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Abstract: We prove that the 3-D free-surface incompressible Euler equations with reg-
ular initial geometries and velocity fields have solutions which can form a finite-time
“splash” (or “splat”) singularity first introduced in Castro et al. (Splash singularity for
water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hy-
persurface, the moving boundary of the fluid domain, self-intersects at a point (or on
surface). Such singularities can occur when the crest of a breaking wave falls unto its
trough, or in the study of drop impact upon liquid surfaces. Our approach is founded
upon the Lagrangian description of the free-boundary problem, combined with a novel
approximation scheme of a finite collection of local coordinate charts; as such we are
able to analyze a rather general set of geometries for the evolving 2-D free-surface of
the fluid. We do not assume the fluid is irrotational, and as such, our method can be used
for a number of other fluid interface problems, including compressible flows, plasmas,
as well as the inclusion of surface tension effects.
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1. Introduction

1.1. The Eulerian description of the free-boundary problem. For 0 ≤ t ≤ T , the evolu-
tion of a three-dimensional incompressible fluid with a moving free-surface is modeled
by the incompressible Euler equations:

ut + u · Du + Dp = 0 in �(t) , (1.1a)

divu = 0 in �(t) , (1.1b)

p = 0 on �(t) , (1.1c)

V(�(t)) = u · n (1.1d)

u = u0 on �(0) , (1.1e)

�(0) = �0 . (1.1f)

The open subset�(t) ⊂ R
3 denotes the changing volume occupied by the fluid,�(t) :=

∂�(t) denotes the moving free-surface, V(�(t)) denotes normal velocity of �(t), and
n(t) denotes the exterior unit normal vector to the free-surface �(t). The vector-field
u = (u1, u2, u3) denotes the Eulerian velocity field, and p denotes the pressure function.
We use the notation D = (∂1, ∂2, ∂3) to denote the gradient operator. We have normalized
the equations to have all physical constants equal to 1.

This is a free-boundary partial differential equation to determine the velocity and
pressure in the fluid, as well as the location and smoothness of the a priori unknown
free-surface. In the case that the fluid is irrotational, curl u = 0, the coupled system of
Euler equations (1.1) can be reduced to an evolution equation for the free-surface (with
potential flow in the interior), in which case (1.1) simplifies to the water waves equation.
We do not make any irrotationality assumptions.

We will prove that the 3-D Euler equations (1.1) admit classical solutions which
evolve regular initial data onto a state, at finite-time T > 0, at which the free-surface
self-intersects, and the flow map loses injectivity. The self-intersection can occur at a
point, causing a “splash,” or on a surface, creating a “splat.”

1.2. Local-in-time well-posedness. We begin with a brief history of the local-in-time
existence theory for the free-boundary incompressible Euler equations. For the irrota-
tional case of the water waves problem, and for 2-D fluids (and hence 1-D interfaces),
the earliest local existence results were obtained by Nalimov [22], Yosihara [33], and
Craig [11] for initial data near equilibrium. Beale et al. [6] proved that the linearization
of the 2-D water wave problem is well-posed if the Rayleigh–Taylor sign condition

∂p

∂n

∣
∣
∣
∣
t=0

< 0 on �|t=0 (1.2)

is satisfied by the initial data (see [24,27]). Wu [29] established local well-posedness
for the 2-D water waves problem and showed that, due to irrotationality, the Taylor sign
condition is satisfied. Later Ambrose and Masmoudi [4], proved local well-posedness of
the 2-D water waves problem as the limit of zero surface tension. For 3-D fluids (and 2-D
interfaces), Wu [30] used Clifford analysis to prove local existence of the water waves
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problem with infinite depth, again showing that the Rayleigh–Taylor sign condition is
always satisfied in the irrotational case by virtue of the maximum principle holding for
the potential flow. Lannes [20] provided a proof for the finite depth case with varying
bottom. Recently, Alazard et al. [2] have established low regularity solutions (below the
Sobolev embedding) for the water waves equations.

The first local well-posedness result for the 3-D incompressible Euler equations
without the irrotationality assumption was obtained by Lindblad [21] in the case that the
domain is diffeomorphic to the unit ball using a Nash–Moser iteration. In Coutand and
Shkoller [14], we obtained the local well-posedness result for arbitrary initial geometries
that have H3-class boundaries and without derivative loss (this framework, employing
local coordinate charts in the Lagrangian configuration, is ideally suited for the splash
and splat singularity problems that we study herein). Shatah and Zeng [26] established
a priori estimates for this problem using an infinite-dimensional geometric formulation,
and Zhang and Zhang proved well-poseness by extending the complex-analytic method
of Wu [30] to allow for vorticity. Again, in the latter case the domain was with infinite
depth.

1.3. Long-time existence. It is of great interest to understand if solutions to the Euler
equations can be extended for all time when the data is sufficiently smooth and small,
or if a finite-time singularity can be predicted for other types of initial conditions.

Because of irrotationality, the water waves problem does not suffer from vorticity
concentration; therefore, singularity formation involves only the loss of regularity of the
interface. In the case that the irrotational fluid is infinite in the horizontal directions,
certain dispersive-type properties can be made use of. For sufficiently smooth and small
data, Alvarez-Samaniego and Lannes [3] proved existence of solutions to the water
waves problem on large time-intervals (larger than predicted by energy estimates), and
provided a rigorous justification for a variety of asymptotic regimes. By constructing
a transformation to remove the quadratic nonlinearity, combined with decay estimates
for the linearized problem (on the infinite half-space domain), Wu [31] established an
almost global existence result (existence on time intervals which are exponential in the
size of the data) for the 2-D water waves problem with sufficiently small data. Wu [32]
then proved global existence in 3-D for small data. Using the method of spacetime
resonances, Germain et al. [18] also established global existence for the 3-D irrotational
problem for sufficiently small data.

1.4. Splashing of liquids and the finite-time splash singularity. The study of splashing,
and in particular, of drop impact on liquid surfaces has a long history that goes back
to the end of the last century when Worthington [28] studied the process by means of
single-flash photography. Numerical studies show both fascinating and unexpected fluid
behavior during the splashing process (see, for example, Og̃uz and Prosperetti [23]),
with agreement from matched asymptotic analysis by Howison et al. [19].

The problem of rigorously establishing a finite-time singularity for the fluid interface
has recently been explored for the 2-D water waves equations by Castro et al. [9,10],
where it was shown that a smooth initial curve exhibits a finite-time singularity via self-
intersection at a point; they refer to this type of singularity as a “splash” singularity, and
we will continue to use this terminology. (We will give a precise definition of the splash
domain in our 3-D framework in Sect. 3.1.2 and we define the splat domain in Sect. 9.)

Their work follows earlier results by Castro et al. [7,8] for both the Muskat and water
waves equations wherein the authors proved that an initial curve which is a graph, that
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Fig. 1. The splash singularity wherein the top of the crest touches the trough at a point x0 in finite time T

satisfies the Rayleigh–Taylor sign condition, reaches a regime in finite time in which
it is no longer a graph and can become unstable due to a reversal of the sign in the
Rayleigh–Taylor condition.

Herein, we develop a new framework for analyzing the finite-time splash and splat
singularity for 3-D incompressible fluid flows with vorticity. Our motivation is to pro-
duce a general methodology which can also be applied to compressible fluids, as well
as to ionized fluids, governed by the equations of magnetohydrodynamics. Our method
is founded upon the transformation of (1.1) into Lagrangian variables. We are thus not
restricted to potential flows, nor to any special geometries. Furthermore, our method of
analysis does not, in any significant way, distinguish between flow in different dimen-
sions. While we present our results for the case of 3-D fluid flow, they are equally valid
in the 2-D case (Fig. 1).

1.5. Main result. The main result of this paper states that there exist initial domains�0
of Sobolev class H4.5 together with initial velocity vectors u0 ∈ H4(�0) which satisfy
the Rayleigh–Taylor sign condition (1.2), such that after a finite-time T > 0 the solution
of the Euler equations reaches a “splash” (or “splat”) singularity. At such a time T ,
particles which were separated at time t = 0 collide at a point x0 (or on a surface �0),
the flow map η(T ) loses injectivity, and ∂[�c] forms a cusp. In short, T is the time at
which the crest of a 3-D wave turns-over and touches the trough. This statement is made
precise in Theorems 5.1 and 5.2.

Note that the use of H4.5-regularity for the domain �0 and H4(�0)-regularity for
velocity field u0 is due to the functional framework that we employ for the a priori
estimates in Theorem A.1. For 3-D incompressible fluid flow, we find that this is the
most natural functional setting; of course, we could also employ any Hs-framework for
s ≥ 4.5 or a Hölder space framework as well.

1.6. The Lagrangian description. We transform the system (1.1) into Lagrangian vari-
ables. We let η(x, t) denote the “position” of the fluid particle x at time t . Thus,

∂tη = u ◦ η for t > 0 and η(x, 0) = x,

where ◦ denotes composition so that [u ◦ η](x, t) := u(η(x, t), t) . We set

v = u ◦ η (Lagrangian velocity),

q = p ◦ η (Lagrangian pressure),

A = [Dη]−1 (inverse of the deformation tensor),

J = det[Dη] (Jacobian determinant of the deformation tensor),

a = J A (cofactor of the deformation tensor).
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Whenever div u = 0, it follows that det Dη = 1, and hence the cofactor matrix of Dη
is equal to [Dη]−1, i.e., a = A. Using Einstein’s summation convention, and using the
notation F,k to denote ∂F

∂xk
, the kth-partial derivative of F for k = 1, 2, 3, the Lagrangian

version of Eqs. (1.1) is given on the fixed reference domain � by

η(t) = e +
∫ t

0
v in �× [0, T ] , (1.3a)

vt + AT Dq = 0 in �× (0, T ] , (1.3b)

divη v = 0 in �× [0, T ] , (1.3c)

q = 0 on � × [0, T ] , (1.3d)

(η, v) = (e, u0) in �× {t = 0} , (1.3e)

where e(x) = x denotes the identity map on �, and where the i th-component of AT Dq
is Ak

i q,k . (AT denotes the transpose of the matrix A.) By definition of the Lagrangian
flow η(t), the free-surface is given by

�(t) = η(t)(�) .

We will also use the notation η(t, �) = �(t), and η(t,�) = �(t). The Lagrangian
divergence is defined by divη v = A j

i v
i , j . Solutions to (1.3) which are sufficiently

smooth to ensure that η(t) are diffeomorphisms, give solutions to (1.1) via the change
of variables indicated above.

1.7. The splash singularity for other hyperbolic PDEs. Our methodology can be applied
to a host of other time-reversible PDEs that have a local well-posedness theorem.
(1) Surface tension. Our main result also holds if surface tension is added to the Euler

equations. In this case Eq. (1.3d) is replaced with

qn = −σ�g(η) ,

where σ > 0 denotes the surface tension parameter, n is the outward unit-normal to
�(t), �g denotes the surface Laplacian with respect to the induced metric g where
gαβ = η,α ·η,β . This is the Lagrangian version of the so-called Laplace–Young
boundary condition for pressure: p = σH , where H is the mean curvature of the
free-surface �(t). We have established well-posedness for this case in [14]. The
only modifications required for the case of positive surface tension is to consider
initial domains �0 of Sobolev class H6 with initial velocity fields u0 ∈ H4.5(�0).
Our main theorem then provides for a finite-time splash singularity for the case that
σ > 0.

(2) Physical vacuum boundary of a compressible gas. We can also consider the evolu-
tion of the free-surface compressible Euler equations which model the expansion of
a gas into vacuum. We established the well-posedness of this system of degenerate
and characteristic multi-D conservation laws in [16]. In this setting, our method-
ology shows that there exist initial domains �0 of class H4, initial velocity fields
u0 ∈ H3.5(�0), and initial density functions ρ0 ∈ H4(�0) such after time T > 0,
a splash singularity is formed by the evolving vacuum interface.

(3) Other physical models. In fact, we can establish existence of a finite-time splash
singularity for a wide class of hyperbolic systems of PDE which evolve a free-
boundary in a sufficiently smooth functional framework, and which are locally
well-posedness. Examples of equations (not mentioned above) include nonlinear
elasticity and magnetohydrodynamics.
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2. Notation, Local Coordinates, and Some Preliminary Results
2.1. Notation for the gradient vector. Throughout the paper the symbol D will be used

to denote the three-dimensional gradient vector D =
(
∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

.

2.2. Notation for partial differentiation and Einstein’s summation convention. The kth

partial derivative of F will be denoted by F,k = ∂F
∂xk

. Repeated Latin indices i, j, k, etc.,
are summed from 1 to 3, and repeated Greek indicesα, β, γ , etc., are summed from 1 to 2.

