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Abstract. In fluid dynamics, an interface splash singularity occurs when a locally smooth in-

terface self-intersects in finite time. By means of elementary arguments, we prove that such a
singularity cannot occur in finite time for vortex sheet evolution, i.e. for the two-phase incom-

pressible Euler equations. We prove this by contradiction; we assume that a splash singularity

does indeed occur in finite time. Based on this assumption, we find precise blow-up rates for the
components of the velocity gradient which, in turn, allow us to characterize the geometry of the

evolving interface just prior to self-intersection. The constraints on the geometry then lead to an

impossible outcome, showing that our assumption of a finite-time splash singularity was false.
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1. Introduction

1.1. The interface splash singularity. The fluid interface splash singularity was introduced by
Castro, Córdoba, Fefferman, Gancedo, & Gómez-Serrano in [13]. A splash singularity occurs when
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a fluid interface remains locally smooth but self-intersects in finite time. For the two-dimensional
water waves problem, Castro, Córdoba, Fefferman, Gancedo, & Gómez-Serrano [13] showed that
a splash singularity occurs in finite time using methods from complex analysis together with a
clever transformation of the equations. In Coutand & Shkoller [20], we showed the existence of a
finite-time splash singularity for the water waves equations in two or three-dimensions (and, more
generally, for the one-phase Euler equations), using a very different approach, founded upon an
approximation of the self-intersecting fluid domain by a sequence of smooth fluid domains, each
with non self-intersecting boundary.

1.2. The two-fluid incompressible Euler equations. A natural question, then, is whether a
splash singularity can occur for vortex sheet evolution, in which two phases of the fluid are present.
Consider the two-phase incompressible Euler equations: Let D ⊆ R2 denote an open, bounded
set, which comprises the volume occupied by two incompressible and inviscid fluids with different
densities. At the initial time t = 0, we let Ω+ denote the volume occupied by the lower fluid
with density ρ+ and we let Ω− denote the volume occupied by the upper fluid with density ρ−.
Mathematically, the sets Ω+ and Ω− denote two disjoint open bounded subsets of D such that
D = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅. The material interface at time t = 0 is given by Γ := Ω+ ∩ Ω−,
and ∂D = ∂(Ω− ∩ Ω+)/Γ. (We can also consider the case that Ω+ = T× (0,−1), Ω− = T× (0, 1),
and Γ = T× {0}.)

For time t ∈ [0, T ] for some T > 0 fixed, Ω+(t) and Ω−(t) denote the time-dependent volumes
of the two fluids, respectively, separated by the moving material interface Γ(t). Let u± and p±

Γ(t)
Ω−(t)

Ω+(t) Γ(t)
Ω+(t)

Ω−(t)

Figure 1. Two examples of the evolution of a vortex sheet Γ(t) by the Euler
equations. The two fluid regions are denoted by Ω+(t) and Ω−(t).

denote the velocity field and pressure function, respectively, in Ω±(t). Then, planar vortex sheet
Γ(t) evolves according to the incompressible and irrotational Euler equations:

ρ±(u±t + u± ·Du±) +Dp± = ρ±ge2 in Ω±(t) , (1.1a)

curlu± = 0, div u± = 0 in Ω±(t) , (1.1b)

p+ − p− = σH on Γ(t) , (1.1c)

(u+ − u−) · N = 0 on Γ(t) , (1.1d)

u(0) = u0 on {t = 0} × D , (1.1e)

V(Γ(t)) = u+(t) · N(t) , (1.1f)

where V(Γ(t)) denotes the speed of the moving interface Γ(t) in the normal direction, and N(·, t)
denotes the outward-pointing unit normal to ∂Ω+(t), g denotes gravity, and e2 is the vertical unit
vector (0, 1). Equation (1.1f) indicates that Γ(t) moves with the normal component of the fluid
velocity. The variables 0 < ρ± denote the densities of the two fluids occupying Ω±(t), respectively,
H(t) is twice the mean curvature of Γ(t), and σ > 0 is the surface tension parameter which we will
henceforth set to one. For notational simplicity, we will also set ρ+ = 1 and ρ− = 1. On the fixed
boundary ∂D, we set u± · N = 0.
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Via an elementary proof by contradiction, we prove that a finite-time splash singularity cannot
occur for vortex sheets governed by (1.1). We rule-out a single splash singularity in which one self-
intersection occurs, as well as the case that many (finite or infinite) simultaneous self-intersections
occur. We also rule out a splat singularity, wherein the interface Γ(t) self-intersects along a curve
(see [13] and [20] for a precise definition).

1.3. Outline of the paper. In Section 2, we introduce Lagrangian coordinates (using the flow of
u−) for the purpose of fixing the domain and the material interface. Rather than using an arbitrary
parameterization of the evolving interface Γ(t), we specifically use the Lagrangian parameterization
which has some important features for our analysis that general parameterizations do not. With
this parameterization defined, we state the main theorem of the paper in Section 3 which states that
a finite-time splash singularity cannot occur in this setting. In Section 4, we derive the evolution
equations for the vorticity along the interface as well as the evolution equation for the tangential
derivative of the vorticity; the latter plays a fundamental role in our analysis. In particular, under
the assumption that the tangential derivative of vorticity blows-up in finite time, we find the precise
blow-up rates for the components of ∇u−(·, t). Letting η : Γ→ Γ(t) denote the Lagrangian param-
eterization of the vortex sheet, and supposing that the two reference points x0 and x1 in Γ evolve
towards one another so that |η(x0, t) − η(x1, t)| → 0 as t → T , in Section 6, we find the evolution
equation for the distance δη(t) = η(x0, t) − η(x1, t) between the two contact points. We can de-
termine that the two portions of the curve Γ(t) converge towards self-intersection in an essentially
horizontal approach.

Finally, using the evolution equation for δη(t), we prove our main theorem in Section 7; in
particular, we show that our assumption of a finite-time self-intersection of the curve Γ(t) as t→ T
leads to the following contradiction: we first show that u−(η(x0, T ), T ) − u−(η(x1, T ), T ) = 0,
and then we proceed to show that u−(η(x0, T ), T ) − u−(η(x1, T ), T ) 6= 0. We first arrive at this
contradiction for a single splash singularity, meaning that one self-intersection point exists for Γ(T );
then, we proceed to prove that a finite (or even infinite) number of self-intersections also cannot
occur. We conclude by showing that a splat singularity, wherein Γ(T ) self-intersects along a curve
rather than a point, also cannot occur.

1.4. A brief history of prior results.

1.4.1. Local-in-time well-posedness. We begin with a short history of the local-in-time existence
theory for the free-boundary incompressible Euler equations. For the irrotational case of the water
waves problem, and for 2-D fluids (and hence 1-D interfaces), the earliest local existence results
were obtained by Nalimov [34], Yosihara [44], and Craig [14] for initial data near equilibrium. Beale,
Hou, & Lowengrub [9] proved that the linearization of the 2-D water wave problem is well-posed if

the Rayleigh-Taylor sign condition ∂p
∂n < 0 on Γ × {t = 0} is satisfied by the initial data (see [36]

and [39]). Wu [40] established local well-posedness for the 2-D water waves problem and showed
that, due to irrotationality, the Taylor sign condition is satisfied. Later Ambrose & Masmoudi [6],
proved local well-posedness of the 2-D water waves problem as the limit of zero surface tension. For
3-D fluids (and 2-D interfaces), Wu [41] used Clifford analysis to prove local existence of the water
waves problem with infinite depth, again showing that the Rayleigh-Taylor sign condition is always
satisfied in the irrotational case by virtue of the maximum principle holding for the potential flow.
Lannes [32] provided a proof for the finite depth case with varying bottom. Recently, Alazard, Burq
& Zuily [2] have established low regularity solutions (below the Sobolev embedding) for the water
waves equations.

