equations (3.1a) and boundary condition (3.1b) of the x-problem
as

(4.13a) poti + aF(paJ " 2) e —kpod tak(po i) =0 in Q x (0,77,
(4.13b) paJ 2 —kpdJ V), =H, onT x (0,7,
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where H,, is given by (3.2). From (3.1a), we have the identity
By - 7y = Oy[—2p0d ~ + Kipo ).
Multiplying this identity by poJ ! yields
poj_lf)t My = 57[—p§j_2 + np%j_ljt] — /<a(poj_1)W poJs.

We use the boundary condition (4.13b) to obtain the following tangential identity for
Ve

(414) pojil’at ! 777’)’ = 5’}’ UQNVTN]#U’ n+ ’%gNV’DaMV n— ﬁ(t):| - K(pojil)a’}’ pojt.

PROPOSITION 4.1 (energy estimates for the fourth time-differentiated problem).

sup [T ()5 + sup |0FT(®)II§ + sup [Beee - A(E)[3
te[0,T] te[0,T] te[0,T]

T T T
+/ |\/Ea;*f;-ﬁ(t)|§+/ ||\/E8§’JH3§/ R.
0 0 0

Proof. Testing four time-derivatives of (4.13a) against 9} in the L?(Q)-inner
product, and integrating by parts with respect to Ji in the interior integrals fQ ako}

(p2J2),, 040" and —k Ja ak ot [poJ ~(poJi) .k |OLDY, we find that

/ O [poi) Ok — / O3 T2)ak 0N g +r / AT ALLE
Q Q Q
T

1 I

+ / OMpRT =2 — kp2J LI )ak ot N* = R.
r

i
It is convenient to rewrite this equation as

1d

4.15 =
(4.15) 2dt |,

d 5 5 y y
plotaf? + 5 [ TR e [ T ORI i =R,
Q Q

Where:che identity jt =a;v",s implies that the error created in order to write df@ff}i,k
as 0pJ in 77 and Zy is of lower-order and so is absorbed in R.
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Rewriting the boundary integral in (4.15). Using the outward normal iden-
tity (2.9) and the boundary condition (4.13b) with ¢ = 1, we find that

(4.16)

. 1d — . . - —_ N N - -

1= > q / ggaﬂ Uttty ‘N Vttt,8 N+ / \/;gaﬁ\/zvttttaa 'n\/E'Uttttvﬁ ‘n
r r

= 0B~ - .1 — 0B ~ . -
_/ \/Egaﬂvtttaa -0 Vttt,p TV —5 / 3t[\/§g°‘ﬁ] Vttt,a T Uttt ,p T
r r
T R

+ / Vit ~fz\/§§°‘ﬁﬁtttt ‘Mo +/ Vttt>8 T \/Egaﬁf)tttt N
r r

T2
3

+ / Uttt 'ﬁ(ﬁgaﬁ)aa Vgget * T — Z a / \/étifiaﬁaéﬁjaaﬁ leflﬁj Vtte - T

r i Jr

t3

4

- Z a / 015" 0, lihyap -7l NG
=1 r
Tq

4
+ Fé/ Thgaers (' GP) 0 /G000 — 15D € / LG 1) 0} s N Tuat -
r = Jr

ts5
In our analysis of fOT v, e = 1,2, 3, we adopt the convention of letting

7 denote a function of L>(I')-class and [ a function of H®(T')-class.

We recycle the symbols j, j4, ip, etc., in terming boundary integrals that require
explanation.

Analysis of fOT 1 in the time-integral of (4.16). The action of d,0? in the
tangential identity (4.14) provides that

(4'17) Utttya 'ﬁw = PElJ[Bcw (guyﬁwv N+ “glw@a;w n = ﬂ(t))tt o lva]v
where the lower-order [, € HO3(T') is given by

2
b = K0a[(00T ™)1y p0 Tty + Bttt - (g 0T )i+ Y €alOFT - 07y p0T e

a=1

Setting ZSY‘B = potJV33*P§7%%,5 -7, we use the tangential identity (4.17), together
with the outward normal differentiation formula (2.11c), to find that

(4.18)

r = /Zﬁﬁtia[é“”ﬁw ‘N tt Vgeerp 'fH—FJ/ 23'857(1[?7“”17W )¢t Vs, 3 -1 +R.
r r

vy’ j
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Concerning t1’, we integrate by parts with respect to a time-derivative to write

T
0

_ o T T r_ L
- / 049" Ty 1)1 aa[ff;ﬁ@ttaﬁ X0 ‘0 +/ /av[fiwﬁa;w T ¢t 8a[‘€:ﬁf}tta6 n
r o Jr

T T
+/ /‘%[@WTNIW i1t Do [0005 Vet 'ﬁ]+/ /(%[g‘“’f],#,, Tttt Oall5 Dot 11,
0 r 0 T

jc ip

where we have further integrated by parts with respect to d, on the right-hand side.
Interpolation and two applications of Young’s inequality provide that

|Te5 -1(T) |3 < Cloge - 1(T)]1.5|000 - A(T) 1.5 < Clogt - (TG 5 + 26004 - 7i(T)|7 5-

T
0y < /O R.

|Ottsap Mo [Fr-0.5(ry < C [[[0%08][§ + || carl 0dpe[[5] < Cl|Teel3-

Hence,

We record that via Lemma 2.3,

Since iy = —1j,5 §°P0,, -t and %971 is in H-5(T'), we use an H ~*(T)-duality pairing
in the highest-order term to write

/ ig < / R—I—C/ 25, - ()]1.510¢ 08 “Tho |1~ 05(I) / R.

We use the Cauchy—Schwarz inequality for the estimate

T T
/icS/ R.
0 0

Regarding fo ip, for the integral fo Jr 051" s Tttt Oar e %tt,g -7, we inte-
grate by parts with respect to 8 and estimate using the Cauchy— Schwarz inequality,
and for the integral fo fF [g" Nyur )¢t e tht,g ‘N,q, We also integrate by parts with
respect to 8 and then estimate using an H~%°(T)- duahty palrlng These methods

work equally well in all terms of the spacetime-integral fo fr [g" Nyur ) e e tht,a,g .

as well as in fo j, where j is defined in (4.18). Thus, we have established that

(4.19) / T < / "z

Analysis of fOT te in the time-integral of (4.16). We have that

(4.20) vy = / Uttt -ﬁ\/ﬁg}"“’ﬁmt ‘Mo +/ Vttt,8 “Tha \/Efiaﬁﬁtttt ‘N
r r

T2q t2p
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We write the action of 9} in the tangential identity (4.14) as
(421&) f}tttt : ﬁw = palj [({;y (g“yﬁ;py N+ Féf]w/f},uu N — B(t))ttt - Zv:| )

where the lower-order I, € H%5(T) is given by

3
(4.21b) Iy = 6[(p0d ™)y podt] yy + D €l T - 0 (i1 pod ).
=1

Letting 02 = —py ' J\/G3°?§7%) 50 71, We use (4.21) to write

T2 = — / 53 [é‘“’ﬁ,w 'ﬁ]tttﬁttt,ﬁ'y Nk / 53 37[§Wf)tttmu TNL] 'Dtttaﬁ n+R,
r r

/ "

t2a t2q

where we have used integration by parts with respect to 37 to determine to,’. We
integrate by parts with respect to time in order to write

T ~ T T r_
—/ ta, = — / fﬁ Dty 1[G T v 'ﬁ]ttt‘o +/ /fﬁ Vet sy Tt (9" Ty 1] gt
0 r o Jr

T T
+ / / 8t€5 Vet By 1[G Ty D ee + / / 53 Vet By 1[G T D et
o Jr o Jr

T T
=/ /fﬁ Vttr 5y 10 G Dttty 'fH-/ R.
o Jr 0

j

Letting (= palj\/ﬁfﬂéﬁwg -, we utilize the symmetry of Zg to exchange d, and 37
via integration by parts for

(4.22)

/Tj 1/[|~‘“’~ ~|2‘T
=3 g Utt, ‘n
0 2 Jr . 0
T 1 /T [- T
—/ /éﬁttaaﬁ -ﬁfztt,w-(nﬁ“”)t——/ /ﬁt |G" Dty -ﬁ|2:/ R.
o Jr 2Jo Jr 0

Next, integrating by parts in time, we find that

T o T
KJ/ to,” = / 55 Oy (9" Vst sy 1) K(Dtee 58 'ﬁ)‘o
0

r
T
+/ /[gwﬁtt,w -(%ﬁ]@v[ﬂg G ED)
o Jr
T ~ —
B / / 62 Oy[g" KVt *10)] Va8 - Or
0

T T T
— / / 55 Oy (9" VKt 1) VKDt -1 = / R+ / j-
0 0 0

j
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Interpolation and Young’s inequality provide for the estimate
T T - T -
/ i< 5/ |VEODsset - RIS + Cé/ |VKDDy - 7|3
0 0 0
T - - ~ T
S 5/ |\/Eaﬁtttt . T~L|(2) + 05 T |81~1tt . 'Fl|1_5|l€a’t~)tt . 77L|2.5 S / R
0 0

We have thus established that

T T
/ Toq = / R.
0 0

The analysis of fOT top is similar. We set 077 = \/§§*? 377,54 -7 and write
T T T ) ) o
/ top = / Bittr o /GG Dere -ﬁ‘o —/ /’[}gttv,@ (7 o /GG 11 B}y,
0 r o Jr

T T T
+/ / Al Uttt *Tyy Uttt * T = / R +/ oy
o Jr 0 0

t2p

Regarding fOT tay’, we use the identity
(4.23) Vttttsp Ty = po_lj[éﬁg’Y (glwﬁ”w A+ KGO 0 — B(t))ttt o Zlﬁ’Y]’

where Iy = Gyttt Ty pod ~* +Beset Ty (poJ ~1),5 +0ply with I, given by (4.21b). We
integrate by parts with respect to both dg and ?v in fOT Jr paljé@nY (" Ty -] e VALE
7, where the highest-order term produced by 0g,-integration by parts is (4.22). To es-
timate the integral where 55[,, appears, we have the choice of integration by parts with
respect to Jg or an H %3 (I')-duality pairing. In the integral where Tyt -7, (po j71)7ﬂ
appears, we use the identity (4.21a). Hence, we conclude that

T T T o
/ tgb/:/ R—/ /ZV'B 8,31717,5“-71.
0 0 0 T
R

Thus, we have established that

(4.24) /OTt2 < /OTR.

Analysis of fOT r3 in the time-integral of (4.16). We have that

3
tg = / Bett o5 (VGG ) Deaae = D € / VGG PO ap O B - 71
r =0 r

t3a t3b,1

We will first establish that fOT t3, cancels with a term arising in fOT t3p,0. Recalling
that 7y = —§7%[0,s ‘1)1, the highest-order term of 74 is — 37 [Dstt,5 ‘17, It follows
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that

T T T
(4.25) —/ t3p,0 = / / \/Egaﬁg'yéﬁ’aﬁ Moy Vit *1 Vgttt - fl—!—/ R,
0 o Jr 0

j

where the estimation of the lower-order terms of fOT t3p,0 Tequires integration by parts
with respect to a time-derivative of 4. Using the differentiation formulas (2.10a)
and (2.10b), we write

)= /Utttaﬁ -7 \/—g )sa Dttt -

t3a

T T T
/ T34 —/ t3p,0 =/ R.
0 0 0

The terms ts3;,1 and t3;2 are analyzed by integrating by parts with respect to a
time-derivative of Uy, followed by elementary estimates. Thus,

T T T
/ t3p,1 + / T3p2 = R.
0 0 0

We next examine tzp3 = [ VG3P0tt,0p Tt Dpee - . After integration by parts
with respect to a time-derivative of Uy, we find that

Thus,

t3p3 = —/ V3P 0sttr0p Tt Bret -1+ R = / V3P 0stt,5 it Dittre 1R
r r

t3p,3’

Letting 673,8 = /33°P§70,5 -1, we have that

T ~ T T o L.
/ t3b,3’ - / él@ ﬁtttvﬁ 'TN]VY ﬁttaoz TNL‘ - / / ﬁtttajﬁ ’thaot (ﬁl ﬁjvﬁ élﬂ)t
0 r 0 o Jr
T ~ T T
—/ /flg Vttttr8 Myy Vttra 0 = —/ j+/ R.
o Jr 0 0

By using the identity (4.23) in fo j, we note that the term corresponding with l has
an elementary estimate after integration by partb with respect to ds. The remain-

ing terms are similarly analyzed, except for fo fr aﬁpO Jam[g# Vbt s v ‘1) Vgt yo T, IN
which we integrate by parts with respect to both dg and d,. For a certain highest-
order term created by Odg,-integration by parts, we form an exact derivative: setting

by = py ' VG057,

/ /f Uttaa,@ n]wg Vtt oy n———/ /5 ‘ |g Oty * |2
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This establishes that fOT j= fOT R. We thus conclude that

T T
/ 3p,3 = / R.
0 0
Hence,
T T
(4.26) / t3 S/ R.
0 0

Analysis of fOT t4 in the time-integral of (4.16). We integrate by parts with
respect to a time-derivative of ¥z in fOT vy and, if need be, spatially integrate by

parts. For example, letting vy = Z?:l t4,, we find that after integration by parts
with respect to time,

T T .
/ T4,1 = / /(\/Egaﬁ)t(ﬁaa,@ )ttt Degt - T +/ R
0 0o Jr 0
T B T T
_/ / Uttt s '8ﬁ[ﬁ(\/§§aﬁ)t5ttt -7 +/ R = / R.
o Jr 0 0

Similarly, integration by parts with respect to time provides for the expression

T T T
/ t4,2 +/ T3 =/ R.
0 0 0

Finally, using the differentiation formulas (2.10a) and (2.10Db),

T T T T
/ 44 = / / \/5(25704#5]1/5 _ gaﬂg;w) ﬁtttvu .ﬁw ﬁ,a,@ 'flf)tttt .ﬁ+/ R = / ’R7
0 0 r 0

0

where the second equality follows from our above analysis of fOT Top.
Hence,

(4.27) /OT ty < /OT R.

Analysis of f(;‘r v5 in the time-integral of (4.16). In the first term defining
t5, we integrate by parts with respect to 0, when Jg acts on 727. This term is bounded

by fOT R, since thanks to Lemma 2.1,

T T T
/ I\/Ef)mtlg < C/ |\/El~)tttt|g_25 < 5/ VK ||T + Cs T sup H'Dtttt(t)Hg'
0 0 0 te[0,T]

The remaining terms are similarly estimated. Hence,

(4.28) /OT t5 < /OT R.
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Rewriting (4.15). Summing the inequalities (4.19), (4.24), (4.26), (4.27), (4.28)
yields

5
(4.29) ;/OT‘CZ'</OTR.

Thanks to the inequality (4.29) and the identity (4.16), we equivalently write (4.15)
as

1d - d = ~ - - -
(430) 55‘/9[)0|6?U|2+E‘/QP%J 3|6§J|2+§E/ ’Utttaa ‘N Vg8 N

+/\/E'l~}tttta6 /GG Rttt 'ﬁ+/p%j_l|ﬁ5,?j|2 =
r Q

The time-integral of (4.30) completes the proof. 0

Via Proposition 2.1, the estimates of Lemma 4.1 and Proposition 4.1 imply the
following.