For example, F,i i = ∑3
i=1

∂2 F
∂xi ∂xi

, and Fi ,α I αβGi ,β = ∑3
i=1

∑2
α=1

∑2
β=1

∂Fi

∂xα
I αβ ∂Gi

∂xβ
.

2.3. The divergence and curl operators. For a vector field u on �, we set

div u = u1,1 +u2,2 +u3,3 ,

curl u =
(

u3,2 −u2,3 , u1,3 −u3,1 , u2,1 −u1,2

)

.

With the permutation symbol εi jk given by εi jk =
{

1, even permutation of {1, 2, 3},
−1, odd permutation of {1, 2, 3},

0, otherwise ,
the i th-component

of curl u is given by

(curl u)i = εi jkuk, j .

2.4. The Lagrangian divergence and curl operators. We will write divη v = div u ◦ η
and curlη v = curl u ◦ η. From the chain rule,

divη v = As
rv

r ,s and (curlη v)i = εi jk As
jv

k,s .

2.5. Local coordinates near �. In Appendix A, we establish the a priori estimates for
solutions of the 3-D free-surface Euler equations (following our local well-posedness
theory in [14,15]). Such solutions evolve a moving two-dimensional surface which is
of Sobolev class H4. This boundary regularity implies a three-dimensional domain of
class H4.5, constructed via a collection of H4.5-class local coordinates.

Let � ⊂ R
3 denote an open subset of class H4.5 and let {Ul}K

l=1 denote an open
covering of � = ∂�, such that for each l ∈ {1, 2, . . . , K }, with

B = B(0, 1), denoting the open ball of radius 1 centered at the origin and,

B+ = B ∩ {x3 > 0},
B0 = B ∩ {x3 = 0},

there exist H4.5-class charts θl which satisfy

θl : B → Ul is an H4.5 diffeomorphism, (2.1a)

θl(B
+) = Ul ∩�, θl(B

0) = Ul ∩ � . (2.1b)

Next, for L > K , we let {Ul}L
l=K +1 denote a family of open sets contained in� such that

{Ul}L
l=1 is an open cover of�, and we such that there exist diffeomorphisms θl : B → Ul

(Fig. 2).
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Fig. 2. Indexing convention for the open cover {Ul }L
l=1 of �

2.6. Tangential (or horizontal) derivatives. On each boundary chart Ul ∩ �, for 1 ≤
l ≤ K , we let ∂̄ denote the tangential derivative whose αth-component given by

∂̄α f =
(
∂

∂xα
[ f ◦ θl ]

)

◦ θ−1
l =

(

(D f ◦ θl)
∂θl

∂xα

)

◦ θ−1
l .

For functions defined directly on B+, ∂̄ is simply the horizontal derivative ∂̄ = (∂x1 , ∂x2).

2.7. Sobolev spaces. For integers k ≥ 0 and a domain U of R
3, we define the Sobolev

space Hk(U ) (Hk(U ; R
3)) to be the completion of C∞(Ū ) (C∞(Ū ; R

3)) in the norm

‖u‖2
k,U =

∑

|a|≤k

∫

U

∣
∣Dau(x)

∣
∣2
,

for a multi-index a ∈ Z
3
+, with the convention that |a| = a1 + a2 + a3. When there is

no possibility for confusion, we write ‖ · ‖k for ‖ · ‖k,U . For real numbers s ≥ 0, the
Sobolev spaces Hs(U ) and the norms ‖ ·‖s,U are defined by interpolation. We will write
Hs(U ) instead of Hs(U ; R

3) for vector-valued functions.

2.8. Sobolev spaces on a surface �. For functions u ∈ Hk(�), k ≥ 0, we set

|u|2k,� =
∑

|a|≤k

∫

�

∣
∣∂̄au(x)

∣
∣
2
,

for a multi-index a ∈ Z
2
+. For real s ≥ 0, the Hilbert space Hs(�) and the boundary

norm | · |s is defined by interpolation. The negative-order Sobolev spaces H−s(�) are
defined via duality. That is, for real s ≥ 0, H−s(�) = Hs(�)′.

2.9. The norm of a standard domain �.

Definition 2.1. A domain � is of class H4.5 if for each l = 1, . . . , L, each diffeomor-
phism θl is of class H4.5. The H4.5-norm of � is defined by

(
K

∑

l=1

‖θl‖2
4.5,B+ +

L
∑

l=K +1

‖θl‖2
4.5,B

)2

. (2.2)

In particular if e : � → � is the identity map, then ‖e‖4.5,� is given by (2.2).



150 D. Coutand, S. Shkoller

We can, of course, replace H4.5 with any Hs, s > 2.5 to define domains � of
class Hs .

2.10. Local well-posedness for the free-surface Euler problem.

Theorem 2.1 (Coutand and Shkoller [14]). With E(t) given by (A.8), suppose that
E(0) ≤ M0 and that the initial pressure function satisfies the Rayleigh–Taylor sign
condition. Then there exists a solution to (1.1) on [0, T ] where T > 0 depends E(0),
and supt∈[0,T ] E(t) ≤ 2M0. Moreover, the solution satisfies

η ∈ C([0, T ]; H4.5(�)) , v ∈ C([0, T ]; H4(�)) ,

curlη v ∈ C([0, T ]; H4.5(�)) , vt ∈ C([0, T ]; H3.5(�)) .

3. The Splash Domain �s and its Approximation by Standard Domains �ε

3.1. The splash domain.

3.1.1. The meta-definition. A splash domain �s is an open and bounded subset of R
n

which is locally on one side of its boundary, except at a point x0 ∈ ∂�s, where the
domain is locally on each side of the tangent plane at x0. The domain �s satisfies the
cone property and can be approximated (in a sense to be made precise below) by domains
which have a smooth boundary.

We observe that the Sobolev spaces Hr (�s) are defined for the splash domain �s in
the same way as for a domain which is locally on one side of its boundary; moreoever,
as the bounded splash domain�s satisfies the cone property, interpolation theorems and
most of the important Sobolev embedding results hold (see, for examples, Chaps. 4 and
5 of Adams [1]).

The main difference between bounded splash domains with the cone property and
domains that have the uniform Hr -regularity property is with regards to trace theorems:
For the splash domain�s, a function f in H4.5(�s) has a trace in H4(�′) for any smooth
subset �′ of ∂�s whose closure does not contain x0. At x0 there is not a well-defined
(global) trace for f , in the sense of coming from both sides of the tangent plane at x0,
although it is indeed possible to define local traces for f at x0 with respect to each of
the local coordinate charts containing x0.

3.1.2. The definition of the splash domain.

(1) We suppose that x0 ∈ � := ∂�s is the unique boundary self-intersection point,
i.e., �s is locally on each side of the tangent plane to ∂�s = �s at x0. For all
other boundary points, the domain is locally on one side of its boundary. Without
loss of generality, we suppose that the tangent plane at x0 is the horizontal plane
x3 − (x0)3 = 0.

(2) We let U0 denote an open neighborhood of x0 in R
3, and then choose additional

L open sets {Ul}L
l=1 such that the collection {Ul}K

l=0 is an open cover of �s, and
{Ul}L

l=0 is an open cover of �s and such that there exists a sufficiently small open
subset ω ⊂ U0 containing x0 with the property that

ω ∩ Ul = ∅ for all l = 1, . . . , L .
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Fig. 3. Splash domain �s, and the collection of open set {U0,U1,U2, . . . ,UK } covering �

We set

U +
0 = U0 ∩�s ∩ {x3 > (x0)3} and U−

0 = U0 ∩�s ∩ {x3 < (x0)3} .
Additionally, we assume that U0 ∩ �s ∩ {x3 = (x0)3} = {x0}, which implies in
particular that U +

0 and U−
0 are connected (Fig. 3).

(3) For each l ∈ {1, . . . , K }, there exists an H4.5-class diffeomorphism θl satisfying

θl : B := B(0, 1) → Ul ,

Ul ∩�s = θl(B
+) and Ul ∩ �s = θl(B

0) ,

where

B+ = {(x1, x2, x3) ∈ B : x3 > 0} ,
B0 = {(x1, x2, x3) ∈ B : x3 = 0} .

(4) For L > K , let {Ul}L
l=K +1 denote a family of open sets contained in �s such that

{Ul}L
l=0 is an open cover of �s, and for l ∈ {K + 1, . . . , L}, θl : B → Ul is an

H4.5 diffeormorphism.
(5) To the open set U0 we associate two H4.5-class diffeomorphisms θ+ and θ− of B

onto U0 with the following properties:

θ+(B
+) = U +

0 , θ−(B+) = U−
0 ,

θ+(B
0) = U +

0 ∩ �s , θ−(B0) = U−
0 ∩ �s ,

such that

{x0} = θ+(B
0) ∩ θ−(B0) ,
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and

θ+(0) = θ−(0) = x0 .

We further assume that

θ±(B+ ∩ B(0, 1/2)) ∩ θl(B+) = ∅ for l = 1, . . . , K ,

and

θ±(B+ ∩ B(0, 1/2)) ∩ θl(B) = ∅ for l = K + 1, . . . , L .

Definition 3.1 (Splash domain�s). We say that�s is a splash domain, if it is defined by
a collection of open covers {Ul}L

l=0 and associated maps {θ±, θ1, θ2, . . . , θL} satisfying
the properties (1)–(5) above. Because each of the maps is an H4.5 diffeomorphism, we
say that the splash domain �s defines a self-intersecting generalized H4.5-domain.

3.2. A sequence of standard domains approximating the splash domain. We approxi-
mate the two distinguished charts θ− and θ+ by charts θε− and θε+ in such a way as to
ensure that

θε−(B0) ∩ θε+(B0) = ∅ ∀ ε > 0 ,

and which satisfy

θε− → θ− and θε+ → θ+ as ε → 0 .

We choose r > 0 sufficiently small so that

θ−(B+(0, 2r)) ⊂ ω and θ+(B
+(0, 2r)) ⊂ ω ,

and then we let ψ ∈ D(B(0, r)) denote a smooth bump-function satisfying 0 ≤ ψ ≤ 1
and ψ(0) = 1. For ε > 0 taken small enough, we define

θε−(x) = θ−(x)− ε ψ(x) e3,

θε+(x) = θ+(x) + ε ψ(x) e3,

where e3 = (0, 0, 1) denotes the vertical basis vector of the standard basis ei of R
3. By

choosing ψ ∈ D(B(0, r)), we ensure that the modification of the domain is localized
to a small neighborhood of x0 and away from the boundary of U0 and the image of the
other maps θl (Fig. 4). Then, for ε > 0 sufficiently small,

θε−(B+) ∩ θε+(B+) = ∅ .
Since the maps θε± are a modification of the maps θ± in a very small neighborhood of
0 ∈ B, we have that for ε > 0 sufficiently small,

θε±(B+ ∩ B(0, 1/2)) ∩ θl(B
+) = ∅ for l = 1, . . . , K ,

and

θε±(B+ ∩ B(0, 1/2)) ∩ θl(B) = ∅ for l = K + 1, . . . , L .
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Fig. 4. The black dot denotes the point x0 where the boundary self-intersects (middle). For ε > 0, the
approximate domain �ε does not intersect itself (right)

For l ∈ {1, . . . , L} we set θεl = θl . Then θε− : B+ → U0, θ
ε
+ : B+ → U0, and

θεl : B+ → Ul , l ∈ {1, . . . , K }, θεl : B → Ul , l ∈ {K + 1, . . . , L}, is a collection of
H4.5 coordinate charts as given in Sect. 2.5, and so we have the following

Lemma 3.1 (The approximate domains �ε). For each ε > 0 sufficiently small, the set
�ε , defined by the local charts θε− : B+ → U0, θ

ε
+ : B+ → U0, and θεl : B+ → Ul , l ∈

{1, . . . , K }, θεl : B → Ul , l ∈ {K + 1, . . . , L} is a domain of class H4.5, which is
locally on one side of its H4 boundary.

By choosing 0 < r0 <
1
2 such that 1 ≥ ψ ≥ 1

2 in B(0, r0), we see that
∣
∣(θε−(x)− θε+(y)) · e3

∣
∣ ≥ ε for any x, y ∈ B+ ∩ B(0, r0) .

With r0 chosen, due to the fact that by assumption (2) the images of θ− and θ+ only
intersect the plane {x3 = (x0)3} at the point x0, there exists δ(r0) > 0 such that (θε−(x)−
x0) · e3 < −δ(r0) and (θε+(x) − x0) · e3 > δ(r0) for all x ∈ B+ with |x | ≥ r0. This, in
turn, implies that if x ∈ B+ with |x | ≥ r0 and y ∈ B+, we then have that

∣
∣(θε−(x)− θε+(y)) · e3

∣
∣ ≥ δ(r0)− 2ε ≥ ε if ε ≤ δ(r0)

3
.