The first local well-posedness result for the 3-D incompressible Euler equations without the irro-
tationality assumption was obtained by Lindblad [33] in the case that the domain is diffeomorphic
to the unit ball using a Nash-Moser iteration. Coutand & Shkoller [18] proved local well-posedness



4 D. COUTAND AND S. SHKOLLER

for arbitrary initial geometries that have H3-class boundaries without derivative loss. Shatah &
Zeng [38] established a priori estimates for this problem using an infinite-dimensional geometric
formulation, and Zhang and Zhang proved well-poseness by extending the complex-analytic method
of Wu [41] to allow for vorticity. Again, in the latter case the domain was with infinite depth.

1.4.2. Long-time existence. It is of great interest to understand if solutions to the Euler equations
can be extended for all time when the data is sufficiently smooth and small, or if a finite-time
singularity can be predicted for other types of initial conditions.

Because of irrotationality, the water waves problem does not suffer from vorticity concentration;
therefore, singularity formation involves only the loss of regularity of the interface or interface colli-
sion. In the case that the irrotational fluid is infinite in the horizontal directions, certain dispersive-
type properties can be made use of. For sufficiently smooth and small data, Alvarez-Samaniego and
Lannes [5] proved existence of solutions to the water waves problem on large time-intervals (larger
than predicted by energy estimates), and provided a rigorous justification for a variety of asymptotic
regimes. By constructing a transformation to remove the quadratic nonlinearity, combined with de-
cay estimates for the linearized problem (on the infinite half-space domain), Wu [42] established
an almost global existence result (existence on time intervals which are exponential in the size of
the data) for the 2-D water waves problem with sufficiently small data. In a different framework,
Alazard, Burq & Zuily [2] have also proven this result. Using position-velocity potential holomorphic
coordinates, Hunter, Ifrim, & Tataru [26] have also proved almost global existence of the 2-D water
waves problem.

Wu [43] then proved global existence in 3-D for small data. Using the method of spacetime
resonances, Germain, Masmoudi, and Shatah [25] also established global existence for the 3-D irro-
tational problem for sufficiently small data. More recently, global existence for the 2-D water waves
problem with small data was established by Ionescu & Pusateri [31], Alazard & Delort [3, 4], and
Ifrim & Tataru [28,29].

1.4.3. The finite-time splash and splat singularity. The finite-time splash and splat singularities were
introduce by Castro, Córdoba, Fefferman, Gancedo, and Gómez-Serrano [13]; therein, using methods
from complex analysis, they proved that a locally smooth interface can self-intersect in finite time
for the 2-D water waves equations and hence established the existence of finite-time splash and
splat singularites (see also [11] and [12]). In Coutand & Shkoller [20], we established the existence
of finite-time splash and splat singularities for the 2-D and 3-D water waves and Euler equations
(with vorticity) using an approximation of the self-intersecting domain by a sequence of standard
Sobolev-class domains, each with non self-intersecting boundary. Our approach can be applied to
many one-phase hyperbolic free-boundary problems, and shows that splash singularities can occur
with surface tension, with compressibility, with magnetic fields, and for many one-phase hyperbolic
free-boundary problems.

Recently, Ionsecu, Fefferman, and Lie [30] have proven that a splash singularity cannot occur
for planar vortex sheets (or two-fluid interfaces) with surface tension. Their proof relies on a very
sophisticated harmonic analysis of the integral kernel of the Birkhoff-Rott equation, and shows
that the distance between the two evolving curves has a double exponential bound. Other than
vortex sheet evolution for the two-phase Euler equations, it is of interest to determine the possibility
of finite-time splash singularities for other fluids models. In this regard, Gancedo & Strain [24]
have recently shown that a finite-time splash singularity cannot occur for the three-phase Muskat
equations. In addition to the study of other fluids models, it is also of great interest to determine
a mechanism for the loss of regularity of the evolving interface, which, in turn, could allow for
finite-time self-intersection.
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2. Fixing the fluid domains using the Lagrangian flow of u−

Let η̃ denote the Lagrangian flow map of u− in Ω− so that η̃t(x, t) = u−(η̃(x, t), t) for x ∈ Ω−

and t ∈ (0, T ), with initial condition η̃(x, 0) = x. Since div u− = 0, it follows that det∇η̃ = 1. By a
theorem of [21], we define Ψ : Ω+ → Ω+(t) as incompressible extension of η̃, satisfying det∇Ψ = 1
and ‖Ψ‖Hs(Ω+) ≤ C‖η−|Γ‖Hs−1/2(Γ) for s > 2. We then set

η(x, t) =

{
η̃(x, t), x ∈ Ω−

Ψ(x, t), x ∈ Ω+ .

Γ
Ω+

Ω−

η(·, t)
Γ(t)

Ω+(t)

Ω−(t)

Figure 2. The mapping η(·, t) fixes the two fluid domains and the interface. The
moving interface Γ(t) is the image of Γ by η(·, t).

We define the following quantities set on the fixed domains and boundary:

v+ = u− ◦ η , in Ω− × [0, T ] ,

v− = u+ ◦ η , in Ω+ × [0, T ] ,

q± = p± ◦ η , in Ω± × [0, T ] ,

A = [∇η]−1 , in D × [0, T ] ,

H = H ◦ η , on Γ× [0, T ] ,

δv = v+ − v− , on Γ× [0, T ] ,

The Eulerian momentum equations (1.1a) can then be written on the fixed domains as

v+
t +∇v+A (v+ −Ψt) +AT∇q+ = ge2 in Ω+ × [0, T ] , (2.1a)

v−t +AT∇q− = ge2 in Ω− × [0, T ] , (2.1b)

and the pressure jump condition (1.1c) is δq = H on Γ× [0, T ], where δq = q+ − q−.
Using the Einstein summation convention, [∇v+A (v+ −Ψt)]

i = vi,r A
r
j(v

+
j − ∂tΨj). This is the

advection term; when Ψ is the identity map, we recover the Eulerian description, while if Ψ is the
Lagrangian flow map, then we recover the Lagrangian description. The form (2.1.a) is called the
Arbitrary Lagrangian Eulerian (ALE) description of the fluid flow in Ω+

3. The main result

In [15,16], we proved that if at time t = 0, u±0 ∈ Hk(Ω±) and Γ of class Hk+1 for integers k ≥ 3,
then there exists a solution (u±(·, t),Γ(t)) of the system (1.1) satisfying u± ∈ L∞(0, T ;Hk(Ω±(t)))
and Γ(t) ∈ Hk+1.

Theorem 3.1 (No finite-time splash singularity). Given a solution to (1.1) such that

v+ ∈ L∞(0, T ;H3(Ω+) ∩W 2,∞(Γ)) , η|Γ ∈ L∞(0, T ;W 4,∞(Γ)) ,
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a splash (or splat) singularity cannot occur in finite time. In particular, suppose that for a constant
1 ≤M <∞,

sup
t∈[0,T ]

(
‖v+(·, t)‖H3(Ω+) +

∥∥v+(·, t)
∥∥
W 2,∞(Γ)

+ ‖η(·, t)‖W 4,∞(Γ)

)
<M , (3.1)

then Γ(t) cannot self-intersect.

Remark 1. The regularity assumptions (3.1) are reasonable; in the event that a splash singularity
occurs at time t = T , only the domain Ω−(T ) would form a cusp, thus allowing for the possibility of
blow-up for ‖∇u−(·, t)‖L∞(Ω−(t)) as t→ T . The domain Ω(t) remains smooth even up to the contact
time t = T .