PROPOSITION 4.2 (the x-independent estimates for 0y and /KOst ).

T T
sup [[aur (D)% + / Vroll? < / R.
0 0

t€[0,T]

Proof. The fundamental theorem of calculus provides for
t
(4.31) div oy = a;oyq" s —8;1777’,5/ agy, a=0,1,2,3,4.
0

The identity J, = a39",, implies that for a = 1,2,3, 02.J; is equal to aSofo",s +3,
where j scales like DO '0. The estimate for d{.J stated in Proposition 4.1 therefore
implies that

T
(4.32) sup || div g (t)]]5 < / R.
0

te[0,T)

Using the identity N =n — fot O¢n and the estimate

t
'8@% : / O
0

we infer from the trace-estimate stated in Proposition 4.1 that

2

<Tc|ot|3., fora=0,1,2,3,
2.5—a

sup |00 (t) - NI 05 < / R.
te[0,T]

Thanks to the curl-estimates of Lemma 4.1, Proposition 2.1 therefore establishes that

T
swp [loun(t)]F < [ R.
0

t€[0,T]

A similar analysis establishes the L2(0,T; H'(2))-estimate for /K. O
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We now improve the normal trace-estimates of Proposition 4.1.
PROPOSITION 4.3 (an improved x-independent normal trace-estimate for vy ).

sup |y - ()| < / R.

te[0,T]

Proof. The estimate of Proposition 4.2 together with the trace theorem implies
that

sup |vm|05 / R.

te[0,T

Combining this estimate with the normal trace-estimate of Proposition 4.1 completes
the proof. O

Step 3: The k-independent divergence- and normal trace-estimates.
We equivalently write the approximate surface tension problem (4.13a) as

2p0J 228 J o 10 AR T = 5 + (2071 — ki) A poe

or, equivalently, setting ' = k/2,

e I 1 - - .
(4.33) J2ART g 4w AR T = ﬁ[ﬁt + 277 = kA% po o ]
0

Vi

The fundamental theorem of calculus provides that (4.33) is equivalently written as

t t
(434) DIt wDI =V, - [J,k [ o+ i [ at;ﬁc} |
0 0
J

LEMMA 4.2 (estimates for Jie and K Jye via Lemma 2.4).

s @I+ sup I Jun (O < / R.
t€[0,T] telo0,T

Proof. Taking three time-derivatives of (4.34) produces an equation of the form
[+Efi=g:

(4.35) DJys + K (D) = O3V + Juue.
By (4.33) we have that 8t3f)t scales like Dyt + T DUgss —l—nafj. Proposition 4.2 therefore
implies that |02V, (t)[12 < fOTR According to (4. 34) we have that j; scales like

TDjttt + THDjtttt + TD’LN)ttt. SO ||]ttt( )”0 S fO R. The fundamental theorem

of calculus provides a good estimate for Jy;; in L(0,T; L*(€)). Thus, Lemma 2.4
implies that

Sup [ Tt (£)]]7 < /R
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We similarly infer from (4.35) and the fundamental theorem of calculus that

Sup [ Jeeae (B)]|F < /R

tel0,T
This completes the proof. ad

LEMMA 4.3 (normal trace-estimates for 0y and k).

sup |00y - 1t )|0 5+ sup |kOTyst - 7o |0 5 < / R.
te[0,T] tel0,T

Proof. The fundamental theorem of calculus implies the desired estimates. For
example,

|00 - (1) [3 5 < Clee - 1(t)]0.5]084 - 1(t) 1.5

T T
SNO"‘Cé/ |Dese]|2 + 6 sup |00s - (t)]3 5 < / R. O
0 te[0,T] 0

Step 4: The k-independent higher-order estimates via Proposition 2.1.
The divergence- and normal trace-estimates obtained in Step 3, together with the curl-
estimates of Lemma 4.1, imply a good estimate for v;;. Hence, successively repeating
Step 3 yields

2 9 .
4.36 sup 0%u(t 2701 + sup KO (t 27@ < / R
(4.36) tem;n Fo(t)|13 te[o,n;)” Pl < |

We recall that the boundary condition (3.1b) is

(4.37) 3P 00p T+ KGP00p 1= B(t) — p2T 2 + kpaJ ;.

Jj

Writing the boundary condition (4.37) as an equation of the form f 4 xf; = ¢ yields

(4.38) 3R R+ KOG T 7) = ]+ Kilsas (A5

As k7 is of the same regularity as 7, the flow map for the k-problem does not wit-
ness an improved boundary-regularity. The fundamental theorem of calculus, how-
ever, does imply a good estimate for the right-hand side of (4.38). Hence, we infer
from Lemma 2.4 that the normal trace of 77 and x% each has a good estimate in
L*(0,T; H+3(I)):

T
(4.39) sup_[[7(t)[13 + sup HF»W)II?S/ R.
te[0,T] te[0,T) 0

We collect the estimates (4.36) and (4.39) in the following
PROPOSITION 4.4 (higher-order k-independent estimates).

wp SOOI+ sup S IO / R.

te(0,T] , t€[0,7] , =
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Step 5: The k-independent improved boundary-regularity estimates.
With the estimates provided by Proposition 4.4 for ||027]|2_, and ||k020||2_,, a =
0,1,2,3, we are in position to establish the improved boundary-regularity estimates.

PROPOSITION 4.5 (the k-independent improved boundary-regularity via Lemma
2.4).

T
wp 3 [Fors- (0. ot sup 3™ ot <t>|%.5,as/ R.
0

t€[0,7] 52 t€[0,T] 5=

Proof. Taking three time-derivatives of (4.37), we obtain

g 'thtaa,é’ ‘n+ Féat( ’UttaozB n) 8t3j - [51:3(§aﬂ777a6 fl) - fiaﬁf}tt,a,@ ﬁ]

JA

(4.40) — (KO (G 0,05 1) — KO (§ Vit rap -1)] -

JB

By Proposition 4.4, the right-hand side of (4.40) has a good estimate in L>°(0,T; H-5(T")).
Lemma 2.4 therefore provides that

sup |8 Dy |05 / R.

te[0,T]

Since k0;(§ 'tht,ag ‘n) = Kg 'B’Uttt,a,@ N+ KUt a8 (NG 8, it follows from (4.40) that

T
sup |/€82'Dttt 'ﬁ(t)|(2J.5 < / R.
t€[0,7] 0

The higher-order estimates are similarly established. a

Step 6: Concluding the proof of Lemma 4.1. The sum of the estimates
given in Propositions 4.1-4.5 competes the proof of Lemma 4.1. Taking § sufficiently
small in the inequality (4.5) yields a polynomial-type inequality of the form (2.20).
Hence, for sufficiently small 7" > 0, independent of £ > 0,

(4.41) sup E"(t) < 2No,
t€[0,T]

where the higher-order energy function E*(t) is defined in (4.1).

5. Construction of solutions to the k-problem (3.1). In this section, we
prove the following.

THEOREM 5.1 (existence theory for the x-problem). For C*-class initial data
(po, uo, Q) satisfying the conditions (1.13) and (1.14), and for some T = T, > 0,

there exists a unique solution ¥ to the k-problem (3.1) verifying (0, ¢, . .., Vsret)|1=0 =
(ug,v1,...,v4) and
T 4 T
(5.1) sup o O+ [ o1l + 5 [ 108918 o0 < o
te[0,T) 0 a=0"0

Remark 9. We recall that the (time-differentiated) initial data v,, a = 1,2, 3,4,
are defined in section 3.3.
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We establish Theorem 5.1 via a succession of two asymptotic estimates that cor-
respond with two further approximations of our k-problem.

Each of these further approximations involve the use of a convolution operator
that smooths only in the direction tangent to the moving boundary. We use € > 0
and p > 0 as the two additional smoothing parameters.

Our first intermediate problem, which we call the rke-problem, is defined by
smoothing the moving domain of the x-problem. The overall structure of the re-
problem matches that of the x-problem. It naturally follows that the e-independent
a priori estimates closely resemble the x-independent a priori estimates of section 4.
The € = 0 formal limit of the ke-problem is the x-problem.

Our second intermediate problem, which we call the p-problem, is defined by
smoothing the k-artificial viscosity term kg®v,,s -n. appearing in the boundary con-
dition of the ke-problem. The p-problem is a nonlinear heat-type problem with
Neumann-type boundary conditions. The p = 0 formal limit of the heat-type p-
problem is equivalent to the xe-problem. The key to obtaining the u-independent a
priori estimates is that the diffusive term of the heat-type p-problem yields a trace-
estimate on the boundary I'.

5.1. Horizontal convolution by layers. For ¢ > 0, we let 0 < @, € C§°(R?)
with spt(@.) C B(0,¢€) denote the family of standard mollifiers on R?. With z;, =
(21, 22), we define the operation of horizontal convolution by layers as follows:

Acf(zn, x3) Z/

R

. Pe(n — yn) f(yn, x3)dyn for f € L}, (R?).

By standard properties of convolution, there exists a constant C' which is independent
of €, such that for s > 0,

[Acfls < CIfls Vf e H (D).
Furthermore,
(5.2) At < Clflo VF € (D).

We recall the local coordinates near I' are defined in section 2.1.5. We set
K
(5.3) € = Iln_l{l dist(spt & o 6y, 8Bl+ \ D).

We define the horizontally convolved vector field v on I' of a given vector v by

K
(5.4) Ve = ZAE[(&’U) oflo6 ' onT.

=1

Given a sufficiently smooth vector field #, we set 7 = e + fg ¥in Q and 1. = e + f(f Ve
on I'. We define ¢, to be the solution of the following time-dependent elliptic Dirichlet
problem:

(5.5a) Al =Ap  inQ,
(5.5b) (c=7n onl.
We define the following e-approximate Lagrangian variables:

Ae = [Dée]ila je = det Déea Qe = jeAea [ge]a,é’ = 567(1 'éeaﬁa and Qeﬁe = [de]TN~
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5.2. The ke-problem and its a priori estimates. We define an intermediate
approximate problem, which we will refer to as the ke-problem, that is asymptotically
consistent with the x-problem (3.1). To indicate the dependence on the smoothing
parameter e of all the variables in the ke-problem, we place the symbol ~ over each
of the variables. In the ke-problem, we smooth the moving boundary and use the
corresponding twice-mean-curvature function

UH(éE) = _Uggﬁéeaaﬁ M.

DEFINITION 5.1 (the ke-problem). For k > 0 and € > 0, we define v as the
solution of

(5.6a) + 2[Af (po 1)k —K[A ]k(Pojt),k =0 in Q0 x (0, Tx(e)],
(5.6b) peJ % — kpa J T = on T' x (0,T,(e)],
(5.6¢) (e, )|t=0 = (e, ug) on Q.

The function J; appearing in the left-hand sides of (5.6a) and (5.6b) is defined as
(5.7) Ji = Je divg 0

The function H, appearing in the right-hand side of (5.6b) is defined as
(5.8) ﬁé = Be(t) — Uggﬁéévaﬁ Me — Hggﬁi)vaﬁ Te.
The function B(t) appearing in the right-hand side of (5.8) is defined as

Be(t) = +RZ at —P I T+ 98B0 e li=o0

a= 0

(5.9) + UZ at H(n) +p5 (12 = T72)]li=o.

Remark 10. Standard elliptic estimates show that the e-approximate Lagrangian
flow map (. defined by (5.5) satisfies ||(||s < C||7|s for a positive constant C' inde-
pendent of e. By standard properties of convolution, lim._o . = 7. It follows that
the ke-problem (5.6) is asymptotically consistent with the x-problem (3.1). The defi-
nition of B.(¢) in (5.9) has been made to ensure that the compatibility conditions for

the initial data are unchanged

5.2.1. The vectors v, at t = 0 for a = 1,2, 3,4. Letting v solve (5.6), the
vector field 0f0|;—¢ for all a € N is computed as follows:

8a71 ~ . . -
a1 (K[A (poTe) ok —2[A* (po 7)ok ) |,y om Q.

This formula makes it clear that each 9§90 is a function of space-derivatives of the
initial data ug, Acug, and pg. We define the constant-in-time vectors v, as

8(1—1
ota—1
We have that v, — v, as € — 0, where v, are defined in section 3.3. We use (5.6b)
and the definition (5.9) of B.(t) to compute the following identities: for a =0,1,2,3,
(5.11)

¢ 1pd I - KpgJ. 1*7t ‘t 0 = 07 [Be(t) ‘t 0 8?[093%67043 e + “gg%vaﬁ 'ﬁ€]|t:0'

O Vlt=0 =

(5.10) ' (/i[/lg]_k(poﬂ),k —2[A]*(poJ ! )k ) |t:0 for a =1,2,3,4.
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5.2.2. A priori estimates for the ke-problem (5.6). For ¢ > 0, we define
the following higher-order energy function:

t 2 t
(5.12) Eé(t)=1+||m(t)||§+/0 |m-m|§+2/o 16052
a=0

DEFINITION 5.2 (notational convention for constants depending on 1/0k > 0).

We let P denote a generic polynomial with constant and coefficients depending on
1/6k > 0. .
We define the constant Ny > 0 by

No = 75(||U0||100, ||Po||100)-

We let R denote generic lower-order terms satisfying

T
/ R <Ny+4d sup Ee(t)+T75< sup Ee(t)>.
0

te[0,T te[0,T]

We assume T > 0 is taken sufficiently small to ensure that

<J< SJESthE[O,T]andeQ.

N =

and

N =
N W

Before proving existence of unique solutions to the xe-problem, we begin with the
following.

LEMMA 5.1 (a priori estimates for the ke-problem). We let v solve the ke-problem
(5.6) on a time-interval [0,T) for some T = T, (¢) > 0. Then independent of €,

T
(5.13) sup E<(t) < / R.
te[0,T) 0

We will establish Lemma 5.1 in the following four steps.

Step 1: The e-independent curl-estimates. Taking the e-approximate La-
grangian curl of (5.6a) yields

(5.14) curls v = 0.
Integrating the identity (5.14) in time from 0 to ¢ € (0,T] provides that

t
(515) CllI‘lC'e v = curl Ug + E.ji/ 8t [Ae]j-’[)i,s
0

We may therefore infer the curl estimates from Lemma 4.1. We record this fact as
follows.
LEMMA 5.2 (the e-independent curl-estimates for 9%v, for a = 0, 1, 2).

2 7 T
Z/ ||curlag@|\§_2ag/ R.
a=0"0 0
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Step 2: The e-independent estimate for ¥;:. We equivalently write the
momentum equations (5.6a) as

(5.16)  pov; + [acli (p5Jc*)r —kpo S [acl (poJe) e =0 in Q2 x (0, Tu(e)].

LEMMA 5.3 (energy estimates for the action of 7 in (5.16)).