We have therefore established the following fundamental inequality: for 0 < ε ≤ δ(r0)
3 ,

∀(x, y) ∈ B+ × B+ , |(θε−(x)− θε+(y)) · e3| ≥ ε . (3.1)

We henceforth assume that 0 < ε ≤ δ(r0)
3 (Fig. 4).

In summary, we have approximated the self-intersecting splash domain �s with a
sequence of H4.5-class domains �ε, 0 < ε ≤ δ(r0)

3 (such that ∂�ε does not self-
intersect). As such, each one of these domains �ε, ε > 0, will thus be amenable to our
local-in-time well-posedness theory for free-boundary incompressible Euler equations
with Taylor sign condition satisfied.

We also note that�ε and�s are the same domain, except on the two patches θε−(B+ ∩
B(0, 1

2 )) and θε+(B
+ ∩ B(0, 1

2 )). In particular, as θ± differ from θε± on a set properly
contained in ω ⊂ U0, we may use the same covering {Ul}L

l=0 for �ε as for �s.
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Lemma 3.2. For 0 < ε ≤ δ(r0)
3 , the H4.5-norm of �ε is bounded independently of ε.

Proof. The assertion follows from the following inequality:

‖θε±‖4.5,B+ ≤ ‖θ±‖4.5,B+ +
δ(r0)

3
‖ψ‖4.5,B+ .

��

3.3. A uniform cut-off function on the unit-ball B. Let B1−α = B(0, 1−α) for 0 < α <

1. For α > 0 taken sufficiently small, we have that θ−(B+
1−α) ⊂ U0 and θ+(B+

1−α) ⊂ U0

and for each l = 1, . . . , K , θl(B+
1−α) ⊂ Ul , and for each l = K +1, . . . , L , θl(B1−α) ⊂

Ul , and the open sets θ−(B+
1−α), θ+(B+

1−α), θl(B+
1−α) (1 ≤ l ≤ K ), θl(B1−α) (K + 1 ≤

l ≤ L), are also an open cover of �s. Since the diffeomorphisms θε± are modifications
for θ± in a very small neighborhood of the origin, it is clear that independently of ε > 0,
the sets θε−(B+

1−α), θε+(B+
1−α), θl(B+

1−α) (1 ≤ l ≤ K ), θl(B1−α) (K + 1 ≤ l ≤ L) are
also an open cover of each �ε .

Definition 3.2 (Uniform cut-off function ζ ). Let ζ ∈ D(B(0, 1)) such that 0 ≤ ζ ≤ 1
and ζ(x) = 1 for |x | < 1 − α and ζ = 0 for |x | ≥ 1 − α

2 .
We set ς = 1 − α

2 , so that

0 ≤ ζ ∈ D(B(0, ς)) ≤ 1. (3.2)

4. Construction of the Splash Velocity Field us at the Time of the Splash
Singularity

We can now define the so-called splash velocity us associated with the generalized
H4.5-class splash domain �s, as well as a sequence of approximations uεs set on our
H4.5-class approximations �ε of the splash domain �s.

4.1. The splash velocity us.

Definition 4.1 (Splash velocity us). A velocity field us on an H4.5-class splash domain
�s is called a splash velocity if it satisfies the following properties:

(1) ζus ◦ θ± ∈ H4.5(B+), ζus ◦ θl ∈ H4.5(B+) for each 1 ≤ l ≤ K and us ∈ H4.5(ω)

for each ω ⊂ �s;
(2) so that under the motion of the fluid, the sets U +

0 and U−
0 relatively move towards

each other, we require that

u3
s ◦ θ− > C− , −u3

s ◦ θ+ > C+ in B+ and C− + C+ > 0 , (4.1)

where C− and C+ are constants.
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Definition 4.2 (Splash pressure ps). A pressure function ps on an H4.5-class splash
domain �s is called a splash pressure associated to the splash velocity us if it satisfies
the following properties:

(1) ps is the unique solution of

−�ps = − ∂ui
s

∂x j

∂u j
s

∂xi
in �s, (4.2a)

ζ ps ◦ θ± = 0 on B0, (4.2b)

ζ ps ◦ θl = 0 on B0 for l = 1, . . . , K ; (4.2c)

(2) the splash pressure ps ∈ H4.5(�s) and satisfies the local version of the Rayleigh–
Taylor sign condition:

∂

∂x3
(ζ ps ◦ θ±)>CRT>0 and

∂

∂x3
(ζ ps ◦ θl)>CRT>0

on B0 for l =1, . . . , K . (4.3)

Note that the outward unit normal to ∂B+ ∩ B0 points in the direction of −e3.

Remark 1. As x0 = θ−(0) = θ+(0), and as p ◦ θ−(0) = p ◦ θ+(0) = 0, the conditions
(4.2b) and (4.2c) are equivalent to having the usual vanishing trace p = 0 on �s. As
such, p ∈ H1

0 (�s) ∩ H4.5(�s).

For property (1) in Definition 4.2, we note that ps is the unique H1
0 (�s)weak solution

of (4.2) guaranteed by the Lax–Milgram theorem in �s. The usual methods of elliptic
regularity theory show that ζ ps ◦ θ± and each ζ ps ◦ θl ∈ H4.5(B+) for l = 1, .., L , and
thus that ps ∈ H4.5(�s). (Notice that it is the regularity of our charts θ± and θl which
limits the regularity of the splash pressure ps.)

As we have defined in property (2) of Definition 4.2, at the point of self-intersection
x0, the gradient Dps has to be defined from each side of the tangent plane at x0; namely,
we can define Dps ◦ θ− and Dps ◦ θ+ on B0, and these two vectors are not equal at the
origin 0 which is the pre-image of x0 under both θ− and θ+.

It is always possible to choose a splash velocity us so that (4.3) holds. For example, if
we choose us to satisfy curl us = 0, then (4.3) holds according to the maximum principle
[29,30]. On the other hand, it is not necessary to choose an irrotational splash velocity,
and we will not impose such a constraint. Essentially, as long as the velocity field induces
a positive pressure function, then (4.3) is satisfied.

4.2. A sequence of approximations uεs to the splash velocity. For ε > 0, we proceed to
construct a sequence of approximations uεs : �ε → R

3 to the velocity field us : �s → R
3

in the following way:

uεs ◦ θl = us ◦ θl , in B+ , for l = 1, . . . , K ; (4.4a)

uεs ◦ θl = us ◦ θl , in B , for l = K + 1, . . . , L; (4.4b)

uεs ◦ θε− = us ◦ θ−, and, uεs ◦ θε+ = us ◦ θ+ , in B+. (4.4c)
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We then have the existence of constants A > 0, B > 0 such that

‖uεs‖4.5,�ε ≤ A
(‖ζuεs ◦ θε−‖4,B+ + ‖ζuεs ◦ θε+‖4,B+

+
K

∑

l=1

‖ζuεs ◦ θεl ‖4.5,B+ +
L

∑

l=K +1

‖ζuεs ◦ θεl ‖4.5,B

)

≤ B‖us‖4.5,�s . (4.5)

We next define the approximate pressure function pεs in �ε as the H1
0 (�

ε) weak solu-
tion of

−�pεs = ∂uεs
i

∂x j

∂uεs
j

∂xi
in �ε, (4.6a)

pεs = 0 on ∂�ε. (4.6b)

Again, standard elliptic regularity theory then shows that pεs ∈ H4.5(�ε). Furthermore,
since θε± →θ± and θεl →θl in H4.5(B+), we infer from the definition of uεs in (4.4) that
ζ pεs ◦ θε± → ζ p ◦ θ± and ζ pεs ◦ θεl → ζ p ◦ θl in H4.5(B+). We may thus conclude from
the pressure condition (4.3) that we also have, uniformly in ε > 0 small enough, that

∂

∂x3
(ζ pεs ◦ θε±)>

CRT

2
>0 and

∂

∂x3
(ζ pεs ◦ θεl )>

CRT

2
>0,

on B0 for each 1≤ l ≤ K . (4.7)

4.3. Solving the Euler equations backwards-in-time from the final states �ε and uεs .
Because the Euler equations are time-reversible, we can solve the following system of
free-boundary Euler equations backward-in-time:

ηε(t) = e +
∫ t

0
vε in �ε × [−T ε, 0] , (4.8a)

vεt + [Aε]T Dqε = 0 in �ε × [−T ε, 0) , (4.8b)

divηε v
ε = 0 in �ε × [−T ε, 0] , (4.8c)

qε = 0 on �ε × [−T ε, 0] , (4.8d)

(ηε, vε) = (e, uεs ) in �ε × {t = 0} , (4.8e)

where Aε(x, t) = [Dηε(x, t)]−1. Thanks to Lemma 3.1, (4.5), and (4.7), we may apply
our local well-posedness Theorem 2.1 for (4.8) backward-in-time. This then gives us
the existence of T ε > 0, such that there exists a Lagrangian velocity field

vε ∈ L∞(−T ε, 0; H4(�ε)), (4.9)

and a Lagrangian flow map

ηε ∈ L∞(−T ε, 0; H4.5(�ε))) (4.10)

which solve the free-boundary Euler equations (4.8) with final data uεs and final
domain �ε .

Denoting the corresponding Eulerian velocity field by

uε = vε ◦ ηε−1
, (4.11)
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it follows that uε is in L∞((−T ε, 0); H4(�ε(t))), where �ε(t) denotes the image of
�ε under the flow map ηε(t).

In the remainder of the paper we will prove that the time of existence T ε > 0 (for
our sequence of backwards-in-time Euler equations) is, in fact, independent of ε; that is,
T ε is equal to a time T > 0, and that ‖uε(t)‖H4(�ε(t)) and ‖ηε(t)‖H4.5(�ε) are bounded
on [−T, 0] independently of ε. This will then provide us with the existence of a solution
which culminates in the splash singularity �s at t = 0, from the initial data

u0 = lim
ε→0

uε(−T ),

�0 = lim
ε→0

�ε(−T ).

In particular, when solving the Euler equations forward-in-time from the initial states
�0 and u0, the smooth H4.5 domain �0 is dynamically mapped onto the H4.5-class
splash domain �s after a time T , and the boundary “splashes onto itself” creating the
self-intersecting splash singularity at the point x0.

5. The Main Results

Theorem 5.1 (Finite-time splash singularity). There exist initial domains �0 of class
H4.5 and initial velocity fields u0 ∈ H4(�0), which satisfy the Taylor sign condition
(1.2), such that after a finite time T > 0, the solution to the Euler equation η(t) (with
such data) maps �0 onto the splash domain �s, satisfying Definition 3.1, with final
velocity us. This final velocity us satisfies the local Taylor sign condition on the splash
domain �s in the sense of (4.3). The splash velocity us has a specified relative velocity
on the boundary of the splash domain given by (4.1).

The proof of Theorem 5 is given in Sects. 6–8. In Sects. 9–10 we define the splat
domain �s and associated splat velocity us and establish the following

Theorem 5.2 (Finite-time splat singularity). There exist initial domains�0 of class H4.5

and initial velocity fields u0 ∈ H4(�0), which satisfy the Taylor sign condition (1.2),
such that after a finite time T > 0, the solution to the Euler equation η(t) (with such
data) maps�0 onto the splat domain �s, satisfying Definition 9.1, with final velocity us.
This final splat velocity us satisfies the local Taylor sign condition on the splat domain
�s in the sense of (4.3). The splat velocity us has a specified relative velocity on the
boundary of the splat domain as stated in Definition 10.1.

6. Euler Equations Set on a Finite Number of Local Charts

For each ε > 0, the functions vε, ηε , and uε , given by (4.9)–(4.11), are solutions to the
Euler equations (4.8) on the time interval [−T ε, 0].

For the purpose of obtaining estimates for this sequence of solutions which do not
depend on ε > 0, we pull-back the Euler equations (4.8) set on�ε by our charts θε± and
θεl , l = 1, . . . , L; in this way we can analyze the equations on the half-ball B+.