4. Evolution equations on Γ for the vorticity and its tangential derivative

4.1. Geometric quantities defined on Γ and Γ(t). We set

N(x, t) = unit normal vector field on Γ(t) , n = N ◦ η
T (x, t) = unit tangent vector field on Γ(t) , τ = T ◦ η .

We choose the unit-normal N to point into Ω−. In a local coordinate (x1, x2), we set

G(x, t) = |η′(x, t)|−1 , where (·)′ = ∂(·)/∂x1 .

Hence,

τ(x, t) = Gη′(x, t) , n(x, t) = Gη′⊥(x, t) , x⊥ = (−x2, x1) . (4.1)

4.2. Evolution equation for the vorticity on Γ. Equation (2.1a) is v+
t + ∇v+A (v+ − Ψt) +

AT∇q+ = ge2. By definition, on Γ, Ψt = v−, os that v+ − Ψt = δv. Since δv · n = 0 on Γ, we
see that δv = (δv · τ)τ . Hence, the advection term can be written (using the Einstein summation

convention) as ∂v+

∂xr
Arjτj(δv · τ). From (4.1), τj = Gη′j which in our local coordinate system is the

same as G
ηj
∂x1

. Since A = [∇η]−1, we see that Arj
ηj
∂x1

= δr1, where δr1 denotes the Kronecker delta.

It follows that on Γ, (2.1a) takes the form

v+
t +Gv+′ δv · τ +AT∇q+ = ge2 . (4.2)

Equation (2.1b) does not have the advection term, and remains the same on Γ. Subtracting (2.1b)
from (4.2a), taking the scalar product of this difference with τ , and using that δq = H, yields

δvt · τ +Gv+′ · τ(δv · τ) +GH′ = 0 ,

from which it follows that

(δv · τ)t +Gv+′ · τ(δv · τ) +GH′ = 0 on Γ× [0, T ) . (4.3)

4.3. Evolution equation for derivative of vorticity ∇T δu · T . On Γ, we denote the tangential
derivative by ∇T . The chain-rule shows that the vorticity along particle trajectories can be written
as

[∇T δu · T ] ◦ η = Gδv′ · τ (4.4)

(which also provides an intrinsic definition for the derivative v′ ). Our analysis will rely on the
evolution equation satisfied by Gδv′ · τ . By differentiating (4.3), we find that

(δv′ · τ)t +Gv+′ · τ(δv′ · τ) + (δv · τ)′[Gv+′′ · τ −GHv+′ · n− g−1 η′′ · τ v+′ · τ ] + (GH′)′ = 0 (4.5)

Define our “forcing function” A to be

A = G(δv · τ)′[Gv+′′ · τ −GHv+′ · n− g−1 η′′ · τ v+′ · τ ] +G(GH′)′ ,
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we see that equation (4.5) is simply

(δv′ · τ)t +Gv+′ · τ(δv′ · τ) +G−1A = 0 . (4.6)

Multiplying (4.6) by G and commuting G with the time-derivative shows that

(Gδv′ · τ)t +G(v−
′ · τ + v+′ · τ)(Gδv′ · τ) +A = 0 .

Writing v−
′ · τ = −δv′ · τ + v+′ · τ , we arrive at the desired evolution equation

(Gδv′ · τ)t − (Gδv′ · τ)2 + 2Gv+′ · τ(Gδv′ · τ) +A = 0 . (4.7)

Notice that the coefficient 2Gv+′ ·τ as well as the forcing function A are both smooth by our assumed
bounds (3.1).

Remark 2. In [30], Ionsecu, Fefferman, and Lie use the notation z(α, t) to denote a smooth param-
eterization of Γ(t), whereas we use the Lagrangian parameterization η(x, t) of Γ(t) for points x in the
reference curve Γ. Our notation η′ corresponds to ∂αz in [30]. Furthermore, our δv · τ is the same

as ω
|∂αz| in [30]. The tangential derivative of vorticity [∇T δu · T ] ◦ η corresponds to ∂α

(
ω
|∂αz|

)
/|∂αz|

in [30].

5. Bounds for ∇u− and the rate of blow-up

Lemma 5.1. Assuming (3.1),
sup
t∈[0,T ]

‖v−(·, t)‖W 1,∞(Γ) .M . (5.1)

Proof. For notational convenience, we again denote v+ simply by v. With τ0 = τ(x, 0), solving (4.3)
using an integrating factor, we find that

δv · τ =δu0 · τ0 exp

(
−
∫ t

0

Gv′ · τ
)
− exp

(
−
∫ t

0

Gv′ · τ
)∫ t

0

GH′ exp

(∫ s

0

Gv′ · τ
)
ds . (5.2)

We set I(t) = exp
(∫ t

0
‖Gv′ · τ‖L∞(Γ)

)
. Notice that by the chain-rule and as in formula (4.4),

Gδv′ · τ = [∇T u+ · T ] ◦ η so by (3.1), I(t) is bounded. It follows from (5.2) that

‖δv · τ(·, t)‖L∞(Γ) ≤ I(t)‖δu0‖L∞(Γ) + I(t)

∫ t

0

‖GH′‖L∞(Γ) .

Again from (3.1), the derivative of the mean curvatureH′ ∈W 1,∞(Γ) so we see that ‖δv·τ(·, t)‖L∞(Γ)

is bounded.
Next, as δv · n = 0, and v+ · n is bounded according to (3.1), we find that ‖v−(·, t)‖L∞(Γ) .M

for all t ∈ [0, T ]. Then, from (4.6),

δv′ · τ =δu′0 · τ0 exp

(
−
∫ t

0

Gv′ · τ
)
− exp

(
−
∫ t

0

Gv′ · τ
)∫ t

0

G−1A exp

(∫ s

0

Gv′ · τ
)
ds .

so that

‖δv′ · τ(·, t)‖L∞(Γ) ≤ I(t)‖δu′0 · τ0‖L∞(Γ) + I(t)

∫ t

0

‖G−1A‖L∞(Γ) ,

from which we may conclude that ‖v−′ · τ(·, t)‖L∞(Γ) .M for all t ∈ [0, T ]. Then, since δv′ · n =
−δv · n′, the bound for δv together with (3.1) completes the proof. �

Lemma 5.2. Assuming (3.1),

sup
t∈[0,T ]

‖∇u−(·, t)‖L∞(η(Ω−,t)) .
M

minΓ |η′(·, t)|
. (5.3)
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Proof. From (4.4) and Lemma 5.1, ‖[∇T δu · T ] ◦ η‖L∞(Γ) . M/minΓ |η′(·, t)|. Then, we see that

maxy∈η(Γ,t) |∇T δu · T | .M/minΓ |η′(·, t)|. Hence, with our assumed bounds (3.1),

max
y∈η(Γ,t)

∣∣∇T u− · T ∣∣ . M
minΓ |η′(·, t)|

. (5.4)

Next, as δu·N = 0 (where recall that δu = u+−u− on Γ(t)), we have the identity 0 = ∇T (δu·N) =
(∇T δu) · N + δu · ∇TN ; hence, we see that

∇T u− · N = ∇T u+ · N + δu · ∇TN .

Lemma 5.1 provides us with L∞(Γ) control of u−; hence, with (3.1), it follows that

max
y∈η(Γ,t)

∣∣[∇T u− · N ](y)
∣∣ .M . (5.5)

The inequalities (5.4) and (5.5) together with the fact that div u− = curlu− = 0 in η(Ω−, t) implies
that for any t < T ,

‖∇u−(·, t)‖L∞(η(Γ,t)) .
M

minΓ |η′(·, t)|
. (5.6)

As ∆∇u− = 0 in η(Ω−, t), the maximum and minimum principle applied to each component of
∇u−, together with (5.6), provide the inequality (5.3). �

Hence, limt→T supy∈Γ(t) ‖∇u−(y, t)‖L∞(η(Ω−,t)) =∞ iff limt→T g(x, t)→ 0+ for some x ∈ Γ.