T . T B T .
sup |\m(t)||§+/ HJmH%+/ |8m-m|3§/ 3
t€[0,T) 0 0 0

Proof. Testing the action of 87 in (5.16) against ¥ in the L?({2)-inner product and
integrating by parts with respect to dj in the interior integrals [, [ac]FO2(p3 %),k ULy
and —k [o|ac]} o} [P0 (poJ2) ok Ty yields

1d

(5.17) §d_ po| i /at po e lac; Uttvk +"€/ O po o 1»7t][ae]kvttak

T

* / ORI = e T N = R
r

i

It is convenient to write (5.17) as

1d L o
(518) th p0|11tt| +K/pgj;l|$tt|2+1:R,

where the error created in order to write [ac]k070" i as Jie in T is of lower-order and
so is absorbed in R.
We write the boundary integral i appearing in the left-hand side of (5.18) as

(5.19) i= / Hepn/Gebu - e,
r

where we have used the boundary condition (5.6b) and the formula (2.9). The defi-
nition (5.8) provides that H, = Be(t) —og? Ce,aﬁ Te — KGXP0,0p 1. Thus,

(520)  i= ﬁ/ VGeGEP 01,5 Tiebitsa ne+/€/vtt,/3( V9GP 1) o Ty AR

j

Thanks to Lemma 2.1,

T T T
(5.21) / |9e]3 < C/ [B24[5.25 < / R.
0 0 0

Employing the Cauchy—Schwarz inequality and Young’s inequality with § > 0 thus

yields
T T T
/ j— / Vtt,8 "Tera GG P 0y - e < / R.
0 0 0

i’
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Integrating by parts with respect to 53, we similarly have that fOTj’ < fOT R. We
have therefore established that the identity (5.20) is equivalently written as

i= FJ/ vV fiegf%tt,g M Dttre e + R
r

Using this identity for i in the time-integral of (5.18) completes the proof. O
PROPOSITION 5.1 (the e-independent estimates for oy).

T T
sup [l (6)]12 + / [Bre - 2 + / loull? < R.
te[0,T] 0 0

Proof. The desired L>(0,T; L*(Q))-estimate is provided by Lemma 5.3. The
inequality (5.21) and the trace-estimate stated in Lemma 5.3 establish the desired
L?(0,T; HY(T'))-estimate. We infer from the arguments proving Proposition 4.2 that
Lemma 5.3 implies a divergence- and normal trace-estimate for ¥y;. Thanks to the
curl-estimate for 9 stated in Lemma 5.2, we have by Proposition 2.1 that the proof
is complete. 0

Step 3: The e-independent estimate for ;.
PROPOSITION 5.2 (the e-independent estimate for o).

T T
[ < [ #
0 0
Proof. We write the boundary condition (5.6b) as
Kggﬁ{)aa,é’ Me = ﬁp%je_ljt - P%jg_z + Be(t) - O'ggﬁgeaaﬁ M .

J

Taking a time-derivative of this equation yields
(5.22) KGO 51,05 Tt = Ji + KDsap -0 (RegoP).

The right-hand side of (5.22) scales like T'9%%;. We infer that

T B T .
(5.23) | @i, < [ R
0 0

We equivalently write the momentum equations (5.16) as

(AL} Taok = (spo) ™" [07 + 2[A] (po )k =6 [ Al posr] -

Vs

Using the fundamental theorem of calculus, we have that
t

(5.24) DJy =V + ﬁ,k/ OAd;-
0

Since the right-hand side of (5.24) scales like ©; + D, a time-derivative of (5.24) yields

T T
[ ipdu< [ #
0 0
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Lemma 5.3 provides a good estimate for J;; in L?(0,T; L?(R2)). Thus,

T . T .
(5.25) [ [ ®
0 0

Via Proposition 2.1, the curl-, normal trace-, and divergence-estimates for o, respec-
tively, given in Lemma 5.2 and inequalities (5.23) and (5.25), complete the
proof. a

Step 4: Concluding the proof of Lemma 5.1. Repeating Step 3 establishes
the following.
PROPOSITION 5.3 (the e-independent estimate for ©).

T T .
JRECEEY S
0 0

The sum of the e-independent estimates stated in Propositions 5.1, 5.2, and 5.3
completes the proof of Lemma 5.1.

As an intermediate step in proving Theorem 5.1, we will establish the following.

THEOREM 5.2 (solutions to the ke-problem). For C*°-class initial data (po,uo, 2)
satisfying the conditions (1.13) and (1.14), and for some T = T,(e) > 0, there
exists a unique solution ¥ to the re-problem (5.6) verifying (0,04, ..., Vuet)lt=0 =
(up,v1,...,v4) and

4 T 4 T
(5.26) sup |[|Geee (1|5 + Z/ 10§34 + Z/ 1050 - el _0q < 00
te[0,T] i) =00

Remark 11. We recall that the initial data v,, a = 1,2,3,4, is defined in sec-
tion 5.2.1.

5.3. Deriving a heat-type problem with Neumann-type boundary con-
ditions. In order to establish an existence theory for the xe-problem, we will intro-
duce an equivalent nonlinear heat equation. Specifically, we next derive a nonlinear
heat-type problem with Neumann-type boundary conditions which is equivalent to
the re-problem (5.6).

5.3.1. Rewriting the momentum equations (5.6a) via (5.15). Setting
(5.27) 0= KpoJe

and using the definition (5.7), the momentum equations (5.6a) are equivalently written
as

(5.28) ¥ — O[Ac)* (divg, ©)x = dive 0[Ac)* g, —2[Ac* (p0J7 ") ok -

Given a sufficiently smooth vector @, the identity —Av = curlcurl® — D div® in the
e-approximate Lagrangian variables is the identity

(5.29) —[A A D), = curlg curly, 9 — [A]?(divg 9),s -

Using (5.29), the equations (5.28) are equivalently written as
(5.30)
i — O[AJL([AJkok ) 5 = deurle (curly, ©) + dive, 5[A] 6,6 —2[A* (o STk -

€
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Thanks to the vorticity equation (5.15), we further have that (5.6a) is equivalent to
(5.31) o = ol AL ([AL7 0 )5 = K,

where the vector field K appearing in the right-hand side of (5.31) is defined as
(5.32)

t
IC:QCurlce (curluo—ka.ji/ 8t[14v15]§17i’s> + divg, © 0[A) 0 —2[AJ" (po Ik
0

5.3.2. Deriving a Neumann-type boundary condition for ©. We decom-
pose any vector field £ on I' into tangential and a normal components as

(5.33) € =¢2g2P 5 +E30,

where €% = £ - (., and €% = £ - 1. In the special case of a flat boundary, we may use
the standard orthogonal unit vectors ey to write (5.33) as

(5.34) € = (%4 + Ees.
For the special case where (5.33) takes the form (5.34), we have that

v’
ON

(5.35) = [(curld) x NJ* + 0% 4 €’ + [dive — 0%,, |N".

This motivates the general decomposition; we decompose the vector b defined on I' as
follows:

(536) b= bcurl + Bdiva

where beyy is a tangent vector and bg;y is a normal vector, respectively, defined as

(5373) Bcurl = J [f]?B 0? 3B +U’Ygg 96 BCE;&B ne] CE70(7
7 ge <
(5.37b) baiy = — 5 [90°0% 5+ (/3927 )5 +0° H ()] e

For the moving boundary T'c(t) = (.(T), the identity (5.35) is written in general form
as

Je

-

(5.38) @Nj [AJI[AJko ), = ((curlée 0) X fze) + 7, d1v< 0+ er ,
or, equivalently,
(5.39) [/1 kv,k = \/;J curl v X Tie + \/;J leC 0)Ne + b.
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Thanks to (5.15), we have that (5.39) multiplied by ¢ = rpoJ. is equivalent to

(5.40) ONI[AJI[A* 0,k = hewn + @npg(dwé 0)fe + 0D,

Po ¢

where the tangential vector field Pewrl appearing in the right-hand side of (5.40) is
defined via the e-approximate Lagrangian vorticity equation (5.15) as

t
(541) ilcurl = é\/;jgl (curluo + E.ji/ 8t[/16];713i,5) X Te.
0

We write the boundary condition (5.6b) as

(5.42) kpg dive, 0 = pg % = Be(t) + 0927 Cerap e + KIS Dr0p it
Setting
(5.43) g’ = n@g?‘ﬁ :
Po
(544) hdiv = \g—i—e [P%j;2 - ﬁe(t) + Uggﬁéeaa,é’ 'ﬁe:| ﬁea

we find by using the identity (5.42) for kp3 divg 0 in (5.40) that
(545) QNJ [Ae]i[/ie]ﬁ@ak - ilcurl + hdiv + @S‘ﬁ[@,aﬁ 'ﬁe]ﬁe + QB

We define the vector field & as the sum

(546) h = ilcurl + hdiv + @?ﬁ[@,aﬂ 'ﬁe]ﬁe + é[l;curl + Bdiv]

with the vectors heur, Adiv, bewr, and baiy, respectively, given in (5.41), (5.44), (5.37a),
and (5.37b), and the function ¢ defined in (5.27). We equivalently express the identity
(5.45) as

(5.47) ONI[AJ[A]FD k= h.
Remark 12. We record that the identities (5.42) and (5.44) show that
(5.48) 097 dive © = haiv - e + 270,08 e

5.3.3. The heat-type ke-problem with Neumann-type boundary condi-
tions.

DEFINITION 5.3 (the heat-type re-problem). For k > 0 and € > 0 given, we
define ¥ as the solution of the nonlinear heat-type system

(5.49a) o — 0[AJ ([AdFo, ), =K in Q x (0, Tx(e)],
(5.49b) ONI[AJ[Ads0,s = D on T x (0, T, (e)],
(5.49c¢) (Ce, 0)|—0 = (e,ug)  on Q.

The bounded, positive function ¢ is defined in (5.27). The vector fields K and h are
defined in (5.32) and (5.46), respectively.
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We will show in Appendix C that solutions to the heat-type ke-problem (5.49)
are also solutions to the re-problem (5.6).

Remark 13. We set v, = 08(0[AJL([A]Fv,1),; +K)|t=0 for a = 1,2,3, and

ks
require the following compatibility conditions to be satisfied: for a =0, 1,2, 3,

(5.50) Of (0N [AJ[AL; 0,5 —h)|1—0 = 0.

PROPOSITION 5.4 (solutions to the heat-type re-problem (5.49)). For C*°-class
initial data (po,uo, ) satisfying (5.50), and for some T = T,.(€) > 0, there exists
a unique ¥ € L?(0,T; H*(Q)) with 920 € L*(0,T; H=2%(Q)) for a = 1,2,3,4, and
Upeee € L°(0,T;L%(Q)) that solves the nonlinear heat-type rke-problem (5.49) on a
time-interval [0, T).

The proof of Proposition 5.4 will rely on one further approximation, in which we
smooth some of the terms in the right-hand side of the boundary condtion (5.49b).

5.4. The p-problem and its a priori estimates. We now define our second
intermediate problem, which we term the p-problem. The p-problem is a system of
nonlinear heat-type equations that is asymptotically consistent with the heat-type re-
problem (5.49). To indicate the dependence on the smoothing paramater p of all the
variables in the following problem, we place the symbol ° over each of the variables.

Given a sufficiently smooth vector field ¢, we set 1§ = e+ fot ©in Q and B, = e+ fot e
on I'. We define Coe to be the solution of the following time-dependent elliptic Dirichlet
problem:

o

(5.51a) A¢. =An inQ,

(5.51b) (=% onT.

We define the following e-approximate Lagrangian variables:

Ao =[DC)7Y, Je=det DG, e = JeAe, [e)ap = Ceva Cevp s and /G = [ac]TN.
We recall that the convolution operator A, for ¢ > 0 is defined via section 5.1.

DEFINITION 5.4 (the p-problem). Given k > 0 and € > 0, for u > 0 we define ©
as the solution of the nonlinear heat-type system

(5.52a) b — A ([Adfon )y = K in € x (0, Te (ep)],
(5.52b) ONI[AJI[AS0,s = h* + ¢*(t)  on T x (0, Tx(ew)],
(5.52¢) (Cer ®)|1=0 = (e, uq) on Q.

The bounded, nonnegative function 0 is defined as
(5.53) b= kpoe.
The vector field K appearing in the right-hand side of (5.52a) is defined as

(5.54)
t
KK = Q°curlé€ (CHI'IU() + 6.j1‘/0 815[146];1011’5) + diVC"E f}[Ae]ké,k _2[AE]{€(pOJE_1),k .
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The vector field h# appearing in the right-hand side of (5.52b) is given by

(5.55)

W = hewrt + haiv+ i\/gl(Au {ﬁz?Au [(\/gﬁaaﬁ Tie) 0 9;”) o Yie + ‘Q{bgurl + bdlv:|
=1

where g?lﬁ appearing in the right-hand side of (5.55) is defined as

(5.56) N K;@ggﬂ 00,
’ Po

and iLcurl, iLdiV, b bglv appearing in the right-hand side of (5.55) are defined as

curl’

(5.57a)
hewnt = 6v/geJ ! (curluo +eji /Ot ) [fie];fi’)i,s) X e,
(5.57b)
iozdiv = % [p%jﬁ_z — Be(t) + aé?ﬁfé,aﬁ .ﬁé}ﬁe,
(5.57c)
b = 520\ & (A €0 - 11e)y5001)) 0 071 + 07§05 s - ne} Corar s
(5.57d)

K .
Vi = =D Ve, <\/5\{]?—6[ P95 +0% (V902 )5 +6° H ()] °9l> 00 e
1=1 €
The vector field c*(t) appearing in the right-hand side of (5.52b) is defined as
4 a
C#(t) = _8g{g?ﬁ[i}vaﬂ 'ﬁe]ﬁe
) K
= 2 VE (A (Vs ) 28] ) o on}
a gﬁ vaB 3 he
+ Z a { JB CEJOt
lz gg,@\/— \/_U ne B Oel]) 1‘| 567(1 }

(5.58) +Z aa {Basv - dw}

t=0

t=0

o .

Again, the polynomial-in-time ¢#(¢) is added to ensure that the compatibility
conditions (5.50) continue to hold for the data.

Remark 14. The fixed-point solution to the p-problem (5.52) is established in
Appendix B.
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Remark 15. For any h defined on T', we have that h = 1 &h = Y1 V& ([VEho
Oi 0 0).
For 1 > 0, we define the following higher-order energy function:

(5.59)

B(t) = 1+ [[ou(t ||O+Z/ EZ mZZ/ AL(VEDD - 1) 0 61][2 s,

a=0 =1

DEFINITION 5.5 (notational convention for constants depending on 1/dke > 0).
We let P denote a generic polynomial with constant and coefficients depending on
1/6ke > 0.

We define the constant Ny > 0 by

(5.60) No = P(Jluoll100, |0l 100)-

We let R denote generic lower-order terms satisfying

/ R<No+6 sup ER(t)+TP(sup EX(L)).
t€[0,T] t€[0,T]

LEMMA 5.4 (a priori estimates for the y-problem). We let v solve the u-problem
(5.52) on a time-interval [0,T] for some T = T,,(ep) > 0. Then independent of u,

(5.61) sup EH(¢ / R.
te[0,T]

We will establish Lemma 5.4 in the following four steps.

Step 1: The p-independent estimates for 0. Testing two time-derivatives
of (5.52a) against Uy in the L%Q)-inner product and integrating by parts in the
interior integral — [, 07 (8[AcJ2([Ac)50,1 ),; )0u yields

Ope]? + / ﬁ,kQ—/iz“+c“t D
537 [l [ AL s P = [ 4 0 Ol

i

(5.62) / 02 (K — (8[AdE) g [Ad¥b,1 Yo +2.