It is convenient to extend the index l to include both l = 0 and l =−1; in particular,
we set

θε−1 = θε− and θ−1 = θ− ,
θε0 = θε+ θ0 = θ+ .
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Furthermore, since for l = −1, 0, 1, 2, . . . , K , the domain of θl is the half-ball B+,
and for l = K + 1, . . . , L , the domain of θl is the unit-ball B, it is convenient to write

θ− : B → U−
0 , θ+ : B → U +

0 , θl : B → Ul ∩� for l = 1, . . . , K ,

θl : B → Ul for l = K + 1, . . . , L ,

so that B denotes B+ for l = −1, 0, 1, 2, . . . , K and B denotes B for l = K + 1, . . . , L .
The Euler equations, set on B, then take the following form:

ηε = e +
∫ t

0
vε in �ε × [−T ε, 0) , (6.1a)

∂tv
ε ◦ θεl + [bεl ]T D(qε ◦ θεl ) = 0 in B × [−T ε, 0) , (6.1b)

divηε◦θεl v
ε ◦ θεl = 0 in B × [−T ε, 0) , (6.1c)

qε ◦ θεl = 0 on B0 × [−T ε, 0) , (6.1d)

(ηε ◦ θεl , vε ◦ θεl ) = (θεl , uεs ◦ θεl ) on B × {t = 0} , (6.1e)

where [bεl ]T denotes the transpose of the matrix bεl , and where for any l = −1, 0, 1, 2, . . .

L , bεl (x, t) = [

D(ηε(θεl (x), t)
]−1. For l = K +1, . . . , L , the boundary condition (6.1d)

is not imposed.
The system (6.1) will allow us to analyze the behavior of ηε, vε , and qε in an ε-

independent fashion. Fundamental to this analysis is the following

Lemma 6.1 (Equivalence-of-norms lemma). With the smooth cut-off function ζ given
in Definition 3.2, there exist constants C̃1 > 0 and C̃2 > 0 such that for any ε > 0 and
f ∈ Hs(�) with 0 ≤ s ≤ 4.5,

C̃1

L
∑

l=−1

‖ζ f ◦ θεl ‖2
s,B ≤ ‖ f ‖2

s,�ε ≤ C̃2

L
∑

l=−1

‖ζ f ◦ θεl ‖2
s,B . (6.2)

Proof. Since by construction ‖θεl ‖4.5,B ≤ Cl , the first inequality is obvious. For the
second inequality, we simply notice that with E ={x ∈B|ζ(x)=1},�ε =∪L

l=−1θ
ε
l (E),

so that

‖ f ‖s,�ε ≤ C
L

∑

l=−1

‖ f ‖s,θεl (E)
≤ C

L
∑

l=−1

‖ζ((θεl )−1) f ‖s,θεl (E)

≤ C
L

∑

l=−1

‖ζ f (θεl )‖s,E‖(θεl )−1‖4.5,θεl (B) ≤ C
L

∑

l=−1

‖ζ f (θεl )‖s,B,

where we used the fact that detDθεl > cl > 0 for the last inequality. ��

7. Time of Existence −T of Solutions to (4.8) is Independent of ε

Recall that for ε > 0, the functions vε, ηε , and uε , given by (4.9)–(4.11), are solutions
to the Euler equations (4.8) on the time interval [−T ε, 0]. We now prove that the time
of existence −T ε is, in fact, independent of ε.
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We begin by using the fundamental theorem of calculus to express the difference
between the flow of two particles x and y as

ηε(x, t)− ηε(y, t) = x − y +
∫ t

0
[vε(x, s)− vε(y, s)]ds .

Next, for any x and y in �ε for which we do not have at the same time x ∈ θε−(B+)

and y ∈ θε+(B+), we see that independently of ε > 0 small enough,

|ηε(x, t)− ηε(y, t)− (x − y)| ≤ C1|t | sup
[−T ε ,0]

Eε(t) |x − y| , (7.1)

where we have used the Sobolev embedding theorem and where

Eε(t) = ‖ηε(t)‖2
4.5,�ε + ‖vε(t)‖2

4,�ε + ‖ curl vε(t)‖2
3.5,�ε + ‖vεt (t)‖2

3.5,�ε .

The inequality (7.1) cannot be independent of ε > 0 if both x ∈ θε−(B+) and y ∈
θε+(B

+), for in this case, according to (3.1), |x−y| = O(ε) as ε → 0, whereas |vε(x, t)−
vε(y, t)| = O(1) as ε → 0, and this, in turn, yields a global Lipschitz constant for vε

of O( 1
ε
) as ε → 0.

When x ∈ θε−(B+) and y ∈ θε+(B+), there exist constants C−, C+, and a polynomial
function P1 which are each independent of ε, such that

|ηε(x, t)− ηε(y, t)| ≥ |(ηε(x, t)− ηε(y, t)) · e3|
≥ |(x − y) · e3 + t[uεs (x)− uεs (y)] · e3|

− ∣
∣e3 ·

∫ t

0
vε(x, t ′)−uεs (x)dt ′

∣
∣

︸ ︷︷ ︸

I1

− ∣
∣e3 ·

∫ t

0
vε(y, t ′)− uεs (y)dt ′

∣
∣

︸ ︷︷ ︸

I2

≥ ε + (C− + C+)|t | − t2 P1( sup
[−T ε ,0]

Eε) , (7.2)

where the triangle inequality has been employed together with (4.1) and (3.1). In order
to obtain the lower bound on the terms I1 and I2, we again use the fundamental theorem
of calculus, and write

vε(x, t ′) = uεs (x) +
∫ t ′

0
vεt (x, τ )dτ ;

using the definition of Eε , it follows that

‖vε(·, t ′)− uεs (·)‖L∞(�ε) ≤ C |t ′|P1( sup
[−T ε ,0]

Eε) .

We proceed to show how the two inequalities (7.1) and (7.2) (together with the fact
that C− > 0 and C+ > 0) are used to prove that the time −T is independent of ε, the
flow map ηε is injective on [−T, 0], and the a priori estimates for solutions of (4.8) are
independent of ε on [−T, 0].

We first record our basic polynomial-type a priori estimate, given in Theorem A.1 in
the appendix (see also [14,15]); we find that on [−T ε, 0],

sup
t∈[−T ε ,0]

Eε(t) ≤ Mε
0 + |t |P2( sup

[−T ε ,0]
Eε(t)) , (7.3)
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where the constant Mε
0 = P(Eε(0)), i.e. the constant Mε

0 only depends on initial data
(6.1e). By Lemma 3.2 and (4.5), we see that Mε

0 is bounded by a constant M0 which is
independent of ε, so that supt∈[−T ε ,0] Eε(t) ≤ 2M0.

We therefore see that if we set

T = min

(
1

4C1 M0
,

C− + C+

2P1(2M0)
,

M0

2P2(2M0)

)

, (7.4)

Eq. (7.1) implies that on [−T, 0],

|ηε(x, t)− ηε(y, t)| ≥ 1

2
|x − y| for (x, y) ∈ θεl (B)× θεk (B),

(l, k) /∈ {(−1, 0), (0,−1)} , (7.5)

while equation (7.2) shows that on [−T, 0],

|ηε(x, t)− ηε(y, t)| ≥ ε + (C− + C+)
|t |
2

for all (x, y) ∈ θε−(B)× θε+(B) . (7.6)

We then have from (7.5) and (7.6) that the domain ηε(t,�ε) does not self-intersect
for each t ∈ [−T, 0] and from (7.4) we also have the estimate

sup
t∈[−T,0]

Eε(t) ≤ 2M0 . (7.7)

Since T > 0 is independent of ε by (7.4), the estimates we have just obtained will
permit the use of weak convergence to find the initial domain �0 at t = −T and the
initial velocity field u0 at t = −T , from which the free surface Euler equations, when
run forward in time from t = 0, will produce the self-intersecting splash domain�s and
velocity field us at the final time T > 0.

8. Asymptotics as ε → 0 on the Time-Interval [−T, 0]

8.1. Construction of the initial domain�0: the asymptotic domain at t = −T . Theorem
A.2 provides continuity-in-time, and Lemma 6.1 together with the estimate (7.7) shows
that

L
∑

l=−1

‖ζ ηε(θεl ,−T )‖2
4.5,B ≤ 2

C
M0 .

Weak compactness and Rellich’s theorem provide the existence of a subsequence (which
by abuse of notation we continue to denote by ηε) such that

ηε(·,−T ) ◦ θεl ⇀ �l , as ε → 0 , in H4.5(Bς ) , (8.1a)

ηε(·,−T ) ◦ θεl → �l , as ε → 0 , in H3.5(Bς ) , (8.1b)

where Bς = B ∩ B(0, ς) and ς is given in Definition 3.2.
We now define�0 as the union of the sets�l(Bς ) (−1 ≤ l ≤ L). Due to (7.5), (7.6)

and (8.1b), we have that

(x, y)∈Bς×Bς , ((l, k) /∈ {(−1, 0), (0,−1)}) |�l(x)−�k(y)|≥ 1

2
|θl(x)− θk(y)|,

(8.2)
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and from (7.6) on [−T, 0],

∀(x, y) ∈ Bς × Bς , |�−(x)−�+(y)| ≥ (C− + C+)
T

2
, (8.3)

where�− = �−1 and�+ = �0. These inequalities show that the boundary of�0 does
not self-intersect and that�0 is locally on one side of its boundary. Furthermore, setting
k = l in (8.2), we see that each smooth map �l is injective, and thus each �l(Bς ) is a
domain, which implies that �0 is an open set of R

3.

Lemma 8.1. �0 is a connected, H4.5-class domain, which is locally on one side of its
boundary.

Proof. Step 1. We begin by proving that �0 is connected. To this end, fix X and Y in
�0 so that X ∈ �l(Bς ) and Y ∈ � j (Bς ) (−1 ≤ l, j ≤ L). We let (x, y) ∈ Bς × Bς be
such that X = �l(x) and Y = � j (y), and we define

X ε = ηε(θεl (x),−T ) ∈ ηε(�ε,−T )

Y ε = ηε(θεj (y),−T ) ∈ ηε(�ε,−T ) .

For β > 0, we set

�εβ = {Z ∈ �ε | dist(Z , ∂�ε) > β} .
Then for β > 0 small enough, we have that �εβ is connected and X ε and Y ε are in
ηε(�εβ,−T ).

From (8.1b) we infer that each ηε(θεl ,−T ) uniformly converges to �l in Bς ; thus,
for ε > 0 small enough, we find that

ηε(�εβ,−T ) ⊂ �0 , (8.4a)

X ε ∈ �l(Bς ) , Y ε ∈ � j (Bς ) . (8.4b)

Now, as �εβ is a connected set, so is ηε(�εβ,−T ). Since X ε and Y ε are in this
connected set, we let CXε ,Y ε denote a continuous path included in ηε(�εβ,−T ), and
having X ε and Y ε as its end-points. From (8.4a), CXε ,Y ε ⊂ �0.

Next since both X and Xε belong to the connected set �l(Bς ), let CX,Xε denote a
continuous path included in�l(Bς ) ⊂ �0 and having X and X ε as end-points. Similarly,
we let CY ε ,Y denote a continuous path included in � j (Bς ) ⊂ �0 and having Y ε and
Y as its end-points. We then see that the union of these three paths joins X to Y and is
contained in �0, which shows that �0 is connected.

Step 2. The fact that �0 is an H4.5-class domain follows immediately from the conver-
gence given in (8.1a).

Step 3. We conclude by showing that �0 is locally on one side of its boundary, and that
with B0

ς = B0 ∩ B(0, ς),

∂�0 = ∪K
l=−1�l(B

0
ς ) , (8.5)

which will indeed complete the proof that �0 is a standard H4.5-class domain.
To this end we first notice from (8.1b) and the fact that ηε is volume preserving, that

for each l,

detD�l = detDθl ≥ cl > 0 . (8.6)
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Also, from (8.2) used when k = l, we notice that each�l is an injective map, which
with (8.6) provides

∂[�l(Bς )] = �l(∂Bς ) .
Therefore,

∂�0 ⊂ ∪L
l=−1�l(∂Bς ) . (8.7)

Now, let us fix x ∈ ∂Bς ∩ {x3 > 0}. We then have (since the only modified charts
are modified close to the origin) that for any −1 ≤ l ≤ K ,

θεl (x) = θl(x) .

We also notice that there exists −1 ≤ k ≤ L and y ∈ Bς such that θl(x) = θk(y)
(since � = ∪L

k=−1θk(Bς )).
We also have that θεk (y) = θk(y), for otherwise k would be equal to either −1 or 0,

in which case θk(y) would be in a very small neighborhood of x0, which, in turn, would
imply that l must be equal to k (since the charts θ− or θ+ do not intersect the other charts
in a small neighborhood of x0), but then we would not be able to have x at a distance ς
from the origin.