Theorem 5.1. With the assumed bounds (3.1), if there is a sequence tn → T such that

max
x∈Γ
|[∇T δu · T ](η(x, tn), tn)| → ∞ , (5.7)

then there exists t0 sufficiently close to T such that for 0 < ε� 1,

max
y∈η(Ω−,t)

|∇u−(y, t)| ≤ 1 + ε

T − t
∀t ∈ [t0, T ) . (5.8)

Furthermore, if there exist two points x0, x1 ∈ Γ such that η(x0, T ) = η(x1, T ) with tangent vector
to Γ(T ) at η(x0, T ) given by e1, then for 0 < ε� 1,

max
y∈η(Ω−,t)

∣∣∣∣∂u−2∂x1
(y, t)

∣∣∣∣ ≤ ε

T − t
∀t ∈ [t0, T ) . (5.9)

Proof. Step 1. Blow-up rate for vorticity [∇T δu · T ](η(x0, t), t) as t→ T . We first suppose that for
some x0 ∈ Γ, |[∇T δu · T ](η(x0, tn), tn)| → ∞, and establish that [∇T δu · T ](η(x0, t), t) (which, recall,
equals Gδv′ · τ(x0, t)) has a precise blow-up rate under the assumption (5.7).

We set

χ(t) = Gδv′ · τ(x0, t) ,

and define the coefficient function

a(t) = 2Gv+′ · τ(x0, t) .

Then, (4.7) reads

χt − χ2 + aχ = −A . (5.10)

This equation can be written as[
exp

∫ t

0

a(s)ds χ

]
t

− exp

∫ t

0

a(s)ds χ2 = − exp

∫ t

0

a(s)ds A
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so that∫ t

0

exp

(
−
∫ t

s

a(r)dr

)
χ(s)2ds = exp

(∫ t

0

a(s)ds

)
χ(t)− χ(0) +

∫ t

0

exp

(∫ s

0

a(r)dr

)
A(s)ds .

(5.11)
Thanks to (3.1), a(t) has a minimum and maximum on [0, T ]. Hence, there are positive constants
c1, c2, c3 such that for any t ∈ [0, T ),

c1

∫ t

0

χ2(s)ds− c3 ≤ χ(t) ≤ c2
∫ t

0

χ2(s)ds+ c3 ,

and by (5.7), the limit as t→ T is well-defined and

lim
t→T

χ(t) =∞ , (5.12)

For t > t0 sufficiently close to T , we can then divide (5.10) by χ2, and integrate from t0 to t, to
find that

− 1

χ(t)
+

1

χ(t0)
− t+ t0 +

∫ t

t0

(
a(s)

χ(s)
+
A(s)

χ2(s)

)
ds = 0 .

Using the limit in (5.12),

1

χ(t0)
− T + t0 +

∫ T

t0

(
a(s)

χ(s)
+
A(s)

χ2(s)

)
ds = 0 ,

from which we obtain the following identity: for t ∈ [t0, T ),

χ(t) =

[
T − t−

∫ T

t

(
a(s)

χ(s)
+
A(s)

χ2(s)

)
ds

]−1

. (5.13)

From (5.12), this formula implies that the integrand is small as t is close to T , and then provides
the rate of blow-up:

lim
t→T

χ(t)(T − t) = 1 .

Using (3.1), we see that

lim
t→T

[∇T u− · T ](η(x0, t), t) (T − t) = −1 . (5.14)

Step 2. Maximum of vorticity derivative blows-up on Γ(t). Having established the blow-up rate for
[∇T δu ·T ](η(x0, t), we shall next prove that for any t ∈ [0, T ), the quantity maxx∈Γ[∇T δu ·T ](η(x, t))
(which equals maxx∈ΓGδv

′ · τ(x, t)) has the same blow-up rate. For each x ∈ Γ and t ∈ [0, T ), we
now set

A(x, t) = 2Gv+′ · τ(x, t) and X(x, t) = Gδv′ · τ(x, t) . (5.15)

Following (5.11), we see that

X(x, t) ≥ exp

(
−
∫ t

0

A(x, s)ds

)
X(x, 0)− exp

(
−
∫ t

0

A(x, s)ds

)∫ t

0

exp

(∫ s

0

a(x, r)dr

)
A(x, s)ds ;

(5.16)
hence, there exists a positive constant c4 such that X(x, t) > −c4. Since Xt = X2 − AX−A, there
is a positive constant c5,

Xt > X2/2− c5 .
It follows that if X(x, t0) ≥

√
2c5, then X(x, ·) is increasing on [t0, T ). For x ∈ Γ we choose t0 < T

sufficiently close to T so that for 0 < ε� 1 fixed,

X(x, t0) >
√

2c5 + 1 +
8c6
ε
, c6 = sup

(t,x)∈[0,T ]×Γ

(|A(x, t)|+ A(x, t)|) , (5.17)
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with c6 denoting a bounded constant thanks to (3.1). Since X(x, ·) is increasing for such an x, for
t ∈ [t0, T ), the limit of X(x, t) as t → T is well-defined in the interval (1 +

√
2c5 + 8c6/ε,∞], and

thus so is the limit of 1
X(x,t) . Analogous to (5.13), we obtain that

X(x, t) =

[
1

limt→T X(x, t)
+ T − t+

∫ t

T

(
A(s)

X(s)
+
A(s)

X2(s)

)
ds

]−1

.

From (5.17), we then have that for all t ∈ [t0, T ),

X(x, t) ≤
[

1

limt→T X(x, t)
+ (T − t)(1− ε)

]−1

and since limt→T X(x, t) ≥ 0, then for all t < T ,

X(x, t) ≤ 1

(T − t)(1− ε)
. (5.18)

Step 3. Blow-up rate for ∇u− in Ω−(t) as t→ T . From (5.18), for any t ∈ [t0, T ),

max
y∈η(Γ,t)

|[∇T δu · T ](y, t)| ≤ 1 + 2ε

(T − t)
. (5.19)

The inequalities (5.5) and (5.19), together with the fact that div u− = curlu− = 0 in η(Ω−, t),
show that

max
y∈η(Γ,t)

|∇u−(y, t)| ≤ 1 + 2ε

T − t
, (5.20)

where maxy∈η(Γ,t) |∇u−(y, t)| denotes the maximum over all of the components of the matrix ∇u−.

Now, for any fixed t ∈ [0, T ), since each component of ∇u− is harmonic in the domain η(Ω−, t),
the maximum and minimum principles together with the boundary estimate (5.20) shows that (5.8)
holds.

Step 4. Asymptotic estimates for the components of ∇u− as t → T in an ε-neighborhood of the
splash. Since

∂u−

∂x1
:= ∇e1u

− = (T · e1)∇T u− + (N · e1)∇Nu− ,

we have that

∂u−2
∂x1

= (T · e1)∇T u− · (T · e2 T + N · e2 N) + (N · e1)∇Nu− · (T · e2 T + N · e2 N)

= (T · e1)(T · e2)∇T u− · T + (T · e1)(N · e2)∇T u− · N + (T · e2)(N · e1)∇Nu− · T
+ (N · e1)(N · e2)∇Nu− · N . (5.21)

By rotating our co-ordinate system, if necessary, we suppose that the tangent and normal di-
rections to Γ(T ) at η(x0, T ) are given by the standard basis vectors e1 = (1, 0) and e2 = (0, 1),
respectively.