B

The definition (5.55) of the vector field h* provides that

Z /D (&t i) © 060 A [(v/ B - ) o 0]

i

/( [bgurl + Bgiv])ttﬁtt +R
r

j

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/13 to 163.1.62.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

COMPRESSIBLE EULER EQUATIONS 3729

We integrate by parts with respect to d, in i’ to find that

K

A
Ya

+Z/ \/—Utta,ﬁ “Te) 09l] agel [\/—Utt e) 091}

A
‘B

+Z/ \/—Utt,,e “Te) 09l]9€l/\ [(@t'(ﬁe\/a)aa)oel]

3!
o

We employ an H ~°5(D;)-duality pairing in the integrals i/, i3, and if,. For example,

iy < C|004 0 01| —0.5,0, | M [(VEDr: - 71e) © 01051,
< O[0eellF + CsIAL[(V/E et - 1re) 0 L[5 5., -

Thanks to Lemma 2. 1 |A [(\/—Utt ne) o 0[”0 5,D, S C|'Utt|()|A [(\/E{)tt'fle)oelHLDl S
R+ 0|A,u (04 - 7e)|? p,- Thus, we infer that

K
-y / Ciine - 710 o018 A [(VE 0wt - 7 )va o01] + R,
=1

where we have used the definitions (5.57¢) and (5.57d) in analyzing j. We infer from
the time integral of (5.62) that

T K ot T
569 s ol + [+ [ InVE ) 00lfin < [ R
0 = Jo 0

telo0,T

Step 2: The p-independent estimates for ¢;. Similar to Step 1, testing the
action of 029, in (5.52a) against 9*¢; in the L?(Q)-inner product yields

T K t T
(5.64) sup [[3%0(t)]2 + / 10Pa2 + S / ALV - 1) 0 8], < / .
=1

t€[0,T]
The inequality (5.64) provides that fOT |03 5 < fOT R. We infer from Step 2 of the

proof of Lemma B.2 that by viewing a time-derivative of (5.52a) as an elliptic Dirichlet
problem for ¢; that

T T .
(5.65) / ||i’;t|\§§/ R.
0 0
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Step 3: The u-independent estimates for ©. Repeating Step 1, we test four
tangential-derivatives of (5.52a) against 0*¢ in the L*(Q)-inner product and integrate
by parts in the integral — [, 0*(8[AcJ2([Ac]¥0,1),; )0*D to find that
(5.66)

2dt/ 0% |2+Z/ €0 i) o882 Nu [0 (V/ED - 1) 0 6]

+/ é|[1éi€]-kg4{)7k|2 :/ |:Q\/;J <€]z/ at 84 Z) K] X';le:| 54{)
Q

R
+,/Qé4 {IC B (Q[A 19)5 [A o 7k}54v—|—7?,

T

We use an H~Y5(D;)-duality pairing in analyzing the first term appearing in the
right-hand side of (5.66) and conclude a good estimate thanks to the time-integral.
Tangentially integrating by parts in Z, we find that

T T
/IS/ R.
0 0

Hence, the time-integral of (5.66) yields
B T K t T
Gor)  sw [0+ [ 1041+ Y [ AV i) 00l s < [ R,
te[0,T] 0 = Jo 0

The inequality (5.67) yields

T T
(5.68) / |i}|i.5§/ R.
0 0

Viewing (5.52a) as an elliptic Dirichlet problem for ©, we infer from elliptic regularity
and the inequalities (5.65) and (5.68) that

T T .
(5.69) / 62 < / 7.
0 0

Step 4: Concluding the proof of Lemma 5.4. The sum of the inequalities
(5.63), (5.65), (5.67), and (5.69) completes the proof of Lemma 5.4. Taking J suffi-
ciently small in the inequality (5.61) yields a polynomial-type inequality of the form
(2.20). Hence, for sufficiently small T' = T, (¢) > 0 and independently of p > 0,

(5.70) sup EH(t) < 2N,
t€[0,T]

where the higher-order energy function E*(t) is defined in (5.59).

5.5. The proof of Proposition 5.4. Proposition B.1 establishes the existence
and uniqueness of a solution v to the p-problem (5.52). Given the p-independent
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estimate (5.70), standard compactness arguments provide for the existence of the
strong convergence, as u tends to zero,

(= ¢ in L2(0,T; HY(Q)), K — Kin L2(0,T; H*(Q)),
b — o in L*(0,T; HY(Q)), h* — h in L*(0,T; H'3(I)),
O — ¢ in L2(0,T; H*(Q)),  ¢*(t) — 0 in L*(0,T; H*>(I)).

The definitions (5.54), (5.55), (5.58), respectively, define K, h*, c*(t). The limit-
ing vectors I and h are, respectively, defined by (5.32) and (5 46) Letting ¢ €
L?(0,T; H*(Q)), we have that the variational form of the p-problem (5.52) is

//U“H// va—//lCeb+//h#+cﬂ

We infer from the strong convergence of the sequences (CE, 0, Vg, IC, h“, c#(t)) that the
limit (., 0,9, K, b, c(t)) satisfies

[ fioo [ fipaestonsns= [ [or [ fiane

Thus, v is a solution of the nonlinear heat-type ke-problem (5.49) on a time-interval
[0,T] for some T' = T,(e) > 0. Standard arguments provide that (.(0) = e and
(D, Dty -« oy Dgtet)|t=0 = (w0, V1, ..., vs). Furthermore, according to the inequality (5.70),

2 T 2 T
sup (B2 + 3 / 10252 0 + > / 100 2 g0 < 2N,
te[0,T] oo el

By the higher-order regularity stated in Proposition B.1, we infer that

(5.71) sup | Deeee (t ||O+Z/ llofo]|2_ Qa—i-Z/ Vel _gq < 00

5.6. The proof of Theorem 5.2. By Lemma C.1, the heat-type xe-problem
(5.49) is equivalent to the ke-problem (5.6). Hence, Proposition 5.4 establishes the
existence and uniqueness of a solution to the xke-problem on a time-interval [0, 7] for
some T = T,(e) > 0 verifying (0,04, ..., 0set)|t=0 = (uo,V1,...,vs). The inequality
(5.71) establishes the inequality (5.26).

5.7. The proof of Theorem 5.1. A unique solution to the ke-problem (5.6)
exists by Theorem 5.2.

Taking ¢ sufficiently small in the inequality (5.13) yields a polynomial-type in-
equality of the form (2.20). Hence, for sufficiently small T' = T); > 0 and independently
of € > 0,

(5.72) sup E€(t) < 20N,
te[0,T]
where the higher-order energy function F€(t) is defined in (5.12).

For ¢ € L?(0,T; H*(Q)) such that ¢ -7, € L2(0,T; HY(T')), the variational equa-

tion for the re-problem (5.6) is

/ / polt - ¢ — / /P ¢lk+f€/ / poilaci (po I ) n

(5.73) / / Be(t) /et - ite + / / oG 50,8 P (/G35 - ) ro
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We infer from section 5.5 and the pointwise convergence S¢(t) — [(t) that the vari-
ational equation (5.73) converges to the variational form of equation (3.1b) as €
tends to zero. Hence, the ¢ = 0 limit ¥ of the solutions v to the ke-problem (5.6)
solves the k-problem (3.1). By section 5.2.1, the solution ¥ of the x-problem verifies
(0, Dty -« ., Vgtet)|t=0 = (w0, v1,...,v4). According to (5.72),

T 2 T
sup ||ﬁtt(t)|\3+/ |@tt-ﬁ|§+z/ 16952y, < 2K5.
0 —Jo

t€[0,T]

It follows from the proof of Lemma 5.1 that by including two more time-derivatives
in the definition (5.12) of the energy function E€(t), the solution ¢ of the x-problem
(3.1) satisfies

T 4 T
sup || Teeee ()| +/ |Teee - 1|7 + Z/ 10501324 < o0
0 —Jo

t€[0,T)

This establishes the inequality (5.1).

6. Well-posedness of the surface tension problem (1.7). In this section,
we prove Theorem 1.1 via the x-independent a priori estimates of section 4.

6.1. Existence. We obtain a solution v to surface tension problem (1.7) in the
limit of ¥ as the parabolic parameter « tends to zero. According to Remark 7, 8(t) = 8
in the k = 0 limit. Letting x = 0 in section 4, we therefore conclude that the right-
hand side of the inequality (4.41) depends only on My = P(F(0)). That is, for
sufficiently small T' > 0, the energy function E(t) defined in (1.9) satisfies

(6.1) sup E(t) < 2My.
t€[0,T]

The assumption (4.3) on J remains valid by taking 7" > 0 even smaller if necessary.
Hence,

F(t) = pod 1) = 4N,
Taking T > 0 even smaller if necessary, we ensure that p(t) = f on~1(t) satisfies
p(t) > X in Q(t).
Since p(t) = p?(t) — B > —B on I'(t), the boundary condition (1.1c) establishes that
oH(t) > —3 on I'(t).

6.2. Optimal regularity for the initial data. In order to construct solutions
to the Euler equations via our parabolic regularization, it was convenient to smooth
our initial data using the method described in Appendix A; in particular, we con-
structed data that was smooth (but still satisfied the compatibility conditions of our
problem) by a combination of convolution operators with radius of convolution € > 0
and solutions to elliptic equations. In the limit as € — 0, we recover the initial data
with the Sobolev-class regularity.

The a priori estimate (6.1) thus allows us to pass to the limit € — 0 and recover
the Sobolev-class regularity stated in Theorems 1.1 and 1.2.
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6.3. Uniqueness. We define

6 4
E(v,t) =1+ [0n(t)l5—q +18/v-n()[F + D 10°0!n - n(t)[15_,.

a=0 a=0

We suppose that (n1,v1, f1) and (12, ve, f2) are two solutions of the compressible
surface tension problem (1.7) with E(v,0) for v = vy, ve, bounded by some M, > 0.
Then by setting

C=m—1m2, w=v—v2, 0= [f1]>—[f]?

we have that ((,w, o) satisfies

¢
(6.2a) C:/ w in  x (0,77,
0
(62b) powz + [al]éﬂgvk = [a2 - al]?([fZ]Z)ak in Q x (07 T]7
0= —0[g1]*Cap 11 — og1]* N2s0p M1
(6.2c) + o[gg]o‘ﬂng,aﬁ ‘ng on I x (0,7T],
(62d) (Ca w, Q)'t:(J = (07 0, 0) on .

We will establish that w = 0. Setting

5
(6.3) ES(t) = ) 119713
a=0
we follow section 4 with x set to zero.
The Lagrangian curl operator curl,, applied to
wi + 2[A1]7 fre = 2[A2]7 faon
provides the following vorticity equation for the difference w = vy — va:
(6.4) curly, wy = 2£.ji[A1]§([Ag]ff2,k )ys -

The time integral of the surface tension problem satisfied by vy yields

¢
Vg — Uy = —2/ [A2)” faor
0

by which we infer that

T
/
The curl-estimates for w therefore follow from the analysis proving Lemma 4.1 with
the vorticity equation (6.4) replacing the homogeneous vorticity equation (2.14).

Repeating the energy estimate for the fourth time-differentiated problem in Propo-

sition 4.1, the highest-order term of the interior forcing term fot Jo 0 llaz—a1)¥ ([f2]?) .k Jwiss
obeys

2

t
DQ/O [A]F foi

<TP< sup |U2(t)||§) < CTM,.

3 t€[0,T]

t T
/ / (a2 — @) (fo])esteo i < C / ||Dv2ttt||1||wtttt||o<TP( sup E%)).
0 Q 0

te[0,T)
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The boundary integral corresponding with

—0[g1]* 12,08 11 + 092]*P 02,08

Ny = —0[g1]N2,05 - [01 — n2] — g1 — 92]*P 2,05 N2

of (6.2c) is similarly bounded.
We notice that with

/QP%(JIY [al] v1tet” g (1]} wgmas2/52/’3(»71)73[611]}1)?”%(; [a1]7wiise s
+/ Po(J1) " [a1]d 26t q [a1]30 g
Q

we preserve an energy estimate for ||[a1]5w},;,s [|2 in Proposition 4.1.

Following the arguments in Step 3 of section 4 provides control of the divergence
and normal trace of the functions of E¢(t). Proposition 2.1 and the initial condition
(6.2d) imply that

sup ES(t) < TP( sup EC(L‘)>
te[0,T) te[0,T]

for the higher-order energy function E¢(t) defined in (6.3). Using the polynomial-type
inequality (2.20), we infer that w = 0 as desired.

7. The asymptotic limit as surface tension tends to zero. In this section,
we establish an existence theory for the zero surface tension limit of (1.7) via a
priori estimates that are independent of the surface tension parameter o > 0. This
asymptotic limit holds whenever the initial data satisfies the Taylor sign condition
(1.15) and provides the following:

0< V/ 0% -n|* < /_Nj%ae (5 ~2) ok [0 - |,
r

We recall that Theorem 1.1 provides solutions to (1.7) that satisfy

5 2
(7.1) sup > 00 13-q + [veee - (O + Y 107070 - n(t)55-0 < Co
0

t€[0,T] ,—o

for a finite bound C, > 0 depending on 1/0. We will show that when the data
satisfy the Taylor sign condition, as stated in Theorem 1.2, the estimates and the
time-interval of existence are indeed independent of o > 0.

7.1. The o-problem. To indicate the dependence on the surface tension pa-
rameter ¢ > 0, we place the symbol — over each dependent variables. For o > 0,
Theorem 1.1 provides the existence (and uniqueness) to the following o-problem.

DEFINITION 7.1 (the o-problem). For o > 0, we define ¥ as the solution of

(7.2a) poti + @k (pRJ ), =0 in Q x (0,T,],
(7.2b) P2J 72 = B,(t) — 0§ iep -t on T x (0,T,],
(7.2¢) (17, 0)]t=0 = (e, ug) on Q.
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The function B,(t) appearing in the right-hand side of (7.2b) is defined as

6 a
(73) ﬁo(t) = B + Z %af[agaﬁﬁvaﬁ 'ﬁHt:Q'
a=0

Remark 16. The addition of the polynomial-in-time function in 5, (t) ensures
that the correct compatibility conditions for the data are satisfied. The same existence
theory that we developed for the surface tension problem clearly also holds with the
inclusion of the 8, (t) function.

7.2. The higher-order energy function of the o-independent estimates.
For o > 0, we define

—1+Z|\afﬁ H45JG+ZH5“ O 51, + 17T )7

1
+ Z VGO AONE 51, + IVGOTB@)IE + D Voo™ 5 - i(t)]5_,
a=0

a=0

3
+ Y NodAOG 5o + lloBree(1)]3

a=0

(7.4) +Z|0 00 ()51, + 00T ()3 5.

Notice that when o = 0, E7=0(t) = &(t), where &(t) is defined in (1.11).

7.3. Smoothing the initial data. Since E(t) has greater regularity require-
ments than &(t), for the purpose of establishing o-independent estimates, we will
smooth the initial data. More precisely, given data (£2, po, uo) satisfying the condi-
tions (1.13), (1.15), and (1.16) stated in Theorem 1.2, we use the method of Appendix
A to smooth this data so that E7(0) < co. Later, in section 7.5.2, we will recover the
optimal regularity of the initial data stated in Theorem 1.2.

7.4. The a priori estimates for the o-problem. We will allow constants to
depend on 1/6 > 0.
DEFINITION 7.2 (notational convention for constants depending on 1/§ > 0).