We then have ηε(θεl (x),−T ) = ηε(θεk (y),−T ) which with (8.1b) implies that

�l(x) = �k(y) ∈ �k(Bς ) ⊂ �0 . (8.8)

We can prove the same inclusion in a similar way if x ∈ ∂Bς and K + 1 ≤ l ≤ L .
With (8.7), this yields

∂�0 ⊂ ∪K
l=−1�l(B

0
ς ) . (8.9)

Now, for X ∈ �l(B0
ς ), we have X = �l(x), with x ∈ B0

ς . Now for any y ∈ Bς
such that there exists −1 ≤ k ≤ L satisfying X = �k(y), we see from (8.3) that
(l, k) /∈ {(−1, 0), (0,−1)}. Therefore, from (8.2) we have θl(x) = θk(y). Then, as
∂� = ∪K

k=−1θk(B0
ς ), we see that y ∈ B0

ς . Therefore, we have proved that X does not
belong to ∪L

k=−1�k(Bς ) = �0. Thus X ∈ ∂�0, which establishes (8.5).
Together with (8.6) and (8.3), this establishes that �0 is a smooth domain locally on

one side of its boundary, and concludes the proof. ��

8.2. Asymptotic velocity at −T in the limit ε → 0. From our equivalence Lemma 6.1
and (7.7),

L
∑

l=−1

‖ζ vε(θεl ,−T )‖2
4,B ≤ 2M0

C
,

which shows the existence of a subsequence (which we continue to denote by the index
ε) such that

vε(·,−T ) ◦ θεl ⇀ Vl as ε → 0 , in H4(Bς ) , (8.10a)

vε(·,−T ) ◦ θεl → Vl as ε → 0 , in H3(Bς ) . (8.10b)
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We now define u0 on �0 as follows:

∀l ∈ {−1, 0, 1, 2, . . . , L} , u0(�l) = Vl on Bς . (8.11)

In order to justify the definition in (8.11), we have to check that if �l(x) = � j (y), for
x and y in Bς , then Vl(x) = Vl(y). We first notice that if�l(x) = � j (y), then by (8.3)
we have (l, k) /∈ {(−1, 0), (0,−1)}. From (8.2), we then infer that θl(x) = θ j (y) and
thus |θεl (x)− θεj (y)| ≤ cε , with limε→0 cε = 0.

This then, in turn, shows that

|vε(θεl (x),−T )− vε(θεj (y),−T )| ≤ |Dvε(·,−T )|L∞(�ε(−T ))|θεl (x)− θεj (y)|
≤ cε |Dvε(·,−T )|L∞(�ε(−T )) ,

which, thanks to (7.7), implies that

|vε(θεl (x),−T )− vε(θεj (y),−T )| ≤ cε
√

M0 .

By using (8.10b), this then implies at the limit ε → 0:

|Vl(x)− Vj (y)| ≤ 0 ,

which concludes the proof. Also from (8.11), we have that u0 ∈ H4(�0), with‖u0‖2
4,�0

≤
2M0.

8.3. Asymptotic domain and velocity on (−T, 0] in the limit ε → 0. From our estimate
(7.7) we then infer the existence of a subsequence (of the subsequence constructed in
Sect. 8.1 and still denoted by a superscript ε) such that for all l = −1, 0, 1, . . . , L ,

∂tv
ε ◦ θεl ⇀ ∂tv ◦ θl , in L2(−T, 0; H3.5(Bς )) , (8.12a)

vε ◦ θεl ⇀ v ◦ θl , in L2(−T, 0; H4(Bς )) , (8.12b)

ηε ◦ θεl ⇀ η ◦ θl , in L2(−T, 0; H4.5(Bς )) , (8.12c)

Next, let {φn}∞n=1 denote a countable dense set in H4(Bς ). We next define the sequence
f εn : [−T, 0] → R by

f εn (t) = ([ηε ◦ θεl ](·, t), φn)4 ,

where (·, ·)4 denotes the standard inner-product on H4(Bς ). Now, for fixed n, the uniform
bound (7.7) together with the fundamental theorem of calculus shows that for a positive
constant M < ∞, ‖ f εn ‖C0([−T,0]) ≤ M and that f εn is equicontinuous (as a sequence
of functions indexed by the sequence ε). By the Arzela–Ascoli theorem, there exists
a subsequence (which we continue to denote by ε) such that f εn → fn uniformly on
[−T, 0]. This uniform convergence then implies for all t ∈ [−T, 0] that

∫ t

0
f εn (s)ds →

∫ t

0
fn(s)ds.

Due to (8.12c) we also have (with test function 1[0,t]φn) that
∫ t

0
f εn (s)ds →

∫ t

0
([η ◦ θl ](·, t), φn)4ds,
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which by comparison with the previous relation, then shows that

∫ t

0
fn(s)ds =

∫ t

0
([η ◦ θl ](·, t), φn)4ds.

Since both integrands are continuous with respect to time, this provides us by differen-
tiation that for all t ∈ [−T, 0],

fn(t) = ([η ◦ θl ](·, t), φn)4.

Next, since {φn} is countable, we may employ the standard diagonal argument to extract
a further subsequence (still denoted by ε) such that for all t ∈ [−T, 0],

([ηε ◦ θεl ](·, t), φ)4 → ([η ◦ θl ](·, t), φ)4

for any φ ∈ H4(Bς ). This then establishes the existence of a single subsequence, such
that for all t ∈ [−T, 0],

ηε ◦ θεl (·, t) ⇀ η ◦ θl(·, t), in H4(Bς ). (8.13)

A similar argument shows that for the same subsequence (refined if necessary) and
for all t ∈ [−T, 0] ,

vε ◦ θεl (·, t) ⇀ v ◦ θl(·, t) in H3.5(Bς ). (8.14)

Theorem A.2 providing continuity-in-time, together with the estimate (7.7), we have
that for all t ∈ [0, T ],

‖vε ◦ θεl (·, t)‖2
H4(Bς ) ≤ C M0, (8.15a)

‖ηε ◦ θεl (·, t)‖2
H4.5(Bς ) ≤ C M0. (8.15b)

Together with (8.13), this shows that for all t ∈ [−T, 0], for the same sequences ηε, vε ,
and θ̃ εl as in (8.13) and (8.14), we have the following convergence (by an argument of
uniqueness of the weak limit):

vε ◦ θεl (·, t) ⇀ v ◦ θl(·, t) in H4(Bς ), (8.16a)

ηε ◦ θεl (·, t) ⇀ η ◦ θl(·, t) in H4.5(Bς ) . (8.16b)

Having established the asymptotic limit as ε → 0 when t = −T , we next consider
the time interval (−T, 0). We employ the identical argument for taking the limit as
ε → 0 for the case that −T < t < 0 as for the case that t = −T , leading to an
asymptotic domain�(t) of class H4.5 and an Eulerian velocity field u(·, t) ∈ H4(�(t))
with ‖u(t, ·)‖4,�(t) ≤ M0.

At time t = 0, there is a slight difference in the asymptotic limit ε → 0, in the sense
that the limit domain is the splash domain �s, which is a self-intersecting generalized
H4.5-domain, with the corresponding limit velocity field is us ∈ H4.5(�s). This limit
simply comes from the fact that ‖θεi − θi‖4.5,B+ → 0 and ‖uεs ◦ θεi − us ◦ θi‖4.5,B+ → 0
as ε → 0.
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8.4. Asymptotic Euler equations. It remains for us to prove that

u f (x, t) = u(x, t − T ) , 0 ≤ t ≤ T

is indeed a solution of the free-surface Euler equations on the moving domain

� f (t) = �(t − T ) ,

which evolves the initial velocity u0 and initial domain �0 onto the final data at time
t = T given by us and �s. This will, in turn, establish the fact that after a finite time T ,
the free-surface of the 3-D Euler equations develops a splash singularity.

We again consider the asymptotic limit as ε → 0. For each ε > 0 fixed, we solve
the Euler equations forward-in-time using as initial data, �ε(−T ) for the domain, and
uε(·,−T ) for the initial velocity.

To this end, we first define the forward in time quantities for 0 ≤ t ≤ T by

�εf (t) = �ε(t − T ) ,

and

uεf (·, t) = uε(·, t − T ) in �εf (t) ,

ηεf (·, t) = ηε(·, t − T ) ◦ ηε(·,−T )−1 in �εf (0) ,

vεf (·, t) = vε(·, t − T ) ◦ ηε(·,−T )−1 in �εf (0) ,

pεf (·, t) = pε(·, t − T ) in �εf (t) ,

qεf (·, t) = qε(·, t − T ) ◦ ηε(·,−T )−1 in �εf (0) .

It follows that

div uεf = 0 in �εf (t),

vεf = uεf ◦ ηεf = ∂tη
ε
f in �εf (0),

ηεf (·, 0) = e in �εf (0).

From the definitions of vε, ηε , and uε in (4.9)–(4.11) and by uniqueness of solutions
to (4.8), we see that (uεf , pεf ) is a solution of (1.1) on [0, T ] with initial domain �εf (0)
and initial velocity uεf (0), with the domain and velocity at time t = T equal to �ε and
uεs , respectively.

In order to analyze the limiting behavior of these solutions as ε → 0, we write the
Euler equations in Lagrangian form on the fixed domain Bς by pulling back the equations
from the reference domain �εf (0) using the following local coordinate charts:

θ̃ εl = ηε(θεl ,−T ) for l = −1, 0, 1, 2, . . . , L .

Denoting the local inverse-deformation tensor by

b̃εl = [D(ηεf ◦ θ̃ εl )]−1,

for −1 ≤ l ≤ K , solutions of the Euler equations satisfy

ηεf ◦ θ̃ εl = θ̃ εl +
∫ t

0
vεf ◦ θ̃ εl in Bς × (0, T ], (8.19a)
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∂tv
ε
f ◦ θ̃ εl + [b̃εl ]T D(qεf ◦ θ̃ εl ) = 0 in Bς × (0, T ), (8.19b)

divηεf ◦θ̃ εl v
ε
f ◦ θ̃ εl = 0 in Bς × (0, T ), (8.19c)

qεf ◦ θ̃ εl = 0 on B0 × (0, T ), (8.19d)

(ηεf , v
ε
f ) ◦ θ̃ εl = (e, uεf (0)) ◦ θ̃ εl on Bς × {t = 0}, (8.19e)

together with

ηεf (�
ε
f (0), T ) = �ε. (8.19f)

For l = K +1, . . . , L the same equations are satisfied with the exception of the boundary
condition (8.19d).

Our a priori estimate Theorem A.1 shows that for each l = −1, 0, 1, 2, . . . , L ,

sup
t∈[0,T ]

(

‖ηεf (t) ◦ θ̃ εl ‖2
4.5,Bς + ‖vεf (t) ◦ θ̃ εl ‖2

4,Bς + ‖qεf (t) ◦ θ̃ εl ‖2
4.5,Bς

)

≤ 2M̃ε
0 ,

where M̃ε
0 is a constant that depends on the H4.5-norms of θ̃ εl and the H4-norm of uεf (0).

Thanks to Lemma 8.1 and the convergence in (8.10), we see that M̃ε
0 is bounded by a

constant which is independent of ε. As such, we have the following convergence in two
weak topologies and one strong topology:

vεf ◦ θ̃ εl ⇀ v f ◦�l , in L2(0, T ; H4(Bς )), (8.20a)

ηεf ◦ θ̃ εl → η f ◦�l , in L2(0, T ; H3(Bς )), (8.20b)

qεf ◦ θ̃ εl ⇀ q f ◦�l , in L2(0, T ; H4.5(Bς )), (8.20c)

which together with the convergence in (8.1b) shows, in a manner similar as in Sect. 8.3,
that for l = −1, 0, 1, 2, . . . , K , the limit as ε → 0 of the sequence of solutions to (8.19)
is indeed a solution of

η f ◦�l = �l +
∫ t

0
v f ◦�l in Bς × (0, T ] , (8.21a)

∂tv f ◦�l + [bl ]T D(q f ◦�l) = 0 in Bς × (0, T ) , (8.21b)

divη f ◦�l v f ◦�l = 0 in Bς × (0, T ) , (8.21c)

q f ◦�l = 0 on B0 × (0, T ) , (8.21d)

(η f , v f ) ◦�l = (e, u0) ◦�l on Bς × {t = 0} , (8.21e)

η f (T,�0) = �s , (8.21f)

where bl = [D(η f ◦�l)]−1, and where v f , q f and η f are the forward in time velocity,
pressure and displacement fields.

A similar system holds for the interior charts �l , with K + 1 ≤ l ≤ L , with the
exception of the boundary condition (8.21d). Therefore, since the charts �l define �0,
we have established that

η f = e +
∫ t

0
v f in �0 × (0, T ] , (8.22a)

∂tv f + AT
f Dq f = 0 in �0 × (0, T ) , (8.22b)
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divη f v f = 0 in �0 × (0, T ) , (8.22c)

q f = 0 on ∂�0 × (0, T ) , (8.22d)

(η f , v f ) = (e, u0) on �0 × {t = 0} , (8.22e)

η f (T,�0) = �s , (8.22f)

where the matrix A f = [Dη f ]−1. By a return to Eulerian variables this means that
(u f , p f ) is solution of (1.1) with initial domain and velocity �0 and u0, respectively,
and final domain and velocity at time t = T equal to the splash domain �s and us.