Next, choose a point η(x, t) ∈ Γ(t) in a small neighborhood of η(x0, t), and let the curve S(t)

denote that portion of Γ(t) that connects η(x0, t) to η(x, t). Let ~l(t) : [0, 1] → S(t) denote a unit-

speed parameterization such that ~l(t)(1) = η(x, t) and ~l(t)(0) = η(x0, t). Then,

N(η(x, t), t) · e1 − N(η(x0, t), t) · e1 =

∫
S(t)

∇(N · e1) · d~l

T (η(x, t), t) · e2 − T (η(x0, t), t) · e2 =

∫
S(t)

∇(T · e2) · d~l .
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From our assumed bounds (3.1), there is a constant c7 > 0 such that for t ≤ T

|N(η(x, t), t) · e1 − N(η(x0, t), t) · e1|+ |T (η(x, t), t) · e2 − T (η(x0, t), t) · e2|
≤ c7|η(x, t)− η(x0, t)| .

Similarly,

N(η(x0, t), t) · e1 = N(η(x0, t), t) · e1 − N(η(x0, T ), T ) · e1 =

∫ t

T

∂tn(x0, s) · e1ds

T (η(x0, t), t) · e2 = T (η(x0, t), t) · e2 − T (η(x0, T ), T ) · e2 =

∫ t

T

∂tτ(x0, s) · e2ds

so that (by readjusting the constant c7 if necessary), we have that

|N(η(x0, t), t) · e1|+ |T (η(x0, t), t) · e2| ≤ c7(T − t) .

Next, choose t0 ∈ [0, T ) and x ∈ γ0 ⊂ Γ, with γ0 a sufficiently small neighborhood of x0, such that

c7(T − t) < ε

2
and c7|η(x, t)− η(x0, t)| <

ε

2
∀ x ∈ γ0, t ∈ [t0, T ) . (5.22)

It follows that

|N(η(x, t), t) · e1|+ |T (η(x, t), t) · e2| < ε ∀ x ∈ γ0, t ∈ [t0, T ) . (5.23)

Consequently, from (5.5), (5.20) and (5.21), we see that∣∣∣∣∂u−2∂x1
(η(x, t), t)

∣∣∣∣ ≤ 3ε

T − t
+ |∇T u− · N |(η(x, t), t) + |∇Nu− · T |(η(x, t), t) ,

which thanks to (5.5) and the fact that curlu− = ∇T u− · N −∇Nu− · T = 0, provides us with∣∣∣∣∂u−2∂x1
(η(x, t), t)

∣∣∣∣ ≤ 3ε

T − t
+ c8M ∀ x ∈ γ0, t ∈ [t0, T ) ,

for a constant c8 > 0. Thus , by choosing t0 closer to T if necessary, we have that∣∣∣∣∂u−2∂x1
(η(x, t), t)

∣∣∣∣ ≤ 3ε

T − t
∀ x ∈ γ0, t ∈ [t0, T ) . (5.24)

In the identical fashion, we can show that there exists a sufficiently small neighbourhood γ1 ⊂ Γ
of x1, such that for all x ∈ γ1 and t ∈ [t0, T ) (again taking T − t0 even smaller if necessary), the
inequality (5.24) holds. Now, for x in Γ in the complement of γ0 and γ1, we have that ∇u−(η(x, t), t)
is bounded by a constantMε (by a standard elliptic regularity argument) and is, therefore, less than
ε

T−t for t close enough to T . Hence, for T − t0 sufficiently small,

max
y∈η(Γ,t)

∣∣∣∣∂u−2∂x1
(y, t)

∣∣∣∣ ≤ 3ε

T − t
∀t ∈ [t0, T ) ,

which, thanks to the maximum and minimum principles applied to the harmonic function
∂u−2
∂x1

,

provides us with (5.9). Since 0 < ε � 1, we replace 3ε by ε, and replace 1 + 2ε by 1 + ε. This
completes the proof. �

Corollary 5.1. With (3.1) and (5.7) holding, for T − t0 sufficiently small,

‖∇T u− · T (·, t)‖L∞(Γ(t)) ≤
1 + 3(T − t)

T − t
∀t ∈ [t0, T ) . (5.25)
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Proof. Using the notation from the proof of Theorem 5.1,

X(x, t) = ∇T δu · T (η(x, t), t) .

and we recall that X(x0, t) = χ(t) and that X(x, t) satisfies

Xt(x, t)− X2(x0, t) + A(x, t)X(x, t) = −A(x, t) . (5.26)

We let δt = T − t, and fix 0 < ε� 1.
Since limt→T X(x0, t)(T − t) = 1, for δt sufficiently small, we have that

(1− ε)δt−1 ≤ X(x0, t) ≤ (1 + ε)δt−1.

Substituting this inequality into (5.13), we see that

X(x0, t) ≤
1

(1− δt)δt
≤ 1 + 2δt

δt
. (5.27)

If we replace x0 with x1, then (5.27) continues to hold.
Now, for the sake of contradiction, we will assume that there exists a sequence of points (x∗, t∗),

with t∗ converging to T , such that

X(x∗, t∗) >
1 + 3(T − t∗)

T − t∗
. (5.28)

Then, for comparison, we choose the point x0 or x1 which is strictly closest to the point x∗ corre-
sponding to a subsequence of t∗. We assume this point is x0 (for otherwise we reverse the labels on
the two points x0 and x1). Notice that (5.28) implies that for T − t0 sufficiently small,

|x∗ − x0| ≤ ε . (5.29)

We define

Y(t) = X(x∗, t)− X(x0, t) and Z(t) = X(x∗, t) + X(x0, t) ,

δA(t) = A(x∗, t)− A(x0, t) and δA(t) = A(x∗, t)−A(x0, t) .

Then, setting P(t) = Z(t)− A(x∗, t), from (5.26), Y(t) satisfies

Yt(t)− P(t)Y(t) = −δA(t)X(x0, t)− δA(t) ,

and hence [
e−

∫ t
t∗ P(s)dsY(t)

]
t

= −e−
∫ t
t∗ P(s)ds [δA(t)X(x0, t) + δA(t)] .

Integrating from t0 to t, we see that

Y(t) = e
∫ t
t∗ P(s)ds

(
Y(t∗)−

∫ t

t∗
e−

∫ s
t∗ P(r)dr [δA(s)X(x0, s) + δA(s)] ds

)
. (5.30)

Our goal is to show that Y(t) ≥ 0, for all t ≥ t∗. Since X(x0, t) < 1 by (5.27), we see that (5.28)
shows that

Y(t∗) > 1 , (5.31)

so all we need to prove is that the second term on the right-hand side of (5.30),

κ(t∗, t) = −
∫ t

t∗
e−

∫ s
t∗ P(r)dr [δA(s)X(x0, s) + δA(s)] ds , (5.32)

is very small for t∗ close to T .
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We first consider −
∫ s
t∗
P(r)dr which is equal to −

∫ s
t∗
Z(r)dr +

∫ s
t∗
A(x∗, r)dr. Since X(x∗, t) is

positive, we see that Z(t) > X(x0, t) and so −Z(t) < −X(x0, t), and as we noted above, X(x0, t) >
(1− ε)δt−1. Hence −

∫ s
t∗
Z(r)dr < −

∫ s
t∗
X(x0, r)dr, so that

e−
∫ s
t∗ Z(r)dr < e−

∫ s
t∗ X(x0,r)dr ≤ e−

∫ s
t∗

1−ε
T−r dr =

[
T − s
T − t∗

]1−ε

and since e
∫ s
t∗ A(x∗,r)dr ≤ C, then

e−
∫ s
t∗ P(r)dr < C

[
T − s
T − t∗

]1−ε

.