We let P denote a generic polynomial with constant and coefficients depending on
1/6 > 0.
We define the constant No > 0 by

(7.5) No = P(E?(0)).

We let R denote generic lower-order terms satisfying

T
R < No+6 sup Et) + TP( sup E"(t)).
0 te[0,T) te[0,T]

We infer from the estimates (4.4) and (7.1) that for T' > 0 taken sufficiently small,

IN
e
IN

(7.6a)

N W

YVt e [0,T] and x € Q.

N~
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Since the initial data satisfy the Taylor sign condition (1.15), we also assume that
(7.6b) 0<u<—7NJ” k(2T %), Yt e [0,T] and z € T.
g

LEMMA 7.1 (a priori estimates for the o-problem). We let ¥ solve the o-problem
(7.2) on a time-interval [0, T for some T =T, > 0. Then independent of 1 > o > 0,

(7.7) sup E°(t) / R.
t€[0,T]
We will establish Lemma 7.1 in the following nine steps.

Step 1: The o-independent curl-estimates. We infer the following lemma
from the arguments proving Lemma 4.1. (See also the proof of Proposition 3 in [13].)
LEMMA 7.2 (the o-independent curl-estimates).

sup lecurlam()l\35 ot o ZH\/_CHrl@B*“ B35

t€l0,T] ,=o
3
+ sup |[Voenl o0l + sup [locurl ()3 5y,

te[0,T t€[0,T] ,—=o

T
+ sup Hocurl@fﬁ(t)”%ﬁ/ R.
0

te[0,T)

Step 2: The o-independent estimates for 8t7j, 8fj and \/Eafi’; - 1. We
recall that
f = poj -t
is the Lagrangian density. Using the identity J 1, = divy; ¥, we have that
A f? = =22 divyy ¥
2f2 = —2f2divy v, — 2(f2A2) 0" s
Letting the operator —2| f/ulf 8j]j ~!act in the Euler equations (7.2a) yields

_2fvz dlvﬁ ’Dt - ngz [/if (p3j72)’ ]7] - ”;EA] f27J

Using the Euler equations (7.2a) to write & = —py '@¥ 2,1, we infer that f2 satisfies
(18) O F - 2f A[ALf ] = —po taf PP ALFR —2(FPAD
P

Since F scales like D.J + D#, it follows that SF is in L2(€2).
Similar to the tangential identity (4.14),

(7.9) pod L4, - i,y = B, [Uﬁ“”ﬁ,w - ﬂg(t)} onT,
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thanks to the Euler equations (7.2a) and the Laplace—Young boundary condition
(7.2b).
PROPOSITION 7.1 (energy estimates for the action of 3¢ in the wave-type equation

(7.8)).

T
sup |7 J(t)llg + sup [P J(B)IIF + sup |Vopu - ()| < / R
te[0,T te[0,T] te[0,T] 0

Proof. Testing six time-derivatives of (7.8) against py 2.J397 f2 in the L2 (Q2)-inner
product and integrating by parts with respect to 9; in the integral —2 [, po ' d]0f
[ak f2,,],; O] f? yields

(7.10)
Ld [ ooy I I
§E/p02=73|3§f2|2+2/polaf[aff2,k}aiaff2,j —2/polaf[a§f2,k]agjvﬂa§f2
Q Q r
I i
6
1 . s o o
= 5/9(002J3)t|3t7f2|2+2201/9fAf(aéJ L8k 12,1, 1). o 200 2
=1

6
w23 [ AFANO (AP ) O P v [ O0F it O]
=1

w2 [ a0, oflal ) 0L .
Q

We have used the Cauchy—Schwarz inequality to analyze all of the terms in the right-
hvand vside of (7.10) except for the highest-order terms of [, 9}(fA7)07 (A% f2.1.).; o
J307 f2, where we have used an L*-L*-L? Holder inequality.
Writing 9, f? = —2p3J 3 J, it follows that
6
(7.11) 0] f* = —2p3J20] T = 2> e} (pg ] )0 .
=1
The identity (7.11) provides that (7.10) multiplied by 1 is equivalent to
d v v
(7.12) —/ ped BOfIP+T —i=TR.
dt Jq

Analysis of Z in (7.12). We equivalently write

5
_ —1vkab 72 wjal f2 —1a96—lskal 72  <ja7 72
I—/Po a; op f=,k a; 0y f aj+§ Cl/Po 0y a; 0y f a0y [, .
Q Q
1=0

Za Ty,

We have that

d 1 o L . i
_/Pol|a-k5t6f2ak |2—/polafaffZ,katajafﬂ,j.
dt Jq Q
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Similar to (7.11), we have that 8% f2 is equal to —2f2.J~188.J plus lower-order terms.
Thus,

d R
2d—/p51f4|AFa§J,k|2+R.
tJa

For fOT 7,1, we integrate by parts with respect to a time-derivative of 5t7f2,j. For
example,

T
/ Ib,o:/polat ab P2 alof 2 |7 - / /polat ot 12 )08 2.5 = / 7.
0

Since 0% scales like D99, the fundamental theorem of calculus ensures a good es-

timate for the term evaluated at time ¢ = 7. The terms fOT Tyy, L =1,...,5, are
similarly analyzed:

5
Z Thi=R
1=0

This establishes that
d o 9
(7.13) =24 /Q oo LfHAROS T 1 2 + R.

Rewriting the boundary integral in (7.12). We use the trace of the action
of 9 in the Euler equations (7.2a) to write i = [ 7 F207 04l N7, or, equivalently,

i:/afo\/Eaﬁ-ﬁ.
r

Using the Laplace—Young boundary condition (7.2b), we find that

(7.14)

i= 2dt/\/tv°‘5\/_av,an\/_3v,gn

—a/\fgaﬁa Dy 14 0P, 5 n——/ (V35 T80, 0 11 /7050, 1
j1 R
+a/afa,ﬁ -ﬁ\/f]go‘ﬁaﬁ-ﬁ,a+a/8fb,g e/ GGPOTO - 7
r r
j2

—I—cr/@t%,lg \/tvo‘ﬁ Z “n — UZC;/ aﬁam ,a357 Ly \/_8% n
r

js

7
—a) / LGB0 [il0 1] v/ GO - 1+ / O B (1) /5075 - it
=1 T T

ja
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Analysis of fOle in the time-integral of (7.14). The action of 9,9} in the
tangential identity (7.9) provides that

(7.15a) O bse Ty = P T Dy O (05" Moy 1 — 07 B (1)) = Ly,

where lvm is such that luw € H05(I), \/Elvw € H%5(I") and is given by
4

(7.15b) lya = OF5 - (i1y pod ™)+ Y 080 - 7 (i po e
1=0

Setting ES'Y‘B = pglj\/ﬁgaﬁgwﬁ,g - we use the tangential identity (7.15), together
with the outward normal differentiation formula (2.11c), to find that

(7.16)  j1=o0 /F 9P 0,0 02 (5" 1,y i) 00,5 -1+ /F 0980l NGO, T +TR.

j1’ R
We integrate by parts with respect to a time-derivative of 999,45 -71 to write
T - _ T
[ == [ 80010 ) 205 050,50
0 r
j1'y
T —_ —_ 13
4 [0 [ 3001 ) 0105010
0 r

il !
ip

T
+ / o? / OO [GM" i1,y 1] O[04 O} 0,5 1]
0 T

e
T —_ —_ o
+ / o? / Dy 0P Ty +11] 0a[L3P O] 0, 1] .
0 r

il !
J1ip

Since 0d7¥ - 7t is in H*5(I'), we may take o sufficiently small so that

T
10055 - #(T)[2 < JaC|\/aOPo(T) |1 50035 - 1(T)]o5 < / 7.
0

Thus, the Cauchy—Schwarz inequality provides that

(7.17) jlg\OT = —/ﬁ“”&[@fi,w 1) 0202 0 [07 0,5 -11] OT+
r

T'.' T'.'
fR=] ®
0 0

Since ¢d¥ - 71 is in H3:5(T"), we find by use of an H ~%(T")-duality pairing that

T
(7.18) iy = o / 5[ 00}y 1] 03P T O 0 -1 + / R.
r 0
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We employ the Cauchy—Schwarz inequality to conclude that

T T'.'
(7.19) / i < / s
0 0

We employ the Cauchy—Schwarz inequality or an H ~°-5(I")-duality pairing to conclude
that

T T.-.
(7.20) / iy < / 7.
0 0

The inequalities (7.17), (7.18), (7.19), (7.20) establish that

(7.21) /11 /R

Analysis of fOT j2 in the time-integral of (7.14). We equivalently write j2 as

(122) = [ OG0 it [ 00 it /G0
T T

j2a J2b

The action of 89 in the tangential identity (7.9) yields
(7.23a) O -1y = i 10208 (05 i -1 — O3B (8)) — 1],

where lvV is such that \/5[7 is in H%5(I") and is given by
(7.23b) Z 0k - 0 (77, poJ 71).

Letting ng = —pgljﬁ§a3§75ﬁ,5a - and using the tangential identity (7.23), we have
that

i = —a® [ 080,508 O3 ] 4%

j2a’

We integrate by parts with respect to a time-derivative of 99%,5 in order to write

T
_/ j2a/
0
= - /[Z}B at VJB ,FL]W/ 8t [g 777;11/ TL / / [,8 at 76 nt Y at [g Vﬁaul/ ’FL]
/ /at éﬁa 'UaB n]a'y (9 g 77,;“/ n / /éﬁ 85 v,5 M 7'y 85[.6#”77’;”/ ﬁ]
:/ 02/[25 0P, 1],y GH O, -ﬁ+/ R.
0 T 0

1"

j2a
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We write

T T T
/() j2a” :A 02A€5 az?ﬁaﬁ’Y 'ﬁguya?ﬁauu FL"‘/O UQAafﬁvﬂ [ﬁfg]w guvat ’Eauu 7.

1" H
)

j2a
Using integration by parts with respect to a time-derivative of 8?17,NV, we conclude

that fOTj = fOT R. Letting £ = py ' J\/G 57,5 i1, we utilize the symmetry of Zg to
exchange 9, and 0, via integration by parts for

T 1 5 T T §
| e =5 [ ottt il [ 0* [ 105000108 -(ng)
0 r 0 0 r
1 (T r. ..
(7.24) — 5/ /zt |G" 002, 1 12| :/ R.
0 r 0

We have thus established that
T T cee
/ j2a = / R.
0 0

The analysis of fOTjgb is similar. We set £7% = \/§3*? 374,50 -7 and write
5 T
/ J2b__ §/av L2veY \/—gaﬂ\/_av n:|76}0
PR

+/ /émea’? U,8 777’)/ 0 TVL:/ / ]217/'

’

j2p
Regarding fOT jou’, we use the identity
(7.25) 070, 1y = pg " J[0p0F (9" T 10— B (1)) — [, ],

where ZV’BW = 70 - 11,y pod L+ 070 -1,y (pod 1), +pl, with [, given by (7.23b). We
integrate by parts with respect to dg, in o fOT Jr o T, 081G 17, 1) £7P P -

where the highest-order term produced by 0, -integration by parts is (7.24). To esti-
mate the integral where 55le appears, we have the choice of integration by parts with
respect to 3,3 or an H~°5(I")-duality pairing. In the integral where 0¥ - 1y (Po jfl),g

appears, we use the identity (7.23). Thus, we conclude that foTij/ _ foT % and

(7.26) / iy < / 3

Analysis of fOT js3 in the time-integral of (7.14). We equivalently write j3 as

6
i3 :a/at%,g -ﬁ(\/ggaﬁ),aaﬁ-ﬁ—zqa/ Vg P ol op 07 07 070 - 1.
r 1=0 r

J3a 36,1
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We infer from our analysis of (4.25) that

T T T
- / fan0 = / o / B G o i1y 055,51 075 - 7+ / 7.
0 0 r 0

—j3a

Hence,

6
- Z iz + R-
=1

The terms fOTijJ for I =1,...,5 are analyzed by integrating by parts with respect
to a time-derivative of 9% and then using elementary estimates. Thus,

i3 = —isbe6 + R-

Integration by parts with respect to a time-derivative of 9; ¥ yields

T T T.-.
[ iwe== [ o [ Voo ot i+ [ &
0 0 I 0
T T.'.
0 r 0

jsb,6”

Letting éulﬂ =GP 70,5 -1, we once again integrate by parts with respect to time:
T . T
/ jabs = —/afﬁw'{ﬁw 0500, V0 ﬁ} ,,@‘
0 r 0
T . . . . 1Y) T 1Y)
—/ 0/8,?177,/3 OV (R 5 egﬂ)t—/ afegﬁaﬁ,g Aoy Op D,y 10
0 r 0 r
j
T T “en
[ [
0 0

We conclude via the tangential identity (7.25) that j = R. Hence,

(7.27) /0 i < /0 i

Analysis of f(;‘rj4 in the time-integral of (7.14). We integrate by parts

with respect to a time-derivative of 9] % in the fOT ja-terms and, if need be, spatially

integrate by parts. For example, letting j4 = 27:1 ja,i, we find that after integration
by parts with respect to time,

T

/ j4,1 :/ / \/_g U,aﬁ Tl 86 Tl—l—/ R

0

/ /aﬁ,aaﬁ \/CVO‘B vn / /R
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Similarly, integration by parts with respect to time provides for the expression

6 T T.-.
Z/ ja,l :/ R.
1=2 "0 0

Finally, using the differentiation formulas (2.10a) and (2.10Db),

T “ee T “ee

/ 147—/ /\/_ ngrP — P gr )8tf),u'77,u77,a5-ﬁ8,575-ﬁ+/ R = R,
0 0

where the second equality follows from our above analysis of fOT j2b-
Hence,

(7.28) /0 i < /0 i

Rewriting (7.12). The inequalities (7.21), (7.26), (7.27), (7.28) provide that
the boundary integral i expressed as (7.14) satisfies

(7.29) i= 2dt/\/tgaﬁ\/—a U0 1\ /0O0, 510+ R.

Using the identities (7.13) and (7.29), we have that (7.12) is equivalently written as

d s d [ e
a0 g [ ATNLIP w25 [ ot FAR T

+§£ V35 a0} b0 T8 1 = R.

The time-integral of (7.30) completes the proof. 0

Step 3: The energy estimates for the action of 5“88_20, a = 1 2,3,4.
We define the vector ak as 7,q -a% and let the vector av be defined as # - a* . Using
these vector identities, we decompose the cofactor matrix a as

(7.31) ak = ak g*Pi g +akn" onT.

Since a* N* = \/gn by the formula (2.9), it follows that

1
(7.32) ay = ENJ‘%V'@

According to the identity (7.32), the lower-bound (7.6b) is equivalently stated as

(7.33) 0< =< —ak(pdJ ).

[NVIIAN

PROPOSITION 7.2 (energy estimates for the action of 9¢ in the Euler equations
(7.2a)).

sup (30RO + sup VIR A0} + s [90F w0 < [

te[0,T] te[0,T] te[0,T]
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Proof. Testing the action of 97 in the Euler equations (7.2a) against d9¢ v in the
L?(Q)-inner product and integrating by parts in the integral [, aF00f (p§J~2),r 007 v"
yields

(7.34)
/aaﬁ pott aa%w/aaf 12 J 2], 0050 Z—/aaﬁp “akoobvt

X

/ 907 [p3J 21y 00y v’ N* = R.