9. The Splat Domain �s and its Approximation by Standard Domains �ε

9.1. The splat domain. Whereas our splash domain has a boundary which self-intersects
a point x0, an obvious generalization allows to define the so-called splat domain �s, with
boundary ∂�s which self-intersects on an open subset �0 of ∂�s.

9.1.1. The definition of the splat domain.

(1) We suppose that �0 ⊂ �s := ∂�s is the unique boundary self-intersection surface,
i.e., �s is locally on each side of�0 for each x0 ∈ �0. For all other boundary points,
the domain is locally on one side of its boundary. We assume the existence of a
smooth level set function φ ∈ H4.5(R3) such that �0 ⊂ {φ = 0}.

(2) We let U0 denote an open neighborhood of x0 in R
3, and then choose an additional

L open sets {Ul}L
l=1 such that the collection {Ul}K

l=0 is an open cover of �s, and
{Ul}L

l=0 is an open cover of �s and such that there exists a sufficiently small open
subset ω ⊂ U0 containing �0 with the property that

ω ∩ Ul = ∅ for all l = 1, . . . , L .

We set

U +
0 = U0 ∩ �s ∩ {φ > 0} and U−

0 = U0 ∩ �s ∩ {φ < 0} .
Additionally, we assume that U0 ∩�s ∩{φ = 0} = �0, which implies in particular
that U +

0 and U−
0 are connected (Fig. 5).

(3) We furthermore assume that our level set function is such that ‖Dφ‖ ≥ C0 > 0
on U0.

(4) For each l ∈ {1, . . . , K }, there exists an H4.5-class diffeomorphism θl satisfying

θl : B := B(0, 1) → Ul ,

Ul ∩ �s = θl(B
+) and Ul ∩ �s = θl(B

0),

where

B+ = {(x1, x2, x3) ∈ B : x3 > 0} ,
B0 = {(x1, x2, x3) ∈ B : x3 = 0} .

(5) For L > K , let {Ul}L
l=K +1 denote a family of open sets contained in �s such that

{Ul}L
l=0 is an open cover of �s, and for l ∈ {K + 1, . . . , L}, θl : B → Ul is an

H4.5 diffeormorphism.
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Fig. 5. Splat domain �s, and the collection of open set {U0,U1,U2, . . . ,UK } covering �s

(6) To the open set U0 we associate two H4.5-class diffeomorphisms θ+ and θ− of B
onto U0 with the following properties:

θ+(B
+) = U +

0 , θ−(B+) = U−
0 ,

θ+(B
0) = U +

0 ∩ �s , θ−(B0) = U−
0 ∩ �s ,

such that

�0 = θ+(B
0) ∩ θ−(B0) ,

and

θ+ = θ− on ω0 ⊂ B0 ,

where ω0 is a smooth connected domain of B0 in R
2.

We further assume that

θ±(B+ ∩ B(0, 1/2)) ∩ θl(B+) = ∅ for l = 1, . . . , K ,

and

θ±(B+ ∩ B(0, 1/2)) ∩ θl(B) = ∅ for l = K + 1, . . . , L .

Definition 9.1 (Splat domain �s). We say that �s is a splat domain, if it is defined by
a collection of open covers {Ul}L

l=0 and associated maps {θ±, θ1, θ2, . . . , θL} satisfying
the properties (1)–(6) above. Because each of the maps is an H4.5 diffeomorphism, we
say that the splat domain �s defines a self-intersecting generalized H4.5-domain.
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9.2. A sequence of standard domains approximating the splat domain. We approximate
the two distinguished charts θ− and θ+ by charts θε− and θε+ in such a way as to ensure
that

θε−(B0) ∩ θε+(B0) = ∅ ∀ε > 0 ,

and which satisfy

θε− → θ− and θε+ → θ+ as ε → 0 .

We let ψ ∈ D(ω) denote a smooth bump-function satisfying 0 ≤ ψ ≤ 1 and ψ = 1
on �0. For ε > 0 taken small enough, we define the following diffeomorphisms:

θε−(x) = θ−(x)− ε ψ(θ−(x)) Dφ(θ−(x)) ,
θε+(x) = θ+(x) + ε ψ(θ+(x)) Dφ(θ+(x)).

By choosing ψ ∈ D(ω), we ensure that the modification of the domain is localized to a
small neighborhood of �0 and away from the boundary of U0 and the image of the other
maps θl . Then, for ε > 0 sufficiently small, thanks to item (3) in the definition of the
splat domain,

φ(θε−(x)) ≤ φ(θ−(x))− ε

2
ψ(θ−(x)) |Dφ(θ−(x))|2 < 0,

φ(θε+(x)) ≥ φ(θ+(x)) +
ε

2
ψ(θ+(x)) |Dφ(θ+(x))|2 > 0,

which shows that

θε−(B+) ∩ θε+(B+) = ∅ .
Since the maps θε± are a modification of the maps θ± in a very small neighborhood of
0 ∈ B, we have that for ε > 0 sufficiently small,

θε±(B+ ∩ B(0, 1/2)) ∩ θl(B
+) = ∅ for l = 1, . . . , K,

and

θε±(B+ ∩ B(0, 1/2)) ∩ θl(B) = ∅ for l = K + 1, . . . , L.

For l ∈ {1, . . . , L} we set θεl = θl . Then θε− : B+ → U0, θ
ε
+ : B+ → U0, and

θεl : B+ → Ul , l ∈ {1, . . . , K }, θεl : B → Ul , l ∈ {K + 1, . . . , L}, is a collection of
H4.5 coordinate charts as given in Sect. 2.5, and so we have the following

Lemma 9.1 (The approximate domains �ε). For each ε > 0 sufficiently small, the set
�ε , defined by the local charts θε− : B+ → U0, θ

ε
+ : B+ → U0, and θεl : B+ → Ul , l ∈

{1, . . . , K }, θεl : B → Ul , l ∈ {K + 1, . . . , L} (given in Definition 9.1) is a domain of
class H4.5, which is locally on one side of its H4 boundary.

Just as for the splash domain, we have approximated the self-intersecting splat domain
�s with a sequence of H4.5-class standard domains �ε locally on one side of its boundary
for each ε > 0. Also, just as for the splash domain, our approximate domains �ε differ
from our splat domain �s only on the two patches θε−(B+) and θε+(B

+). In particular, as
θ± differ from θε± on a set properly contained in ω ⊂ U0, we continue to use the same
covering {Ul}L

l=0 for �ε as for �s.
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10. Construction of the Splat Velocity Field us at the Time of the Splat Singularity

We can now define the splat velocity us associated with the generalized H4.5-class
splat domain �s, as well as a sequence of approximations uεs set on our H4.5-class
approximations �ε of the splat domain �s.

10.1. The splat velocity us.

Definition 10.1 (Splat velocity us). A velocity field us on an H4.5-class splat domain �s
is called a splat velocity if it satisfies the following properties:

(1) ζus ◦ θ± ∈ H4.5(B+), ζus ◦ θl ∈ H4.5(B+) for each 1 ≤ l ≤ K and us ∈ H4.5(ω)

for each ω ⊂ �s;
(2) us · Dφ ◦θ−|θ−(B+) > C− and −us · Dφ ◦θ+|θ+(B+) > C+ with C− +C+ > 0, so that

under the motion of the fluid, the sets U +
0 and U−

0 are moving relatively towards
each other.

We can then define the approximate splat velocity fields uεs : �ε
s → R

3 in the same
way as we did for the case of the splash velocity. The results of Sects. 7 and 8 can then
proceed in the same fashion as for the splash case, leading to Theorem 5.2.

We note only that the inequality (7.2) must replaced with

− φ(ηε(x, t)) + φ(ηε(y, t)) ≥ (C+ + C−) |t | − t2 P(sup
[0,t]

Eε) , (10.1)

for x, y as in (7.2). The estimate (10.1) together with

|φ(ηε(x, t))− φ(ηε(y, t))| ≤ |Dφ| |ηε(x, t)− ηε(y, t)| ,
and item (3) of the definition of our splat domain �s then provides

|ηε(x, t)− ηε(y, t)| ≥ (C+ + C−)
C0

|t | − t2 P1(sup
[0,t]

Eε) . (10.2)

This relation is the analogous of (7.2) obtained for the approximated splash domain.
Since our splat domain is also bounded, we can derive in the same way as for the splash
domain a relation similar to (7.6) for our approximated splat domain, which shows that ηε

is also injective for ε > 0 small enough. In turn, this allows us to establish ε-independent
estimates and arrive to the analogous conclusions as those obtained in Sects. 7 and 8.

Acknowledgements. We thank the referee for carefully reading the paper and for providing a number of
suggestions that improved the presentation. DC was supported by the Centre for Analysis and Nonlinear
PDEs funded by the UK EPSRC grant EP/E03635X and the Scottish Funding Council. SS was supported by
the National Science Foundation under grant DMS-1001850, and by the United States Department of Energy
through Idaho National Laboratory LDRD Project NE-156.

Appendix A. A Priori Estimates for the Free-Surface Euler Equations

In this appendix, we establish a priori estimates for the free-surface Euler equations with
reference (or initial) domain � which is a standard H4.5-class domain, open, bounded,
and locally on one side of its boundary.
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A.1. Properties of the cofactor matrix a, and a polynomial-type inequality.

A.1.1. Geometry of the moving surface�(t). With respect to local coordinate charts, the
vectors η,α for α = 1, 2 span the tangent space to the moving surface �(t) = η(�) in
R

3. The (induced) surface metric g on �(t) has components gαβ = η,α ·η,β . We let g0
denote the surface metric of the initial surface �. The components of the inverse metric
[g]−1 are denoted by [g]αβ . We use

√
g to denote

√
det g; we note that

√
g = |η,1 ×η,2 |,

so that n(η) = [η,1 ×η,2 ]/√g.

A.1.2. Differentiating the inverse matrix A. Using that Dη A = Id, we have the follow-
ing identities:

∂̄Ak
i = −As

i ∂̄η
r ,s Ak

r , (A.1)

D Ak
i = −As

i Dηr ,s Ak
r , (A.2)

∂t Ak
i = −As

i v
r ,s Ak

r . (A.3)

A.1.3. Relating the cofactor matrix and the unit normal n(t). With N denoting the
outward unit normal to �, we have the identity

ni (η) = ak
i Nk/|aT N |,

so that

Ak
i Nk = J−1√gni (η) on � . (A.4)

A.1.4. A polynomial-type inequality. For a constant M0 ≥ 0, suppose that f (t) ≥
0, t �→ f (t) is continuous, and

f (t) ≤ M0 + t P( f (t)) , (A.5)

where P denotes a polynomial function. Then for t taken sufficiently small, we have the
bound

f (t) ≤ 2M0 .

We use this type of inequality (see [14]) in place of nonlinear Gronwall-type of inequal-
ities.

A.2. Trace and elliptic estimates for vector fields. The normal trace theorem states that
the existence of the normal trace w · N |� of a velocity field w ∈ L2(�) relies on the
regularity of divw ∈ L2(�) (see, for example, [25]). If divw ∈ L2(�), thenw · N exists
in H−0.5(�). We will use the following variant:

|∂̄w · N |2−0.5,� ≤ C
[

‖∂̄w‖2
0,� + ‖divw‖2

0,�)

]

(A.6)

for some constant C independent of w.
The construction of our higher-order energy function is based on the following Hodge-

type elliptic estimate:
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Proposition A.1. For an Hr domain � with � = ∂�, r ≥ 3, if F ∈ L2(�; R
3) with

curl F ∈ Hs−1(�; R
3), divF ∈ Hs−1(�), and ∂̄F · N |� ∈ Hs− 3

2 (�) for 1 ≤ s ≤ r ,
then there exists a constant C̄ > 0 depending only on � such that

‖F‖s,�≤ C̄
(

‖F‖0,�+‖ curl F‖s−1,�+‖ div F‖s−1,� + |∂̄F · N |s− 3
2 ,�

)

, (A.7)

where N denotes the outward unit-normal to �.

This well-known inequality follows from the identity −�F = curl curlF − DdivF .

A.3. The higher-order energy function E(t).

Definition A.1. We set on [0, T ]
E(t) = 1 + ‖η(t)‖2

4.5,� + ‖v(t)‖2
4,� + ‖ curlη v(t)‖2

3.5,� + ‖vt (t)‖2
3.5,� . (A.8)

The function E(t) is the higher-order energy function which we will prove remains
bounded on [0, T ].
Definition A.2. We set the constant M0 to be a particular polynomial function P of E(0)
so that M0 = P(E(0)).