From (5.32), we see that

|κ(t∗, t)| ≤ C
∫ t

t∗

[
(T − s)
T − t∗

]1−ε(
1 + ε

T − s
δA(s) + δA(s)

)
ds

≤ C(1 + ε)

(T − t∗)1−ε

∫ t

t∗
(T − s)−εδA(s)ds+

C

(T − t∗)1−ε

∫ t

t∗
(T − s)1−εδA(s)ds .

Let ~r denote a unit-speed parameterization of the path γ ⊂ Γ starting at x0 and ending at x∗. From
(5.15), A(x, t) = 2Gv+′ · τ(x, t), so that thanks to our assumed bounds (3.1), we see that

δA(t) =

∫
γ

∇A · d~r ≤ C|x∗ − x0| ≤ Cε ,

the last inequality following from (5.29). It follows that

|κ(t∗, t)| ≤ εC(T − t)1−ε

(T − t∗)1−ε + εC +
C(T − t)2−ε

(T − t∗)1−ε + C(T − t∗)

≤ C [ε+ (T − t∗)] .

Hence, for T − t∗ sufficiently small, and t ∈ [t∗, T ), we have |κ(t∗, t)| < 1. Thanks to (5.31), this
implies that for such any such t∗, and for all t ∈ [t∗, T ), Y(t) ≥ 0, which by the definition of Y(t),
implies that

X(x∗, t) ≥ X(x0, t) ,

and thus limt→T X(x∗, t) =∞. Now, from our assumption of a single splash contact in this section,
this implies that either x∗ = x0 or x∗ = x1. Since x∗ is closer to x0, we then have x∗ = x0. Thus,
by (5.27) and (5.28), we then have

3 < 2 ,

which is the contradiction needed to establish that our assumption (5.28) was wrong.

By definition of X(x, t), this then shows that supy∈Γ(t) |∇T δu ·T (·, t)| ≤ 1+3(T−t)
T−t for all t ∈ [t0, T )

with T − t0 taken sufficiently small. Together with Lemma 5.1, this, then, completes the proof. �

6. The interface geometry near the assumed blow-up

We let x0 and x1 in Γ denote the two reference points which are moving toward one another. If
a splash singularity occurs at time T , then limt→T |η(x0, t)− η(x1, t)| = 0. In this section, we find
the evolution equation for the distance between the two contact points η(x0, t) and η(x1, t).

For T − t0 sufficiently small (so that η(x0, t) is very close to η(x1, t)), and in a sufficiently small
(space) neighborhood of η(x0, t), the interface Γ(t) locally consists of two subsets, each containing
one of the two points that will come into contact at time t = T ; specifically, we let Γ0(t) ⊂ Γ(t)
be the subset containing η(x0, t), and we let Γ1(t) ⊂ Γ(t) denote the subset containing η(x1, t) (see
Figure 3).
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η(x0, t)

 
η(x1, t)
 

Γ0(t)

Γ1(t)

Figure 3. For t sufficiently close to T , the interface Γ(t) has a local neighborhood of

η(x0, t) called Γ0(t) and a local neighborhood of η(x1, t) called Γ1(t). The two subset Γ0(t)

and Γ1(t) are, by definition, connected to one another, but we only draw the two subsets

that are moving toward each.

By Lemma 5.1,
sup
t∈[0,T ]

(
‖τt(·, t)‖L∞(Γ) + ‖nt(·, t)‖L∞(Γ)

)
.M ,

so that n, τ ∈ C([0, T ], L∞(Γ)). Recall that the tangent and normal directions to Γ(T ) at η(x0, T )
and η(x1, T ) are given by the standard basis vectors e1 = (1, 0) and e2 = (0, 1), respectively.

Next, we define

δη(t) = η(x0, t)− η(x1, t) and δu−(t) = u−(η(x0, t), t)− u−(η(x1, t), t) ,

and
δη1 = δη · e1 , δη2 = δη · e2 and δu−1 = δu− · e1 , δu

−
2 = δu− · e2 .

We choose 0 ≤ t0 < T such that t0 is infinitesimally close to T . Since η is the flow of the velocity
u−, we see that for any t ∈ [t0, T ),

∂tδη = u−(η(x0, t), t)− u−(η(x1, t), t) . (6.1)

Our next result establishes the evolution equation for δη(t).

Theorem 6.1 (Evolution equation for δη(t)). With the assumed bounds (3.1), and for x0, x1 ∈ Γ
such that |η(x0, t) − η(x1, t)| → 0 as t → T , if |[∇T δu · T ](η(x0, t), t)| → ∞ as t → T , then for
0 < ε� 1 and 0 < T − t0 sufficiently small, we have that for all t ∈ [t0, T ),

∂tδη(t) = M(t)δη(t) where M(t) =
1

T − t

[
−β1(t) ε1(t)
E2(t) α2(t)

]
, (6.2)

where the coefficients β1(t), α2(t) ∈ [−2ε, 1 + 6(T − t)] and ε1(t), E2(t) ∈ [−2ε, 2ε].

Proof. Step 1. The geometric set-up. Figure 4 shows the geometry of the two approaching curves
at some instant of time t ∈ [t0, T ): the left side of the figure shows the case that η2(x0, t) ≤ η(x1, t)
and the right side of the figure shows the case that η2(x0, t) > η(x1, t). Of course, both Γ0(t)
and Γ1(t) can have very small oscillations in near the contact points, but this does not effect the
qualitative picture in any way. Our idea is to connect η(x0, t) with η(x1, t) using a specially chosen
path. The tangent vector to both η(x0, t) and η(x1, t) is horizontal, and by the continuity of the
tangent vector, in a sufficiently small neighborhood of the contact points, the tangent vector to the
interface is very close to horizontal. Thus, for T − t0 sufficiently small, the two approaching curves
Γ0(t) and Γ1(t) are nearly flat, and when η(x1, t) is sufficiently close to η(x0, t), a portion of Γ1(t)
must lie below η(x0, t). We define the point z(t) ∈ Γ such that η(z(t), t) is the vertical projection of
η(x0, t) onto the curve Γ1(t) (as shown in Figure 4). Finally, we define γ1(t) to be the vertical line
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Γ0(t)

Γ1(t)

 

 

 η(x0, t) η(x1, t)

η(z(t), t)

γ1(t) γ2(t)

γ2(t)

γ1(t)

η(x0, t)

 

η(z(t), t) 

η(x1, t)

 

Γ0(t)

Γ1(t)

Figure 4. Left: η2(x0, t) ≤ η2(x1, t). Right: η2(x0, t) > η2(x1, t).

segment connecting η(x0, t) ∈ Γ0(t) to η(z(t), t) ∈ Γ0(t), and we define γ2(t) to be the portion of
Γ1(t) connecting η(z(t), t) to η(x1, t).

We will rely on the following two claims:

Claim 1. |η2(x1, t)− η2(z(t), t)| = b(t)δη1(t)2 for a bounded function b(t).

Proof. Near the point η(x1, t), we consider Γ1(t) as a graph (X,h(X, t)) above the horizontal X-axis,
such that h(0, t) = η(x1, t) with tangent vector (1, h′(X, t)), which at X = 0 must be horizontal
horizontal, so that h′(0, t) = 0. Since h is a C2 function, we can write the Taylor series for h(X, t)
about X = 0 as

h(X, t) = h(0, t) +
h′′(ξ)

2
X2 for some ξ ∈ (0, X) .

If η(z(t), t) = h(X, t) for some X close to 0, then X = δη1(t). By setting b(t) = h′′(ξ)
2 , the proof is

complete. �

Claim 2. |δη1(t)| .M(T − t), and for T − t0 sufficiently small, and with 0 < ε � 1 introduced in
Theorem 5.1, |δη1(t)| ≤ ε for all t ∈ [t0, T ).