We used the Cauchy—Schwarz inequality or an L*-L*-L? Hélder inequality to analyze
the lower-order terms in (7.34).

Analysis of T in (7.34). We have that

—I= jt/ 2731088 J| + /aaﬁ “H09%ar vt

J&R
/aaﬁ (P2 T 2)0,ak 0070 1 +R.

Integration by parts with respect to a time-derivative of 98(p2.J~2) yields

(7.35)

T T
/ I, = / 8[007 (37 i o] / / 505 (0372, (905t . )
0 Q 0 Q

IlA IlB

Since 97.J is in H2(Q) and the highest-order term of 98k scales like DO7, the term
T1 4 is bounded by fOT R thanks to the fundamental theorem of calculus. Since the
analysis of Z, g is similar, we have established that Z; = R. Similarly, Zo = R. Thus,

(7.36) I="R.

Analysis of K in (7.34). From the differentiation formula (2.6) we infer that
X = /J (asal — azak) o s (p2J %) DOSV + R.
Since a$99PT",, is equal to d88.J plus lower-order terms, we write
/ J Yk (pRJ72) k002" s 43008 + R

/J Lak (03 J=2) 1, D021 a3 D08 /J Yk (p2J2) 1, D020 4 D08 N® +R.

X’ k
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Integrating by parts with respect to a time-derivative of 9989 ¢ yields

/ jc/ / -1y k pO )k885vrvsaa5v ’S}

TR

/ / -1y k Po )’k885vrv3885 175

T
- / / TGk (R 2) 0 O3 (62): 005,
0 Q

g

where we have again used that dfé@ff}i,s is equal to 58?j plus lower-order terms.
Lemma 2.5 provides that

T T - T .
| < [ 1008sl0sl 005 oy < © [ 1050 < [
0 0 0 0

The decomposition (7.31) provides that

Ck=- / VH3T )0 0055 - 1,5 525055 -
T

ki

/\/_J k(p2J 72, 007 - 180T - i

ko

We have used the identities J =14 = A and Msa AR = 52, where 57’C is the Kronecker

delta, in writing k;. Thanks to the Laplace-Young boundary condition (7.2b), w
have that

kl—/fﬁg 0% - 7,5 42505 - 7 — /\fg 3 1), N/GOOS - .5 570 GO - .

R

We have used the identity (7.3) to deduce that 053, (t) scales like o in L°°(T) in the
first term on the right-hand side, and we have used an L*-L*-L? Hélder inequality
in the second term on the right-hand side. We also have that

/\/_J Ak (p2J72),, 002D - ROOPD - Ty .
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Hence,

(7.37) K= 34 [ VBT kR 00 i + .

Analysis of i in (7.34). Using the Laplace-Young boundary condition (7.2b),
we find that

(7.38)
i= 2dt/fva6\/’aa 0 -1\ TOD T, 3 n—a/\/_85 By0 -0(1G*P) DSV -
i1
—a/\fgaﬂaa Uy -1y 0O 0,8 n——/ \/C“aﬁ VTPV, it /TP D, -1
j2 R
+ / 00020, -1/ GG*P DD - 1o + 0 / DOPD, 5 -t /GG DO - 1
r r
R i3
+a/aa5 B, -11(\/ 957 ) 0 00D - n—i—ch/ GOPONY 0 09107 O(a\/500F Y - it

R

3(

ja
+ch/8ég°‘ﬁ36 l"]aaﬁ 1) (a\/_836v n /886@, )00?

Js

We integrate by parts with respect to a time-derivative of 99 - 71 to write
r = = T
| == [ Vaojia o005 1] |
0 r
T — —
/ /85v7a' 3 wo‘ﬂ)\/ghcrg@fﬁ-ﬁ} e
/ /\faﬁ ,a-é )o—éafﬁ-n],ﬁ.
Since 0070 - 7 € H*3(I), it follows that

T T'.'
/ j1 =/ R.
0 0

Similarly, integration by parts with respect to a time-derivative of 907%,5 -7 yields

T T.-.
/ jo =/ R.
0 0
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Since /odP% -1 € H?(T') and /a0t € H*(T), for the [ = 5 term of j4, we have that
T . PR —
/(Af%ﬁﬂwawa@¢%$ﬁ%)
0
= [ V0Lt s 00 AT GO )
T
T
[ [ovmore as o a7 5o i)
0 T
T
= [ [0t s @i 0o Go0R )
0 T
T . PR— —
~ [ [ 5000 a0 0o /50075 5)
0 I

T T T
:/ R—/ /gaﬂafrﬂ‘,aﬂ i d(o+/god} b - in) :/ R.
0 0 r 0

The last equality follows from the analysis of fOT jo. Since the analysis of j5 and the

1=0,...,4 terms of j, are similarly established, we infer that (7.38) is equally written
as
(7.39) i = 2 . / V35%8 G5, o 11 \/TDOP, 5 1+ .

The time-integral of (7.34). Using the identities (7.36), (7.37), and (7.39) in
the time-integral of (7.34) completes the proof. O B

PROPOSITION 7.3 (energy estimates for the action of 329} in the Euler equations
(7.2a)).

sup [|0%00(1)||3 4+ sup |VoO Vs - n(t)|3 + sup |0 - n(t)|E < / R.

te[0,T) te[0,T) te[0,T)

Proof. Testing the action of 9?9} in the Euler equations (7.2a) against 92040 in

the L2()-inner product and integrating by parts in the integral [;, a9} (p3.J~2),x 020}’

yields

/azat poit aQatm/aQ ak[p2 T2 200 /aQat [p2J~Yakd%orv
X T

+ / 92002 T2k POl NF = .
I

i

The analysis of X and i follows from the proof of Proposition 7.2. Hence,
1d 529 4 2 vk 82 12
3% p |0=0; | —|— e \/_J —ay (P ) ok 1|07 Vee - 1]

(7.40) +§a/\/tva'8\/_3 Vtttser 1 /TO*Vytrop -t = R+ L.
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We have that

d iy _ L ,
—I=— / paJ 31070} T* + / D*OL (PRI H00tak v

Jo R
+ / BN 2 2)D,dh RO+
Q
Since 9282 is in H%3(Q), we use Lemma 2.5 to conclude that

(7.41) I="~R.

Using (7.41) in the time-integral of (7.40) completes the proof. O
We infer the following two propositions from the proof of Proposition 7.3.
PROPOSITION 7.4 (energy estimates for the action of 9397 in the Euler equations
(7.2a)).

T
sup | 0%5u (4)]]5 + sup. [Vad 0, - i(t)|T + sup |335t~ﬁ(t)|3§/ R
0

te[0,T) tel0,T" te[0,T]

PROPOSITION 7.5 (energy estimates for the action of 9* in the Euler equations
(7.2a)).

T
sup 0501 + s (V505 R(OF + s (9% o) < / i

t€[0,T] telo,T t€[0,T]

Step 4: The o-independent higher-order estimates via Proposition 2.1.
LEMMA 7.3 (the o-independent lower-order estimates for 9¢J, a = 0,...,7).

sup S 08T W]12, /R
teOTaZ;J 3.5-4a

Proof. The a = 6 and a = 7 cases are provided by Proposition 7.1. The higher-
order estimates for a =0, ...,5 are established b}ur interpolation and the fundamental
theorem of calculus. For example, using that 8¢ is in H'({2)

T
sup 102 T(t)]1.5 < Cs sup [0 J(B)[IF +6 sup ||<9E’J(t)||§§/ R. O
te[0,T] te[0,T 0

tel0,T

LEMMA 7.4 (the o-independent normal trace-estimates for d¢1, a = 0,...,7).
wp 308t - N ” / .
t€[0,7] ,=o

Proof. By Lemma 2.2,

sup [3000(0) NP2y < C sup (06015 + | b)) < [
te[0,T)

te[0,T)
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thanks to the estimates stated in Proposition 7.2 and Lemma 7.3. Using the same ar-
gument, the L?(2)-estimates for 930;; and 0*¥, respectively, given in Propositions 7.4
and 7.5, and the divergence-estimates given by Lemma 7.3 provide that

sup Z|32av “Nfs-a / R

tel0,T] ,=o

Using the fundamental theorem of calculus, the normal trace-estimates stated in
Propositions 7.2, 7.3 and 7.5 complete the proof. 0

Via Proposition 2.1, the estimates stated in Lemmas 7.2, 7.3, and 7.4 establish
the following.

PROPOSITION 7.6 (the o-independent estimates for 9¢n, a =0,...,7).
o S 00y < [ R
te[0,T] ;) ‘ 45

Via Proposition 2.1, the estimates stated in Lemma 7.2 and Proposition 7.2 establish
the following.
PROPOSITION 7.7 (the o-independent estimate for \/od7).

T
Va3 < / i,
0

Step 5: The o-independent higher-order estimates via interpolation.
PROPOSITION 7.8 (the o-independent estimates for /ad{7j, a =0,...,3).

sup Vooti(t) _,af/ R.
tG[OT]az%II G

Proof. We note that by use of interpolation and Young’s inequality,
sup [|Voii(t)||5.5 < Cs sup [[a(t)|is +0 sup [loni(t)]3 5.
te[0,T] te[0,T] te[0,T]

It follows that the estimates given in Proposition 7.6 complete the proof. O

Step 6: The o-independent higher-order estimates via the Euler equa-
tions (7.2a). y
PROPOSITION 7.9 (the o-independent estimates for 9¢.J, a =0,...,5).

T
s Zuaa D25, /R

Proof. We infer from the ath time-derivative of the Euler equations (7.2a) that

sup ORI (B2 5y, <C sup [OFAWDZ 5 1, +C suwp |05 0)]2,_, / R
te[0,T] te[0,7] te[0,T]

The highest-order term of 8{1/1 scales like AAD@???. Hence, the estimates stated in
Proposition 7.6 complete the proof. o
Given Proposition 7.9, we now establish the following.
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PROPOSITION 7.10 (the o-independent estimates for /o910 and /o0 via Propo-
sition 2.1).

s SVl y, < [ &

t€l0,T] ,=o

Proof. Via Proposition 2.1, the estimates stated in Lemma 7.2 and Proposi-
tions 7.3 and 7.9 establish the estimate for /o0 For \/c0}9, we have that

T
WOk - ()25 < Col0fs - i4(8) 2 5 + 800}t - (1) 25 < / 7.
0

thanks to the estimate for /v stated in Proposition 7.6. Hence, we infer via Proposi-
tion 2.1 the estimate for \/o0}¥ from the estimates stated in Lemma 7.2 and Propo-
sition 7.9. d

Step 7: The o-independent higher-order estimates for ocdp7, a =
0,...,4.
LEMMA 7.5 (the o-independent normal trace-estimates for c087, a = 0,...,4).

T
sup Zwa?ag AR, + sup |aa§ﬁ.n(t)|§5g/ 7.
2 t€[0,T] 0

t€[0,T] ,=o

Proof. The estimates for 8{27 given in Proposition 7.9 and the fundamental theo-
rem of calculus provide that the ath time-derivative of the Laplace—Young boundary
condition (7.2b) yields the desired estimates. O

PROPOSITION 7.11 (the o-independent estimates for 001, a = 0,...,4).

ap Y IR0, 4o+ s foapooli < [ &

te[0,T] ,—o

Proof. Since o < /o, we infer from the proof of Proposition 7.9 that the es-
timates for /o080, a = 3,4,5, stated in Propositions 7.7 and 7.10 establish the
divergence-estimates for o¥;, o¥y, and o¥yy. Similarly, the estimates for /O,
a = 1,2, stated in Proposition 7.8 establish the divergence-estimates for oo and o7.
Via Proposition 2.1, the estimates stated in Lemmas 7.2 and 7.5 therefore complete the
proof. a

Step 8: The o-independent improved boundary-regularity estimates.
Considering the action of 0f, a = 4,5,6, in the Laplace-Young boundary condition
(7.2b), we notice that the estimates stated in Propositions 7.9 and 7.11 establish the
following.

PROPOSITION 7.12 (the o-independent estimates for o0f'v - 1, a = 3,4, 5).

sup Z|083+‘“ n(t )|4 .+ sup [007v-n(t)]5, < / R.
t€[0,T] ,—o te[0,T
Step 9: Concluding the proof of Lemma 7.1. The sum of the estimates given
in Propositions 7.1-7.12 completes the proof of Lemma 7.1. Taking § sufficiently small
in the inequality (7.7) yields a polynomial-type inequality of the form (2.20). Hence,
there exists T' > 0 that is independent of o > 0 and verifies

(7.42) sup E°(t) < 2No.
te[0,T)
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7.5. The proof of Theorem 1.2.

7.5.1. Existence. Since £7(0) < oo, Theorem 1.1 provides us with a sequence
of solutions @ to the o-problem (7.2). The o-independent estimate (7.42) and standard
compactness arguments establish the strong convergence, as o tends to zero,

i —mn in L*(0,T; H>*()),
U — vy in L*(0,T; H*5(Q)).
Letting ¢ € L?(0,T; H'()), we have that the variational form of (7.2) is

[ from [ fotrone [ [aionio
— /O /F NG T

The strong convergence of the sequences (77, ¥¢) and the pointwise convergence 3, (t) —
B provide that the limit (7, v, 8) satisfies

//povtqs //POJ ¢i,k+/0T/Fwa¢-n=o.

Thus, v is a solution of the zero surface tension limit of (1.7) on a nonempty time-
interval [0,T]. Standard arguments provide that v(0) = uo and n(0) = e. Further-
more, letting ¢ = 0 in the a priori estimates in section 7.4, we conclude that the
right-hand side of inequality (7.42) depends only on My = P(£(0)). Hence, for suffi-
ciently small T > 0, the higher-order energy function &(t) defined in (1.11) satisfies
(7.43) sup E&(t) < 2M,.

te[0,T
The bounds (7.6) remain valid by taking 7' > 0 even smaller if necessary. By the
arguments in section 6.1, the boundedness of J in assumption (7.6a) implies that

p(t) > X in Q(1).
Similarly, the lower-bound (7.6b) provides that p(t) = f o n~1(t) satisfies

ap°(t)
O<v<— an () on I'(¢).

7.5.2. Optimal regularity for the initial data. As we just noted,
sup (1) < P(£(0)).

t€[0,T]
We can then let the convolution parameter (used in Appendix A) tend to zero, and
Theorem 1.2 then holds for the regularity class £(0) < oco.

7.5.3. Uniqueness. We infer the uniqueness of the solution to the zero surface
tension limit of (1.7) by repeating the arguments given in section 6.3.

Appendix A. Constructing C°°-class initial data. We demonstrate how
given initial data (po, ug, €2) of finite Sobolev regularity (the optimal regularity stated
in the existence theorem) satisfying the conditions (1.13) and (1.14) (or the conditions
(1.13), (1.15), and (1.16)), we generate smoothed C*-class data (pg,vo,?) which
satisfy similar statements of the conditions (1.13) and (1.14) (or the conditions (1.13),
(1.15), and (1.16)).
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A.1. The C*°-class data for the surface tension problem (1.7). We sup-
pose the initial data (pg, uo, ) is of the optimal regularity stated in Theorem 1.1 and
satisfy the conditions (1.13) and (1.14). Letting

(Al) Ja = 8f(J_2)|t:0 and Ha = 8fH(n)|t:0,

we will construct C*°-class data (pg, vo, ) which satisfy

(A.2a) oHo > 4)\* - 3 for o, 8 > 0,
(A.2b) Py >2X>0 in Q,
(A.2¢) ped,=0!3+0cH, onT fora=0,1,2,3.