A.3.1. Conventions about constants. We take T > 0 sufficiently small so that, using the
fundamental theorem of calculus, for constants c1, c2 and t ∈ [0, T ],

c1 det g(0) ≤ det g(t) ≤ c2 det g(0) on � ,

‖η(t)‖4 ≤ ‖e‖4 + 1 , ‖q(t)‖4 ≤ ‖q(0)‖4 + 1 ,

‖v(t)‖3.5 ≤ ‖u0‖3.5 + 1 , ‖vt (t)‖3 ≤ ‖vt (0)‖3 + 1 .

The right-hand sides appearing in the last three inequalities shall be denoted by a generic
constant C in the estimates that we will perform. The norms are over �.

A.4. Curl and divergence estimates for η, v, and vt .

Proposition A.2. For all t ∈ (0, T ),

‖curl η(t)‖2
3.5,� + ‖curlη v(t)‖2

3.5,� ≤ M0 + T P( sup
t∈[0,T ]

E(t)) . (A.9)

Proof. By taking the curl of (1.3b), we have that

curlη vt = 0 .

It follows that ∂t (curlη v) = B(A, Dv), where the kth-component of B is given by

[B(A, Dv)]k = εk ji At
s
jv

i ,s = εki jv
i ,s As

p v
p,l Al

j ;
hence,

curlη v(t) = curl u0 +
∫ t

0
B(A(t ′), Dv(t ′))dt ′ . (A.10)
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Step 1. Estimate for curl η. Computing the gradient of (A.10) yields

curlη Dv(t) = D curl u0 − ε· j i D As
jv

i ,s +
∫ t

0
DB(A(t ′), Dv(t ′))dt ′. (A.11)

(In components, [curlη ∂xlv]i = εi jkv
k,lr Ar

j .) Applying the fundamental theorem of
calculus once again, shows that

curlη Dη(t) = t D curl u0 + ε· j i

∫ t

0
[At

s
j Dηi ,s −D As

jv
i ,s ]dt ′

+
∫ t

0

∫ t ′

0
DB(A(t ′′), Dv(t ′′))dt ′′dt ′ , (A.12)

and finally that

D curl η(t) = t D curl u0 − ε· j i

∫ t

0
At

s
j (t

′)dt ′ Dηi ,s

+ ε· j i

∫ t

0
[At

s
j Dηi ,s −D As

jv
i ,s ]dt ′ +

∫ t

0

∫ t ′

0
DB(A(t ′′), Dv(t ′′))dt ′′dt ′ .

(A.13)

Using the fact that ∂t As
j = −As

l v
l ,p Ap

j and D As
j = −As

l Dηl ,p Ap
j , we see that

DB(A, Dv) = −εk ji [Dvi ,s As
l v

l ,p Ap
j + vi ,s As

l Dvl ,p Ap
j

+ vi ,s v
l ,p D(As

l Ap
j )] . (A.14)

The precise structure of the right-hand side is not very important; rather, the derivative
count is the focus, and as such we write

DB(A, Dv) ∼ D2v Dv A A + D2η Dv Dv A A.

Integrating by parts in time in the last term of the right-hand side of (A.13), we see
that

∫ t

0

∫ t ′

0
DB(A, Dv) dt ′′dt ′ ∼ −

∫ t

0

∫ t ′

0
D2η (Dv A A)t dt ′′dt ′

+
∫ t

0

∫ t ′

0
D2η Dv Dv A Adt ′′dt ′ +

∫ t

0
D2η Dv A Adt ′. (A.15)

Thus, we can write

D curl η(t) ∼ t D curl u0 + D2η

∫ t

0
Dv A Adt ′ +

∫ t

0
D2ηDvAAdt ′

∫ t

0

∫ t ′

0
D2η Dv Dv A Adt ′′dt ′ +

∫ t

0

∫ t ′

0
D2η (Dv A A)t dt ′′dt ′.

Our goal is to estimate ‖D curl η‖2
2.5,�. Thanks to the Sobolev embedding theorem,

we have that

‖D curl η‖2
2.5,� ≤ M0 + T P( sup

t∈[0,T ]
E(t)),
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and hence with curlη vt = 0, that

‖ curl η‖2
3.5,� ≤ M0 + T P( sup

t∈[0,T ]
E(t)).

Step 2. Estimate for curlη v. Integrating-by-parts with respect to ∂t in the time integral in
Eq. (A.11), we see that the highest order term in curlη Dv is given by

∫ t
0 D2η Dvt A Adt ′.

As H2.5(�) is a multiplicative algebra, it follows that on [0, T ],
‖ curlη v(t)‖2

3.5,� ≤ M0 + T P( sup
t∈[0,T ]

E(t)) .

��
Proposition A.3. For all t ∈ (0, T ),

‖div η(t)‖2
3.5,� + ‖div v(t)‖2

3,� ≤ M0 + T P( sup
t∈[0,T ]

E(t)) . (A.16)

Proof. Since A j
i v

i , j = 0, we see that

A j
i Dvi , j = −D A j

i v
i , j . (A.17)

Step 1. Estimate for div η. It follows that

[A j
i Dηi , j ]t = ∂t A j

i Dηi , j −D A j
i v

i , j .

Using the fact that η(x, 0) = x ,

[A j
i Dηi , j ](t) =

∫ t

0

(

∂t A j
i Dηi , j −D A j

i v
i , j

)

dt ′ , (A.18)

and hence

D div η(t) =
∫ t

0
∂t A j

i Dηi , j dt ′ −
∫ t

0
D A j

i v
i , j dt ′ −

∫ t

0
∂t A j

i dt ′ Dηi , j .

Again, the Sobolev embedding theorem provides us with the estimate

‖ div η(t)‖2
3.5,� ≤ T P( sup

t∈[0,T ]
E(t)) .

Step 2. Estimate for div v. From A j
i v

i , j = 0, we see that

div v(t) = −
∫ t

0
∂t A j

i dt ′ vi , j . (A.19)

Hence,

‖ div v(t)‖2
3,� ≤ T P( sup

t∈[0,T ]
E(t)) .

��
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A.5. Pressure estimates. Letting A j
i
∂
∂x j

act on (1.3b), for t ∈ [0, T ], the Lagrangian
pressure function q(x, t) satisfies the elliptic equation

−
[

A j
i Ak

i q,k
]

, j = vi , j A j
r v

r ,s As
i in �, (A.20a)

q = 0 on � . (A.20b)

Suppose that there exists a weak solution u ∈ H1
0 (�) to − div[A Du] = f in � with

u = 0 on �, and where A is positive-definite and symmetric. Suppose further that
f ∈ Hk(�), A ∈ Hk+1(�) for integers 1 ≥ 2. Then u ∈ Hk+2(�) ∩ H1

0 (�) and
satisfies

‖u‖k+2 ≤ C (‖ f ‖k + P(‖A‖k+1) ‖ f ‖0) , (A.21)

where P denotes a polynomial function of its argument. By invoking the Sobolev em-
bedding theorem, the elliptic estimate (A.21) shows that

‖q‖4 ≤ C(‖A‖2, ‖v‖3) ‖A‖3,

‖q‖5 ≤ C(‖A‖2, ‖v‖3) ‖A‖4,

where the constant has polynomial dependence on ‖A‖2 and ‖v‖3. Linear interpolation
then yields

‖q‖4.5 ≤ C(‖A‖2, ‖v‖3) ‖η‖4.5.

By time-differentiating (A.20), and using our conventions of Sect. A.3.1 concerning the
generic constant C , we have the elliptic estimate on [0, T ]

‖q(t)‖4.5 + ‖qt (t)‖4 ≤ C‖η(t)‖4.5 . (A.22)

Remark 2. When the elliptic problem (A.20) is set on the approximate splash domain
�ε , the elliptic constant a priori depends on ε > 0, via the charts θε±; however, thanks
to Lemma 3.2, the elliptic constant is independent of ε since the charts θ± are bounded
in H4.5.

A.6. Rayleigh–Taylor condition at time t > 0. For each l = 1, . . . , K , the fundamental
theorem of calculus allows us to write

[q(θεl (x), t)],3 = [q(θεl (x), 0)],3 +
∫ t

0
[qt (θ

ε
l (x), t ′)],3 dt ′.

From the assumed Rayleigh–Taylor condition (4.7) on the initial data, it follows that
for all x ∈ B0,

[q(θεl (x), t)],3 ≥ CRT

2
− C

∫ t

0
‖qt (θ

ε
l , t ′)‖3 dt ′ .

Thanks to our previously established bound (A.22), we then see that on B0,

[q(θεl (x), t)],3 ≥ CRT

2
− t P( sup

s∈[0,t]
E(s)) , (A.23)

so that by choosing T sufficiently small, [q(θεl (x), t)],3 ≥ CRT
4 for all t ∈ [0, T ]. In what

follows, we will drop the ε for notational convenience.
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A.7. Technical lemma. Our energy estimates require the use of the following

Lemma A.1. Let H
1
2 (�)′ denote the dual space of H

1
2 (�). There exists a positive

constant C such that

‖∂̄F‖
H

1
2 (�)′

≤ C ‖F‖ 1
2 ,�

∀F ∈ H
1
2 (�) .

Proof. Integrating by parts with respect to the tangential derivative yields for all G ∈
H1(�),

∫

�

∂̄F G dx =
L

∑

l=1

∫

Ul∩�
ζ [(F ◦ θl),α ] ◦ θ−1

l G dx

=
L

∑

l=1

∫

B+
ζ ◦ θl (F ◦ θl),α G ◦ θl det Dθl dx

= −
L

∑

l=1

∫

B+
ζ ◦ θl F ◦ θl (G ◦ θl),α det Dθl dx

−
L

∑

l=1

∫

B+
F ◦ θl G ◦ θl (ζ ◦ θl det Dθl),α dx

≤ C‖F‖0,� ‖G‖1,� ,

which shows that there exists C > 0 such that

∀F ∈ L2(�), ‖∂̄F‖H1(�)′ ≤ C‖F‖0,� . (A.24)

Interpolating with the obvious inequality

∀F ∈ H1(�), ‖∂̄F‖L2(�) ≤ C‖F‖1,�

proves the lemma. ��

A.8. Energy estimates for the normal trace of η and v. By denoting ηl = η ◦ θl we see
that

ηl(t) : B+ → �(t) for l = 1, . . . , K .

We set vl = u ◦ ηl , ql = p ◦ ηl and Al = [Dηl ]−1, Jl = det Dηl , and al = Jl Al . It
follows that for l = 1, . . . , K ,

ηl(t) = θl +
∫ t

0
vl in B+ × [0, T ] , (A.25a)

∂tvl + Al Dql = 0 in B+ × (0, T ] , (A.25b)

divηl vl = 0 in B+ × [0, T ] , (A.25c)

ql = 0 on B0 × [0, T ] , (A.25d)

(ηl , vl) = (θl , u0 ◦ θl) in B+ × {t = 0} . (A.25e)
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Proposition A.4. For t ∈ [0, T ],
|∂η(t) · N |23,� + |∂̄v(t) · N |22.5,� ≤ M0 + T P( sup

t∈[0,T ]
E(t)) . (A.26)

Proof. We compute the following L2(B+) inner-product:

0 =
(

ζ ∂̄4[∂tvl + Al Dql ] , ζ ∂̄4vl

)

L2(B+)
. (A.27)

To simplify the notation, we fix l ∈ {1, . . . , K } and drop the subscript. We have that

0 = 1

2

d

dt
‖ζ ∂̄4v(t)‖2

0,B+

︸ ︷︷ ︸

I1

+
∫

B+
ζ 2∂̄4 Ak

i q,k ∂̄
4vi dx

︸ ︷︷ ︸

I2

+
∫

B+
ζ 2 Ak

i ∂̄
4q,k ∂̄

4vi dx
︸ ︷︷ ︸

I3

+R ,

(A.28)

where R denotes integrals over B+ consisting of lower-order terms (or remainders)
which can easily be shown, via the Cauchy–Schwarz inequality, to satisfy

∫ T

0
|R(t)|dt ≤ M0 + T P( sup

t∈[0,T ]
E(t)) .