Proof. By the fundamental theorem of calculus, |δη1(t)| ≤
∫ t
T
|δv(s)|ds .M(T − t) by Lemma 5.1.

Then, we choose T − t0 sufficiently small. �

Step 2. The case that η2(x0, t) > η2(x1, t). We will first consider the geometry displayed on the right
side of Figure 4. With ~r1(t) and ~r2(t) denoting unit-speed parameterizations for γ1(t) and γ2(t),

u−1 (η(x0, t), t)− u−1 (η(x1, t), t) =
[
u−1 (η(x0, t), t)− u−1 (η(z(t), t), t)

]
+
[
u−1 (η(z(t), t), t)− u−1 (η(x1, t), t)

]
=

∫
γ1(t)

∇u−1 · d~r1 +

∫
γ2(t)

∇u−1 · d~r2

=

∫
γ1(t)

∂u−2
∂x1

dx2 +

∫
γ2(t)

∇T u−1 ds ,

where we have used the fact that
∂u−1
∂x2

=
∂u−2
∂x1

in the last equality, as curlu− = 0. We will evaluate

these two integrals using the mean value theorem for integrals, together with our estimate (5.25) for
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∇T u− · T , and hence for
∂u−1
∂x1

(which is close to ∇T u− for T − t0 sufficiently small), and estimate

(5.9) for
∂u−2
∂x1

. In particular,

u−1 (η(x0, t), t)− u−1 (η(x1, t), t)

=
ε1(t)

T − t
(η2(x0, t)− η2(z(t), t))− %(t)

α1(t)

T − t
δη1(t)− ν(t)

α1(t)

T − t
(η2(x1, t)− η2(z(t), t)) ,

=
ε1(t)

T − t
δη2(t) +

ε1(t)

T − t
(η2(x1, t)− η2(z(t), t))− %(t)

α1(t)

T − t
δη1(t)

− ν(t)
α1(t)

T − t
(η2(x1, t)− η2(z(t), t)) , (6.3)

where ε1(t) ∈ [−ε, ε], and where we choose α1(t) ∈ [−ε, 1 + 3(T − t)], where 0 < ε � 1 is defined
in Step 4 of the proof of Theorem 5.1. The functions %(t) and ν(t) satisfy |1 − %(t)| � 1 and
0 ≤ ν(t)� 1; this follows since Γ1(t) is nearly flat near η(x0, t), so the vertical distance |η2(x1, t)−
η2(z(t), t)| is nearly zero, while the horizontal distance |η1(x1, t) − η1(z(t), t)| is nearly the total
distance |η(x1, t)− η(z(t), t)|.

The negative sign in front of α1(t) is determined by the limiting behavior of
∂u−1
∂x1

given by (5.14).
From Claim 1 above, we then see that

u−1 (η(x0, t), t)− u−1 (η(x1, t), t)

=
ε1(t)

T − t
δη2(t) +

b(t)δη1(t)ε1(t)

T − t
δη1(t)− %α1(t)

T − t
δη1(t)− νb(t)δη1(t)α1(t)

T − t
δη1(t).

We set

β1(t) = [%(t) + ν(t)b(t)δη1(t)]α1(t)− b(t)δη1(t)ε1(t).

Then, with Claim 2, we see that β1(t) ∈ [−2ε, 1 + 6(T − t)], and that

u−1 (η(x0, t), t)− u−1 (η(x1, t), t) = − β1(t)

T − t
δη1(t) +

ε1(t)

T − t
δη2(t) . (6.4)

Similarly, for u−2 , we have that

u−2 (η(x0, t), t)− u−2 (η(x1, t), t) =
[
u−2 (η(x0, t), t)− u−2 (η(z(t), t), t)

]
+
[
u−2 (η(z(t), t), t)− u−2 (η(x1, t), t)

]
=

∫
γ1(t)

∇u−2 · d~r1 +

∫
γ2(t)

∇u−2 · d~r2

=

∫
γ1(t)

∂u−2
∂x2

dx2 +

∫
γ2(t)

∇T u−2 ds ,

=
α2(t)

T − t
(η2(x0, t)− η2(z(t), t)) + %(t)

ε2(t)

T − t
δη1(t) + ν(t)

ε2(t)

T − t
(η2(x1, t)− η2(z(t), t)) ,

=
α2(t)

T − t
δη2(t) +

b(t)δη1(t)α2(t)

T − t
δη1(t) +

%(t)ε2(t)

T − t
δη1(t) +

ν(t)b(t)δη1(t)ε2(t)

T − t
δη1(t) ,

with ε2(t) ∈ [−ε, ε] and α2(t) ∈ [−ε, 1 + 3(T − t)], and where 0 ≤ 1 − %(t) � 1 and 0 ≤ ν(t) � 1.
Setting

E2(t) = b(t)δη1(t)α2(t) + [%(t) + ν(t)b(t)δη1(t)] ε2(t) , (6.5)

we see that by Claim 2, E2(t) ∈ [−2ε, 2ε], and

u−2 (η(x0, t), t)− u−2 (η(x1, t), t) =
E2(t)

T − t
δη1(t) +

α2(t)

T − t
δη2(t) . (6.6)
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Equations (6.1), (6.4) and (6.6), then give the desired relation (6.2). We can now also establish the
estimate

|E2(t)| ≤ M(T − t) . (6.7)

The first term on the right-hand side of (6.5) satisfies this inequality by Claim 2 above. To show that
the second term on the right-hand side of (6.5) satisfies this inequality, we explain why the function
|ε2(t)| has this bound. In fact, we have already proven this in obtaining the inequality (5.24), where
ε can be replaced with C(T − t).

Step 3. The case that η2(x0, t) ≤ η2(x1, t). We next consider the geometry displayed on the left side
of Figure 4. Again, using ~r1(t) and ~r2(t) to denote unit-speed parameterisations for γ1(t) and γ2(t),
we see that once again

u−1 (η(x0, t), t)− u−1 (η(x1, t), t) =
[
u−1 (η(x0, t), t)− u−1 (η(z(t), t), t)

]
+
[
u−1 (η(z(t), t), t)− u−1 (η(x1, t), t)

]
=

∫
γ1(t)

∂u−2
∂x1

dx2 +

∫
γ2(t)

∇T u−1 ds ,

where s denotes arc length. We again evaluate these two integrals using the mean value theorem for
integrals:

u−1 (η(x0, t), t)− u−1 (η(x1, t), t)

=
ε1(t)

T − t
(η2(x0, t)− η2(z(t), t))− %(t)α1(t)

T − t
δη1(t)− ν(t)α1(t)

T − t
(η2(x1, t)− η2(z(t), t)) ,

where once again α1(t) ∈ [−ε, 1+ε] and ε1(t) ∈ [−ε, ε]. For some θ(t) ∈ (0, 1], |η2(x0, t)− η2(z(t), t)| =
θ(t) |η2(x1, t)− η2(z(t), t)|. Hence, by Claim 1,

u−1 (η(x0, t), t)− u−1 (η(x1, t), t)

=
θ(t)b(t)δη1(t)ε1(t)

T − t
δη1(t)− %(t)α1(t)

T − t
δη1(t)− b(t)δη1(t)ν(t)α1(t)

T − t
δη1(t).