A.1.1. Defining the C'*°-class initial domain . By Whitney’s approxima-
tion theorem, every C' manifold is diffeomorphic to a C'°° manifold. In particular,
for 2 of class H®, s > 4, there is a C*° domain £ which is arbitrarily close to 2 with
respect to the H®-norm.

Setting T' = 0N defines a C*°-class surface. We let 1 denote the C'*°(T')-vector
describing the geometry of I'. In other words, dn spans the tangent space of I' and,
by letting N denote the outward-pointing unit normal vector to the surface I', we
have that N = 1,1 xn,2 /|n,1 Xxn,2|. We let g denote the surface metric induced by
n and let Hy denote twice the mean curvature of I'. Thus,

Hy= —go‘ﬁn,aﬁ -N in C*(I).

We assume that the given H5-class domain Q C R? is such that (1.14) is satisfied.
Thus, for € > 0 taken sufficiently small, standard properties of convolution provide
that

(A.3) B+cHy > 2\ for 0,8 > 0.

Hence, (A.2a) is satisfied.

A.1.2. Defining the C*°-class data (gq, Vo, 2) to satsify (A.2) for a = 0.
Given ug € H*(Q), we define ug in the C*-class domain € via the equation

L
(A.4) ug =Y [Guoof]o6 " in H'(RQ).
=1

Using the operator A. defined in section 5.1, for € > 0 we define the vector field
Vi € C*(Q) as the solution of the following elliptic Dirichlet problem:

(A.5a) Vo — €AV = ¢ x Eq(ug) in Q,
K
(A.5D) Vo= Z A [fluo o 0;] o 01_1 onT.

[
Given py € H*(2), we define gy in the C*-class domain £2 via the equation

L

(A.6) 00 =3 [Gpoobi]o6 " in H Q).
=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/14/13 to 163.1.62.81. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

COMPRESSIBLE EULER EQUATIONS 3753

Assuming that py > 2\ > 0 in O, we let A > 0 be such that 2X2 > 9A%. It follows for
0o defined by (A.6) that

(A7) 00 > 3\ in Q.
For g > 0 and € > 0, we define g, € C*°(§2) to be the solution of

(A.8a) 0y — mAgy = " xEa(oo) in O,
(A.8D) 0o=+vVB+cHy onl.

The boundary condition (A.8b) implies for a = 0 that (A.2c) is satisfied, since (A.8b)
is equivalently stated as

(Ag) Q(ZJJQZﬁ—FO'HQ onT'.

Elliptic regularity provides for s > 2 and a positive constant C' independent of p that

IVieolr-@ < O (lle" * Ealon) s + ol y ) )-

The boundary forcing function used in defining g, is in C°°(T"). Since the function
0o appearing in the right-hand side of (A.8a) is in H*(£2), there exists a constant C
which is independent of p verifying

IvVreoll 7o) < C-

Equation (A.8a) provides that g, = plAgy, + ¢* * Eq(0o) in Q. Hence, by standard
properties of convolution and taking p sufficiently small, we conclude that

leo — oollL=(a) < VElvVEAG | H2(0) + [|¢* * Eal00) — collL=(0) < A

Recalling the lower-bound (A.7), we conclude that g, > 2A > 0 in Q. Letting € be
sufficiently small, the boundary condition (A.8b) provides that

(A.10) 00 >2X>0 in Q.
By (A.10) and (A.3), the boundary condition (A.8b) provides that
(A.11) B+ cHy>4X* for 0,8 > 0.

Hence, the C*°-class data (gy, Vo, §2) satisty the conditions (A.2) for a = 0, as verified
by (A.9), (A.10), and (A.11).

A.1.3. Formal definitions. We formally set p, equal to g, defined by (A.8).
We define

(A.12) Va1 = =200 (A (pgJ ")) |t=0 fora=0,...,5

and assume that (A.12) yields vp = V¢ defined by (A.5). We make the following
definitions:

(A.13) Jo=divy, and k., =0/(Av"s)|t=0 fora=0,...,6.
Using the notation

(A.14) [Au]S = 08A% |, fora=0,...,5,
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it follows that k, defined in (A.13) satisfies

(A15)  ko=jgo, ki =[Ai]jvgs+dy, and ks = [As]ivg,s +2[Ai]701 6+
We also have that J, defined by (A.1) is equivalently given by

(A16) Jo=1, J;=—2ky, Jo=4k2—2k;, and Js = —8kJ + 12kok; — 2k,.

Using (A.15) and (A.16), the condition (A.2c) that p3J, = o H, is equivalently stated
as

1
(A17) divv,1=j, 1 = -5 [0H, — p§J —2kq—1] +da—1 fora=1,2,3,

Fa1

where d,_1 represents the lower-order terms defining k,_;. We notice that v,, a =
1,2, defined by (A.12) is equivalently given by v; = —2Dp, and v = —2[A1]* pg,k
—2D(pyjo)- Thus,

(A.18) divwg = fy, dive; =f; =—-2Ap,, and divvs = fy = —2Adivwvo.

A.1.4. Defining vo so that the C°-class data (g, vo,?) satisfy (A.2)
for a = 0,1. Extending N and 7, = 1,0 /|7, | for @ = 1,2 into ©, we decompose
any vector £ € R3 into normal and tangential components as

E=¢"1, + &N in Q.
It follows for sufficiently regular ¢ that div & = £%,; is equivalently written as

(A.19) dive = €% 0+ 3 +6%divra + E3divN  onT.

Jo

This provides the following identity for (IN - D)¢&3 = €3 3:

3
(A.20) giN =jo— [(%a+divr, +EdivN] onT.
$o
We define v3 € C*°(£2) by
(A.21a) v 4+ €eA%v3 = € x Eq(ud)  in Q,
3

(A.21b) % =, on T
(A.21c) v =V onT,

where the boundary forcing function ¢ is defined as
(A.22) 0o =Ffo—[VS,a+Viydivr, + Vidiv N]

with the function f, appearing in the right-hand side of (A.22) defined by (A.17).
With V' denoting the tangential component of the vector defined by (A.5), we define
the vector vg € C*(2) as

(A.23) vo=ViTa+viN in Q.
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The boundary condition (A.21c) and the definition (A.23) imply that

(A.24) vo=Vy onT.

Thanks to (A.19), the boundary condition (A.21b) and the definition (A.22) yield
(A.25) divvg = f.

Thanks to the definition (A.17) of f, we equivalently write (A.25) as

(A.26) 02J,=cH; onT.

Hence, the C*-class data (g, vo, 2) satisfy the conditions (A.2) for a = 0,1, as
verified by (A.11), (A.9), (A.10), and (A.26).

A.1.5. Defining the C°°-class data (pq,vo, ) to satisfy (A.2) for a =
0,1,2. According to (A.18), the condition (A.2c) for @ = 2 may be imposed by
prescribing a Dirichlet boundary condition for Ap,. We define p, € C*°(£2) to be the
solution of the polyharmonic problem

(A.27a) po — nA3p, = o x Eqoo) in Q,

(A.27D) —2Apy = f, onT,

A.27c — % =v3 onT,
ON !

(A.27d) Po = 0o on T

The boundary-forcing function f; appearing in the right-hand side of (A.27b) is
defined as
cH
(A.28) fi= —2—22 + 2k — [A1]30),s -
L45)
Using the boundary conditions of the polyharmonic problem (A.21), we may express
the right-hand side of (A.28) in terms of Vo, V1, and ¢, where

(A.29) Vi=-2Dg, onT.

The boundary-forcing function V:f appearing in (A.27c) is the normal component of
V1, and the function g, is the solution of the elliptic Dirichlet problem (A.8). The
boundary conditions (A.27c) and (A.27d) imply that v; = —2Dp, defined by (A.12)
satisfies

(A.30) vi=V; onl.

Polyharmonic regularity provides for s > 0 a positive constant C' independent of u
that

/BP0l s+ )

apy |12
< C<|(p“ * 59(90)”%13(9) + |‘AP0H%IS+3-5(I‘) + Ha—]\?HHH‘M(F) + |P0||?{s+5.5(1-)).

Recalling section A.1.2, the arguments establishing the lower-bound (A.10) provide
that

(A.31) Po>2A>0 in Q.
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Similarly, we infer from the arguments given in section A.1.4 that the boundary
condition (A.27b) and the identity (A.30) establish that

(A.32) piJs=cH; onT.

Hence, the C*-class data (pg, vo, §2), where p, is the solution of (A.27) and vy is
given by (A.23), satisfy the conditions (A.2) for a = 0, 1, 2 as verified by (A.11), (A.9),
(A.26), (A.31), and (A.32).

Remark 17. According to (A.18), the condition (A.2¢) for ¢ = 3 may be imposed
by prescribing a Dirichlet boundary condition for aiNAvg in a polyharmonic problem
for v} satisfying v3 + eAtvd = o€ x Eq(ud).

A.2. The C*-class data for the zero surface tension limit of (1.7). We
suppose the initial data (pg, ug, §2) is of the optimal regularity stated in Theorem 1.2
and satisfy the conditions (1.13), (1.15), and (1.16). Then setting ¢ = 0 in the
construction of the C*°-class data of section A.1, J, = 02(J~2)|=o satisfies

Jo=8, Ji1 =0, Jy=0, and J3=0 onT.

For p > 0, and with gy defined by (A.6), gy solving (A.8), we define p, € C*(Q2) to
be the solution of the polyharmonic problem

(A.33a) Po — BA°py = p* x Eqe) in Q,
(A.33Db) A%py = f5 on T
9Ap, _ 97,

A. _ 92 r
(A.33c) N N on T
(A.33d) —2Ap, = f1 on T,

.33e 22— = onT,
A gf\(; V3 r
(A.33f) po =18 on T,

where the boundary-forcing function f4 is defined below in (A.36). By section A.1.5,
(A.34) po>A>0 in Q.
According to the definition (A.12) of v,,
vy = —2[As] g —4[A1]* (poK o)k —2D(po K1) in £,
where K, = 08 (J Y (J 1)) |i=0 = 02(J~1(A3v",5))|t=0. We compute
J 4 = 16k — 48kgk, + 12k7 + 16koks — 2ks.

Setting J4 = 0 yields an equation for k3. Since k3 = [A2]iv],s + 3[Aiv],s +
3[ALFvs,s + 33,

1
Ja = 5| L6KG — 48Kk3k1 + 12K7 + 16koks | — |[Aa]vhs +3[Aaliv] s +3[Au]505.s |.

On the other hand, the divergence of vz = —2[A2]*py,r —4[A1]*(peKo),k —2D(py K1)
yields

divwz = div [ - 2[‘A2]{€Poak —4[‘A1]{€(P0K0)7k _2DP0K1] —2pg,i K1, —2pyAK.
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We solve for AK to write

1 . .
AKl = g [ —Js3 + div [ - Q[Ag]ﬁpo,k —4[.A1]{€(p0K0),k —2DpOK1] — 2)0071‘ Klai
0

J3
Using that K| = —kg + k; and k; = [A,]5v5,, +7,, we find that
(A.35) Ajy = s + ARG — A(ALS ).
Since v; = —2Dp, implies that j; = —2Ap,, we equivalently write (A.35) as

1

(A.36) A?p, = 5 [33 + Ak — A([A1]ivg,s)] onT.

Is

The quantity DK ; may be expressed using the boundary conditions (A.33c)—(A.33f)
and D%vg, a = 0,1,2,3, may be expressed using the boundary conditions of the
polyharmonic problems defining vo. It follows from (A.12) and (A.36) that J, =
02(J72)|¢=o satisfies

(A.37) Jo=078 onT fora=0,1,2,3,4.
With 0 < 2v < —g—’]’é, we may take € sufficiently small so that g, defined in (A.8)
satisfies

2
0<V§—% onT.

We then have that (A.29) defining the vector field V1 € C*°(I') is
_9at

ON
The boundary condition (A.33e) of the polyharmonic problem (A.33) defining p,
provides that

V1= N onT.

2
0<V§—% onTI.

The conditions (A.33e), (A.34), and (A.37) establish that the C*°-class initial data
(p07 Vo, Q) Sa“tiSfy

(A.38a) Po>A>0 in Q,
2
(A.38h) —% >v>0 onT,
(A.38¢) paJ, =03 onT fora=0,1,234.

The conditions (A.38) are analogous statements of the conditions (1.13), (1.15), and
(1.16).
Remark 18. According to (A.12),

div vy = div [ — 2[As]*pg.x —6[A2])" (poK o) .k —2[A1]* (P K1),k —2Dpo K]
- 2p07i K27i _2POAK2
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Since AK, is approximately A?div vg, the boundary condition J5 = 0 may be im-
posed by prescribing a Dirichlet boundary condition for 5% A?v§ in a polyharmonic
problem for v} satisfying v + €ASv3 = € x Eq(ud).

The boundary condition Jg = 0 is obtained by defining a Dirichlet boundary
condition for A%p, in a polyharmonic problem for p, satisfying p, — pA"py = ¥ *
Ealoo)-

Appendix B. Solutions to the p-problem (5.52). In this appendix, we
construct a fixed-point solution v to the p-problem (5.52).

PROPOSITION B.1 (solutions to the p-problem). For C*-class initial data
(po, uo, ) satisfying the conditions (5.50), and for some T = T.(en) > 0, there
exists a unique v € L2(0,T; HY(Q)) solving the p-problem (5.52) on a time-interval
(0,7 with 939 € L2(0,T; H*~2%(Q)) for a = 1,2,3,4, tyy € L=(0,T; LA(Q)), and
(10), ’lo}t, e 75tttt)|t:0 = (UO,Vl, e ,V4).

B.1. The functional framework for the fixed-point scheme. To establish

the existence and uniqueness of solutions to the p-problem (5.52), we define for 7' > 0
the Hilbert space

X7 ={ve L*0,T; H*(Q)) | 9fv € L*(0,T; H~2*(Q)) for a = 1,2},

endowed with the natural Hilbert norm

2
10l%r = D 1050117 20,1520 (0))-
a=0

For M > 0 (where the particular value of M is specified later), we define the closed,
bounded, convex subset Cr(M) of X

(B.1) v €Cr(M)C Xr

to be all v € X7 that satisfy each of the following conditions:
(X1) (v, v, v4¢)|t=0 = (uo,v1,v2) and
(X2) o), <M.

LEMMA B.1 (solutions to the p-problem in Xgp). For C*®-class initial data
(po, uo, Q) satisfying the conditions (1.13) and (1.14), and for some T = T, (eu) > 0,
there exists a unique v € X that solves the p-problem (5.52) on a time-interval [0, T)
and verifies (0, Vg, Vgt ) |1=0 = (U0, V1, V2).

B.2. Linearizing the p-problem (5.52). Letting v € Cr(M), we set 7 =
e+ [7v and fj = e + [y o on I'. We define (. to be the solution of the following
time-dependent elliptic Dirichlet problem:

(B.2a) Al =An  in Q,
(B.2b) (=7 onl.