Using the identity (A.1), we see that

I2 = −
∫

B+
ζ 2 Ak

r ∂̄
4ηr ,s As

i q,k ∂̄
4vi dx + R

= −
∫

B0
ζ 2 Ak

r ∂̄
4ηr q,k ∂̄

4vi As
i N 0

s dxh

︸ ︷︷ ︸

I2a

+
∫

B+
ζ 2 Ak

r ∂̄
4ηr As

i q,k ∂̄
4vi ,s dx

︸ ︷︷ ︸

I2b

+R ,

where dxh = dx1dx2 denotes the surface measure on B0. As q = 0 on B0, q,1 = 0 and
q,2 = 0 on �, and since the exterior normal on B0 is N 0 = −e3, we have A3

r = −Ak
r N 0

k ,
which then implies

I2a =
∫

B0
q,3 ζ

2∂̄4ηr Ak
r N 0

k ∂̄
4 vi As

i N 0
s dxh .

We define nl to be the outward unit normal to the moving surface ηl(t, B0), so that
from (A.4),

Al
k
i N 0

k = J−1
l

√
glnl(ηl) on B0 .

Dropping the subscript l again and writing n for n(η), it follows that

I2a(t) =
∫

B0
q,3 ζ

2∂̄4η · n ∂̄4v · n | det g|J−2 dxh

= 1

2

d

dt

∫

B0
q,3 ζ

2|∂̄4η · n|2 | det g|J−2 dxh

︸ ︷︷ ︸

Ka

−
∫

B0

1

2
ζ 2∂̄4ηi ∂̄4η j∂t [(ni n j | det g| J−2]dxh

︸ ︷︷ ︸

Kb

.
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By the assumption of Sect. A.3.1,
∣
∣
∣∂t [ni n j | det g| J−2]

∣
∣
∣
L∞(�)

≤ C ,

from which it follows that
∫ T

0
Kb(t)dt ≤ C T P( sup

t∈[0,T ]
E(t)) .

Using our Rayleigh–Taylor condition (A.23) for q,3 (t), and bounds for det g(t), J which
can be established similarly on [0, T ], we see that

c̄ |ζ ∂̄4ηl(t) · nl(t)|20,B0 − T P( sup
t∈[0,T ]

E(t)) ≤
∫ T

0
I2a(t)dt,

for a constant c̄ which depends on CRT, g(0), and J (0) = det Dθl . We set

Nl = θl ,1 ×θl ,2

|θl ,1 ×θl ,2 | .

By the fundamental theorem of calculus nl(t) = Nl +
∫ t

0 ∂t nl(t ′)dt ′, and by our
assumptions in Sect. A.3.1, sup[0,T ] |∂t nl(t)|L∞(�) ≤ C ; hence,

c̄ |ζ ∂̄4ηl(t) · Nl |20,B0 ≤
∫ T

0
I2a(t)dt + T P( sup

t∈[0,T ]
E(t)) ,

and hence

c̄ |ζ ∂̄ηl(t) · Nl |23,B0 ≤
∫ T

0
I2a(t)dt + T P( sup

t∈[0,T ]
E(t)) .

It remains to show that the integrals
∫ T

0 I2b(t)dt and
∫ T

0 I3(t)dt are both bounded
by T P(supt∈[0,T ] E(t)). Using (A.25c),

I2b(t) = −
∫

B+
ζ 2 Ak

r ∂̄
4ηr q,k v

i ,s ∂̄
4 As

i dx + R

≤ C‖ζ ∂̄4η(t)‖ 1
2 ,B

+‖ζ ∂̄4 A(t)‖
H

1
2 (B+)′

+ R
≤ C‖∂̄4η(t)‖ 1

2
‖∂̄3 A(t)‖

H
1
2 (�)

+ R
≤ C sup

t∈[0,T ]
E(t) + R ,

where we have used Lemma A.1 for the second inequality.
Finally,

I3(t) = −
∫

B+
ζ 2∂̄4q ∂̄4vi ,k Ak

i dx =
∫

B+
ζ 2∂̄4q vi ,k ∂̄

4 Ak
i dx + R

≤ C‖ζ ∂̄3q(t)‖ 1
2 ,B

+‖ζ ∂̄4 A(t)‖
H

1
2 (B+)′

+ R
≤ C sup

t∈[0,T ]
E(t) + R ,

where we have used the pressure estimate (A.22) and Lemma A.1 for the last inequality.
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Summing the estimates for I1, I2, I3 and integrating (A.28) from 0 to T , we obtain
the inequality,

sup
t∈[0,T ]

(

|ζ ∂̄η(t) · Nl |23,B0 + ‖ζ ∂̄4v(t)‖2
0,B+

)

≤ M0 + T P( sup
t∈[0,T ]

E(t)) .

According to Proposition A.3,

sup
t∈[0,T ]

‖ div v(t)‖2
3 ≤ M0 + T P( sup

t∈[0,T ]
E(t)) ,

from which it follows that

sup
t∈[0,T ]

‖ζ ∂̄3 div v(t)‖2
0,B+ ≤ M0 + T P( sup

t∈[0,T ]
E(t)) .

Hence, the normal trace estimate (A.6) shows that

sup
t∈[0,T ]

(

|ζ ∂̄4v(t) · Nl |2− 1
2 ,B

0

)

≤ M0 + T P( sup
t∈[0,T ]

E(t)) ,

from which it follows that

sup
t∈[0,T ]

(

|ζ ∂̄η(t) · Nl |23,B0 + |ζ ∂̄v(t) · Nl |22.5,B0

)

≤ M0 + T P( sup
t∈[0,T ]

E(t)) .

��
Combining Proposition A.4 with the curl estimates in Proposition A.2 and the diver-

gence estimates in Proposition A.3 for η(t) and v(t) and using (A.7) together with the
fact that vt = −AT Dq provides us with the following

Theorem A.1. Suppose that the initial pressure p0 satisfies ∂p
∂N < 0 on � and that

E(0) < ∞. For T taken sufficiently small and for a polynomial function P2,

sup
t∈[0,T ]

(

‖η(t)‖2
4.5,� + ‖v(t)‖2

4,� + ‖ curlη v(t)‖2
3.5,� + ‖vt (t)‖2

3.5,�

)

≤ M0 + T P2( sup
t∈[0,T ]

E(t)) .

Moreover ∂p
∂n < 0 on �(t) for t ∈ [0, T ].

(The rigorous construction of solutions to this problem was established in [14] using
an approximation scheme founded on the idea of horizontal convolution-by-layers.) We
next show that our solutions are continuous in time.

Theorem A.2 (Continuity in time). The solution satisfies

η ∈ C([0, T ]; H4.5(�)) , v ∈ C([0, T ]; H4(�)),

curlη v ∈ C([0, T ]; H3.5(�)) , vt ∈ C([0, T ]; H3.5(�)) .

Proof. It follows immediately from Theorem A.1 that

η ∈ C([0, T ]; H4(�)) , v ∈ C([0, T ]; H3.5(�)) ,

curlη v ∈ C([0, T ]; H3(�)) , vt ∈ C([0, T ]; H3(�)). (A.29)

Furthermore, by the same argument used to establish (8.13) and (8.14), it follows
that

η ∈ C([0, T ]; H4.5(�) -w), v ∈ C([0, T ]; H4(�) -w),

curlη v ∈ C([0, T ]; H3.5(�) -w), vt ∈ C([0, T ]; H3.5(�) -w), (A.30)
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the notation Hs(�)-w denoting the weak topology. Thus, it suffices to prove continuity
of the norms

‖η(t)‖4.5 , ‖v(t)‖4 , ‖vt (t)‖3.5 , and ‖ curlη v(t)‖3.5.

For h > 0 we define the horizontal difference quotient

∂̄hu := 1

h
(u(· + hei)− u(·)) , (i = 1, 2) ,

and we proceed as in (A.27), using ∂̄h ∂̄3 in place of ∂̄4. The same energy estimate then
yields

d

dt

(

‖ζ ∂̄h ∂̄3vl(t)‖2
0,B+ + |ζ√−q,N ∂̄

h∂3ηl(t) · nl(ηl)|20,B0

)

≤C
(

‖η(t)‖2
4.5 + ‖v(t)‖2

4

)

.

With Fh(t) := ‖ζ ∂̄h ∂̄3vl(t)‖2
0,B+ and Gh(t) := |ζ√−q,N ∂̄h ∂̄3ηl(t) · nl(ηl)|20,B0 , we

have that

d

dt
[Fh(t) + Gh(t)] ≤ C

(

‖η(t)‖2
4.5 + ‖v(t)‖2

4

)

.

Integrating from t to t + δ, 0 < δ � 1, and setting Hh := Fh + Gh , we see that

|Hh(t + δ)− Hh(t)| ≤ δC M0 .

Since the bounds are independent of h > 0, we see that

|H(t + δ)− H(t)| ≤ δC M0, (A.31)

where H = F + G, and F(t) := ‖ζ ∂̄4vl(t)‖2
0,B+ and G(t) := |ζ√−q,N ∂̄4ηl(t) ·

nl(ηl)|20,B0

Hence, t �→ H(t) is uniformly Lipschitz continuous for t ∈ [0, T ]. Consider the
product topology on the Hilbert space X := L2(B+)× L2(B0), with norm ‖( f, g)‖2

X =
‖ f ‖2

L2(B+)
+ ‖g‖2

L2(B0)
. The convergence in the norm given by (A.31) together with the

continuity into the weak topology, given by (A.30), show that (ζ ∂̄4v, ζ
√−q,N ∂̄4η·n(η))

are continuous into X . We sum over all boundary charts; thanks to (A.29) and the elliptic
estimate (A.21), q ∈ C([0, T ]; H4(�)), from which it follows that

∂̄4v ∈ C0([0, T ]; L2(�)) and ∂̄2η · n(η) ∈ C0([0, T ]; H2(�)) .

In order to prove that ‖η(t)‖4.5 is continuous for each t ∈ [0, T ], we will rely on the
Lagrangian divergence and curl identities which we established earlier. From Eqs. (A.12)
and (A.15), we see that

‖ curlη Dη(t + h)− curlη Dη(t)‖2.5 ≤ ChM0 ,

so that curlη Dη(t) ∈ C0([0, T ]; H2.5(�)). Similarly, from (A.18),

‖ divη Dη(t + h)− divη Dη(t)‖2.5 ≤ ChM0 ,

so that divη Dη(t) ∈ C0([0, T ]; H2.5(�)).
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It follows that for each l = 1, . . . , K ,

curlηl (ζl ∂̄
2ηl) ∈ C0([0, T ]; H1.5(B+)) ,

divηl (ζl ∂̄
2ηl) ∈ C0([0, T ]; H1.5(B+)) ,

ζl ∂̄
2ηl · nl(ηl) ∈ C0([0, T ]; H2(B0)) .

We let wl = ∂̄2ηl ◦ η−1
l denote the Eulerian counterpart to ∂̄2ηl , so that wl(·, t) :

ηl(B+, t) → R
3. Then, by the chain-rule, we see that, due to the continuity provided by

(A.29),

curlwl ∈ C0([0, T ]; H1.5(ηl(B
+, t)) ,

divwl ∈ C0([0, T ]; H1.5(ηl(B
+, t)) ,

wl · nl ∈ C0([0, T ]; H2(ηl(B
0, t)) .

We may then infer from Proposition A.1, that

wl ∈ C0([0, T ]; H2.5(ηl(B
+, t)) ,

with bound depending only on ηl ∈ C0([0, T ]; H2.5(B+)). It follows that for each l =
1, . . . , K , ∂̄2ηl ∈ C0([0, T ]; H2.5(B+)). It follows that ∂̄2 Dηl ∈ C0([0, T ]; H1.5(B+)),
and hence the trace satisfies Dηl ∈ C0([0, T ]; H3(B0)). Summing over l = 1, . . . , K ,
we see that

Dη ∈ C0([0, T ]; H3(�)) .

Therefore, we have the following elliptic system:

curlη(Dη) ∈ C0([0, T ]; H2.5(�)) ,

divη(Dη) ∈ C0([0, T ]; H2.5�)) ,

Dη ∈ C0([0, T ]; H3(�)) .

Setting W = Dη ◦ η−1, and using the fact that η ∈ C0([0, T ]; H4(�)) we see that

curl W ∈ C0([0, T ]; H2.5(�(t)) ,

div W ∈ C0([0, T ]; H2.5(�(t)) ,

W ∈ C0([0, T ]; H3(�(t)) .

Elliptic estimates then show that

W ∈ C0([0, T ]; H3.5(�(t))

with a bound that depends on η ∈ C0([0, T ]; H4(�)) (but not on ‖η(t)‖4.5). In turn,
Dη ∈ C0([0, T ]; H3.5(�)), and hence

η ∈ C0([0, T ]; H4.5(�)) .

Analogously, we find that v ∈ C0([0, T ]; H4(�)), which by elliptic estimates
shows that q ∈ C0([0, T ]; H4.5(�)). The momentum equation then shows that vt ∈
C0([0, T ]; H3.5(�)). ��
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