We define the following e-approximate Lagrangian variables:
Ae - [Déte]_l, je = det DCTE, e = jeizléa [ge]aﬁ - 56704 'Eévﬁa and \/iﬁe = [ELE]TN'

We assume that 7' > 0 is given such that independently of the choice of v € Cp(M),
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the e-approximate Lagrangian map (. is injective for all ¢ € [0, 7] and that
1 - 1 - —
(B.3) 5 < J(t) < g and 5 < Je(t) < ;Vte[O,T] and © € Q.

This is possible by the inequality (4.4) as v € Cp(M) satisfies ||v]%, < M.

DEFINITION B.1 (the system of linear heat-equations for v). For v € Cp(M),
k>0, €e>0, and p > 0 given, we define v to be the solution of the system of linear
equations

(B.4a) vy — @[Ae]i([zzlé]fv,k ),j =K in 0 x (0,T,(ep)],
(B.4b) ONI[AJI[A5v,s = B 4 c*(t) on T x (0, Tyx(eu)],
(B.4c) V]i=0 = Ug on .

The bounded, nonnegative function 0 is defined as

(B.5) 0= kpoJe.

The vector field K appearing in the right-hand side of (B.4a) is given by
(B.6)

t
K = gcurlg, (curluo + a.ji/ O [Ae]jvi,s) + dive, o[A o, —2[Ad  (po V), -
0

The vector field h* appearing in the right-hand side of (B.4b) is given by

AP = hewrt + haiv + i \/E(AM [gjﬁAM (/0,05 71c) 0 9@])
=1

(B.7) 06 'nc + @[z;guﬂ + B‘d‘iv} :
where
(B3) 520 = g0 0 g,
’ Po
and the vectors heun, haiv, bY,,, and b4, are defined as
(B.9a)
¢
hewt = 0vVGe(J) ™! <curlu0 + a.ji/ 8t[AE]jvi,s> X Tle,
0
(B.9b)
_ e - . .
haiv = \20_ {pg( e) 2 Be(t) + o9, ﬁCmaB 'ne} Te,
(B.9¢c)
_ N _ _
Beurt = 7 lz GOV EN(VED 1) 00 0 0 + 575205 s n] Corars
¢ Li=1
(B.9d)

K —
Fio = = SV (A [ VB 0207 07 (V) +0°H )] 081 ) 06
=1 ¢

The vector field c*(t) appearing in the right-hand side of (B.4b) is given by (5.58).
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B.3. Implementation of the fixed-point scheme to solve the u-problem
(5.52). We will allow constants to depend on 1/dkeu in our fixed-point scheme.

DEFINITION B.2 (notational convention for constants depending on 1/dkeu >
0). Given v € Cr(M), we let P denote a generic polynomial with constant and
coefficients depending on 1/6keu > 0. We define the constant N'g > 0 by

No = '7.5(||U0||100, ll ol 100)-

We let R denote generic lower-order terms satisfying

T
A 7 < No+ 010k, +T P (101%,)-

LEMMA B.2. Given v € Cp(M), k > 0, € > 0, and p > 0, there exists a unique
v € Xp solving (B.4) and satisfying 1. Furthermore,

T
(B.10) ol < [ %

Proof. Standard parabolic theory provides for the existence and uniqueness of
v € Xr solving (B.4) and satisfying 1. For the purpose of establishing the estimate
(B.10), it is useful to note the scaling relations

t t
IC~D17+/D2@ and B”~@+/D@+AN5%+BE,
0 0
where h. € C°°(I) with |h¢|s < C.||s thanks to the inequality (5.2). We will establish

the inequality (B.10) in the following three steps.

Step 1: Parabolic estimates for vy. Testing two time-derivatives of (B.4a)
against vy in the LZ(QZ—inneE product and integrating by parts with respect to 9; in
the integral — [, 97 (0[AcJ2([Ac]Fv,k ),; Jve yields

1d _ _ _
(B.11) s 1ol + [ allAT v = [ K+ [ R +7e
2dt Jo Q Q r
R i
We used the boundary condition (B.4b) in writing the boundary integral i. Thanks

to Lemma 2.1, we have that |v;|2 = R. Hence, i = R . Taking the time-integral of
(B.11) and using that g > A > 0,

T T
(B.12) swum@%+/nwm§/‘ﬁ
te[0,7] 0 0

Step 2: Elliptic estimates for v;. A time-derivative of (B.4) yields the fol-
lowing linear Neumann-type elliptic problem for v;:

(B.13a) —0lAJ ([AdFvek ),y = Gi in Q,

(B.13b) oNI[AJI[A]Sv,s =71 on T,

where the forcing functions G, and 7; are defined as
G =Ky — vy + (?[Ae]i)t([x‘ie]fvak )7j +olAc)] (8t|:AE]f’U7k )u' )
71 =0 [h + ()] - (eN’[A[ALY)

Uss -
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Since p[Ac]L0;[[Ac]¥0k] is a uniformly elliptic operator, standard elliptic regularity
theory prov1des that for s > 2

(B.14) el < C(loell§ + 191132 + 1113 _s)

with the constant C' depending on the coefficients of the elliptic and Neumann-type
operators. The fundamental theorem of calculus provides that

T
Hw%sAM+CTsw>mmm%s/ 7.
te[0,T) 0

Thanks to the estimate (B.12), we conclude that

T — T....
SWHQU%+/H%WS/ R.
te[0,T 0 0

Since 77 scales like Dv 4+ Dv + v, the fundamental theorem of calculus provides that
T T ceee
s (3O + [ s < [ R+ s jnlt
te[0,T 0 0 te[0,T7]

Since interpolation and Young’s inequality provide that ||:||3 < Cs||9:||3 + 0]|54]|3, we
conclude by use of the fundamental theorem of calculus that

T T.'.'
SWLMN&+/IM%S/ R.
te[0,T 0 0

It therefore follows from the inequality (B.14) that
T T seee
(5.15) sup o)+ [l < [
t€[0,T] 0 0

Step 3: Concluding the proof of Lemma B.2. By repeating Step 2, we infer
the following elliptic estimate for v:

T T
(B.16) wpmmM+/|w@s/‘n
te[0,T 0 0

The sum of the inequalities (B.12), (B.15), and (B.16) establishes the inequality
(B.10). O

LEMMA B.3. Let v be the solution of (B.4) determined by v € Cr(M). The
solutions map

G: Cpr(M) = Cr(M): v— v

is a well-defined map for some T' = T,;(e) and possesses a unique fized-point.

Proof. We recall that v € Xp is unique and satisfies 1 by Lemma B.2 . Setting
M = No+1, we take 4 so that §[|7]|%, < 1 and let T = T} (ep) be sufficiently small
so that the inequality given in Lemma B.2 reads

oll5, < M.

Hence, for some T = T, (en) > 0, the solutions map & is well defined.
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Letting o; € Cr(M) for [ = 1,2, we set 7 = e+ fot yin Q and 7 = e + fot Te O
I". We define (. to be the solution of the following time-dependent elliptic Dirichlet
problem:

(Bl?a) A&el = A’f]l in €,
(B.17b) 661 = Nel onT.

We define the following e-approximate Lagrangian variables:
Ael = [Dgel]ila jl = det Dgela Ae] = jElAElJ [gel]a,ﬁ = Eelaa 'gelaﬁ 5 \/gelﬁel = [ael]TN'

For [ = 1,2, we also take the quantities g;, K, h]' to be, respectively, formed via the
definitions (B.5), (B.6), (B.7) with o = ©;. Letting v; denote the solution of (B.4)
formed using v = ¥;, we have that the difference

w = V1 — Vg

satisfies

(B.18a) wy — o1[Ac )l ([Aer]fwy )y = F  in Q x (0, Th(ep)),
(B.18b) 0 N [Aq P [Aafw,s =G on T x (0,T,(ep)],
(B.18c) Wli=0 =0 on Q,

where the vector field F' appearing in the right-hand side of (B.18a) is given by

(B.19) F=Ki—K:+ o [Ael]i([zzlel]fvz,k )73‘ _QQ[AEQH([AEﬂﬁv%k ),j,
d

and the vector field G appearing in the right-hand side of (B.18b) is given by

(B.20) G =hl —hl - [§1Nj [Ac1 ) [Ac)Fva +§2Nj[1452]£[1452]fv27k} .

i

Testing two time-derivatives of (B.18a) against wy; in the L?(2)-inner product and

integrating by parts in the integrals — [, 97(01[Ac1]l([Ae1]fw,k ), Jwe and [, Jrewee

yields

1d o
55/9|wtt|2+/Q8152(§1[A51]‘Z’[A61]fwak)wtt,j

+ [ (@Al Atk yuon = [ (4 = 1)
= / 5t2 [’Cl — Ky — ((@1 [Ael]f;)’j [Ael]]: - (@2[[152]1),3' [Ae2]f)v27k:|wtt
Q
(B.21) - /Qatz[(él [Acll[Aa]} — 02 Acald [Aca)¥) vak Jwi,; -

We have used that two time-derivatives of the boundary condition (B.18b) is equiva-
lent to

7 [o1 NV [Aa )L [Aciliw,s +i] = (BY — hb)w.
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Since 07(01 — 02) = fot 93(01 — 02) scales like fOTD(T)l — Do)y, we infer that the
time-integral of (B.21) yields

T T
(B.22)  sup |[lwu(t)][3 +/ Jwst||F < 5/ 191 = D25y + Conp |01 — B2l %
te[0,T] 0 0

We use the estimate (B.22) and follow Steps 2 and 3 of the proof of Lemma B.2 to
obtain estimates for w; in L?(0,T; H3(Q)) and w in L?(0,T; H5(£2)). Thus,

T
(B.23) lwl%, <6 / 151 — Ball% + Conge Tl — ol

We recall that w = v1 — va. The inequality (B.23) therefore provides that & is a
contraction mapping for sufficiently small § > 0 and T = T,(eu) > 0. Hence, the
solutions mapping & possesses a unique fixed-point v € Cp(M). d

B.4. The proof of Lemma B.1. The proof of Lemma B.1 is complete since
the fixed-point v € Cr(M) of Lemma B.3 verifies 1 and is the unique solution of the
p-problem (5.52).

B.5. The proof of Proposition B.1. We infer from the proof of Lemma B.1
that considering two more time-derivatives in the functional framework of our fixed-
point scheme establishes Proposition B.1.

Appendix C. Equivalence of the ke-problem (5.6) and the heat-type
rke-problem (5.49). In this appendix, we prove the following.

LEMMA C.1. The ke-problem (5.6) and the heat-type ke-problem (5.49) are equiv-
alent.

Proof. Sections 5.3.1 and 5.3.2 provide that a solution of the xe-problem (5.6)
satisfies the heat-type re-problem (5.49). We now establish the converse. Using

the identity (5.29) stating —[AJI[[A]F0,x],; = curls curly © — [A]*(divg ), the

kA
nonlinear heat-type equations (5.49a) are equivalently written as

O + peurly curlg 9 — @[Ae]é(divg; 0),s = K.
The identity
—0[Ac)?(dive, ©),s = —[AJ* (8 dive 0), +dive [A]* ok

and the definition (5.32) of K imply that the equations (5.49a) are equivalently written
as

(C.1)
t
Uy — [/L]{“(é divée U — 2pojﬁ_1),k = —chrlée [curlée v — <cur1 ug + s.ji/ 8t[/v16]§17i,5>].
0

Using the identity curlz o = curlug + fot Oy (curlée 0) = curlug + fot O¢(e.5i [Ae]jf)i,s ),

t t
(C.2) /0 curlg Uy = curlg ¥ — (curl ug + a.ji/o Oy [Ae]iﬁi,s) )

The identity (C.2) implies that the equations (C.1) are equivalently written as

t
(C.3) b — [Ac)*(adive 0 —2p0J )k = —Geurly, [/ curly, @t] .
0
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Applying the e-approximate Lagrangian curl operator curls to (C.3) yields

¢
(C4) curlg ¥y + curly, (@ curlg, / curlg, 17,5> =0 in Q.
0
The boundary condition (5.49b) is written as
ONI[AJI A0,

(5) w4+ Gb 4 Vpg—
0

(P82 = Bult) + 002 s i+ 825D
Taking the scalar product of (C.5) with §~10¢, yields

t
VeI (eurly ) x 7 - 9 = /G Kcuﬂ o+ €. / at[Ae];?fﬂ',s) < n] 3C..
0

Ni[AJHAkD,5-0C,

o~ 1 hcurl 555

Using that [(curlés 0) X fe) - e = 0 and hewrt - e = 0, we have that
t ~ .
(C.6) (curlée D) X e = <cur1 ug + 6.j1’/ at[AE];T;Z,S> X 7 on L.
0

We note that (C.6) is equivalently stated as (fot curlg ¥t) X ne = 0. Hence, by (C.4),
we record that fot curly 0 satisfies

t
(C.7a) curlg ¢ + curly, (@ curlg, / curlg, ﬁt> =0 inQx[0,7],
0
t
(C.7b) (/ curlée i;t) Xxne=0 onT x[0,T],
0

t
(C?C) </ Curlée ﬁt) |t:0 =0 onf.
0

Testing (C.7a) against fot curlg ¥y in the L?(Q)-inner product and integrating by parts

with respect to the operator curly in [, curlg (¢ curlg fg curlg o) fg curlg v yields

(C.8)
1d t 2 \/_ t 2
- — curls 0| + H ocurls / curls o
th‘/o SRR ¢ Jy <l

k B

t t
+ / NS[AE];aijk (chﬂée/ curlg, 17,5) (/ curlée i)t> = 0.
r 0 0

. el ST A 1s ~ t - t “ N\
With the bvoundary condition (C.7b), [ N*[Aseijk(gcurly, [y curly 00)F( [y curls o)
= Jr @ng[(fot curlg o) x n] - (¢curly fot curly ¥;) = 0. Integrating the identity
C.8) in time from 0 to t € (0,7] produces " eurly 0¢]|2 = 0. So according to

0 Ge 0

(C.7a), | curlg vt]lo = 0. The regularity of ¢ stated in Proposition 5.4 then provides
that almost everywhere in 2,

curlée Uy = 0.
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Equations (C.3) are thus written as
(C.9a) 0 — [A)F (kpo e dive 0 — 2p0J 1), = 0.

As the solution ¢ of the heat-type ke-problem (5.49) verifies the e-approximate La-
grangian vorticity equation (5.15), we infer that the boundary condition (C.5) of the
heat-type problem is equivalently written as

(C.9b) Kpg dive 0 = pe 2 = Be(t) + 03Pl sap e + KGP D08 T

Equations (C.9) are equivalent to the momentum equations and boundary condition
of the ke-problem (5.6). O

Appendix D. Notation.

U Eulerian velocity ... 3691
P Fulerian pressure ....... .. 3691
p Eulerian density ... 3691
Ug Initial velocity ... ..o 3691
00 Initial density ... ... ..o 3691
o Surface teNSION . .. ...ttt 3691
B A parameter to the equation of state p = ap” — f forv>1... 3691
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e The identity function e(x) =@ ... 3692
D The three-dimensional gradient operator ...................... 3696
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div,, curl, The Lagrangian divergence and curl operators................. 3697
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0] A solution of the sk-problem (3.1) ........ ... 3704
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