With

β1(t) = [%(t) + b(t)δη1(t)ν(t)]α1(t)− θ(t)b(t)δη1(t)ε1(t) ,

then β1(t) ∈ [−2ε, 1 + 6(T − t)] and

u−1 (η(x0, t), t)− u−1 (η(x1, t), t) = − β1(t)

T − t
δη1(t) .

Similarly, for u−2 , we have that

u−2 (η(x0, t), t)− u−2 (η(x1, t), t) =
[
u−2 (η(x0, t), t)− u−2 (η(z(t), t), t)

]
+
[
u−2 (η(z(t), t), t)− u−2 (η(x1, t), t)

]
=
α2(t)

T − t
(η2(x0, t)− η2(z(t), t)) +

%(t)ε2(t)

T − t
δη1(t) +

ν(t)ε2(t)

T − t
(η2(x1, t)− η2(z(t), t)) ,

with ε2(t) ∈ [−ε, ε] and α2(t) ∈ [−ε, 1 + 3(T − t)]. Hence, from Claim 1, we see that

u−2 (η(x0, t), t)− u−2 (η(x1, t), t)

=
θ(t)b(t)δη1(t)α2(t)

T − t
δη1(t) +

%(t)ε2(t)

T − t
δη1(t) +

ν(t)b(t)δη1(t)ε2(t)

T − t
δη1(t) .

Setting

E2(t) = θ(t)b(t)δη1(t)α2(t) + %(t)ε2(t) + ν(t)b(t)δη1(t)ε2(t) ,
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we see that by Claim 2, E2(t) ∈ [−2ε, 2ε], and

u−2 (η(x0, t), t)− u−2 (η(x1, t), t) =
E2(t)

T − t
δη1(t) .

In this case, δηt = M δη with

M(t) =
1

T − t

[
−β1(t) 0
E2(t) 0

]
.

which is a special case of the matrix given (6.2) with ε1(t) = 0 and α2(t) = 0. This completes the
proof. �

7. Proof of the Main Theorem

We now give a proof of Theorem 3.1. We assume that either a splash or splat singularity does
indeed occur, and then show that this leads to a contradiction.

We begin the proof with the case that a single splash singularity occurs at time t = T and that
there exist two points x0 and x1 in Γ, such that η(x0, T ) = η(x1, T ), as we assumed in Section 6.
(In Sections 7.2 and 7.3, we will also rule-out the case of multiple simultaneous splash singularities,
as well as the splat singularity.)

7.1. A single splash singularity cannot occur in finite time. As we stated above, for T − to
sufficiently small and in a small neighborhood of η(x0, T ), the interface Γ(t), t ∈ [t0, T ), consists of
two curves Γ0(t) and Γ1(t) evolving towards one another, with η(x0, t) ∈ Γ0(t) and η(x1, t) ∈ Γ1(t).
We consider the two cases that either |∇u−(·, t)| remains bounded or blows-up as t→ T .

7.1.1. The case that |∇u−(η(x0, t), t)| → ∞ as t → T . We prove that both δu−1 (η(x0, T ), T ) 6= 0
and δu−1 (η(x0, T ), T ) = 0.

Step 1. δu−1 6= 0 at the assumed splash singularity η(x0, T ). From (6.2), δη2(t) = M21δη1(t) +
M22δη2(t). Using the integrating factor

I(t0, t) = e
∫ t
t0

α2(s)
T−s ds

,

we have that

δη2(t) = I(t0, t)

(
δη2(t0) +

∫ t

t0

I(t0, s)
−1 E2(s)

T − s
δη1(s) ds

)
. (7.1)

By Theorem 6.1, the function α2(t) has lower bound given by α2(t) ≥ −ε, from which it follows that

I(t0, t) ≥
(
T − t
T − t0

)ε
and hence I(t0, t)

−1 ≤
(
T − t
T − t0

)−ε
. (7.2)

Using (7.2) and (7.1) together with |δη(t)| ≤ M(T − t), we find that∣∣∣∣δη2(t0) +

∫ t

t0

I(t0, s)
−1 E2(s)

T − s
δη1(s)ds

∣∣∣∣ ≤M(T − t)1−ε(T − t0)ε ;

therefore, in the limit as t→ T we must have that

δη2(t0) +

∫ T

t0

I(t0, s)
−1 E2(s)

T − s
δη1(s) ds = 0 .

Since this holds for arbitrary t0 < T , it follows that for any t < T we have the same relation

δη2(t) +

∫ T

t

I(t, s)−1 E2(s)

T − s
δη1(s) ds = 0 . (7.3)
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Using (7.2) and the inequality |δη1| ≤ M(T − s) in (7.3) and the more precise estimate (6.7), we
then obtain that

|δη2(t)| ≤ M(T − t)−ε
∫ T

t

(T − s)1+ε ds ≤M(T − t)2 . (7.4)

We now notice that, thanks to (6.2) used for both components δη1 and δη2, we have that

∂t|δη|2 = −2
β1(t)

T − t
|δη1|2 + 2

ε1(t) + E2(t)

T − t
δη1 δη2 + 2

α2(t)

T − t
|δη2|2 . (7.5)

Therefore,

∂t|δη|2 ≥ −
2 + Cε

T − t
|δη|2 ,

from which we infer that

|δη(t)|2 ≥ |δη(0)|2 (T − t)2+Cε

T 2+Cε
. (7.6)

Since δη(0) 6= 0, (7.6) and (7.4) allow us to conclude that as t → T , |δη2(t)| is much smaller than
|δη1(t)|, and that

|δη2(t)| = λ(t)|δη1(t)| . (7.7)

with
|λ(t)| ≤ C(M)(T − t)1−Cε2 . (7.8)

We now use (7.8) in (7.5), and conclude that for t ≥ t0 and T − t0 sufficiently small,

∂t|δη|2 ≥ −
2 + 3(T − t)

T − t
|δη1|2 −

√
T − t
T − t

|δη1|2 ≥ −
2 + 2

√
T − t

T − t
|δη|2 ,

and in particular,

∂t

(
|δη|2e

∫ t
t0

2
T−s ds

e
∫ t
t0

2√
T−s ds

)
≥ 0 .

Therefore,

|δη(t)|2 ≥ |δη(t0)|2 (T − t)2

(T − t0)2
e
−

∫ T
t0

2
T−s ds ≥ C(t0)|δη(t0)|2(T − t)2 ,

with C(t0) > 0. From (7.7), we then infer from the previous relation that

|δη1(t)| ≥ D(t0)|δη(t0)|(T − t) ,
with D(t0) > 0. Since δη(T ) = 0, this also means that for all t ∈ (t0, T ),∣∣∣∣η1(x0, t)− η1(x0, T )

t− T
− η1(x1, t)− η1(x1, T )

t− T

∣∣∣∣ ≥ D(t0)|δη(t0)| .

Then, taking the limit as t→ T provides us with the inequality

|v−1 (x0, T )− v−1 (x1, T )| ≥ D(t0)|δη(t0)| ,
which is the same as

|δu−1 (η(x0, T ), T )| ≥ D(t0)|δη(t0)| > 0 . (7.9)

Step 2. δu−1 = 0 at the assumed splash singularity η(x0, T ). Having shown that δu−1 6= 0 at the
splash singularity, in order to arrive at a contradiction, we shall next prove that we also have δu−1 = 0
at the splash singularity.

We now define the following two curves. The first curve γ1(t) is the vertical segment joining
η(x1, t) ∈ Γ1(t) to a point η(z(t), t) ∈ Γ0(t). This segment is contained in full in the closure of
Ω−(t) (for T − t sufficiently small), since the vertical direction is close to the normal direction and
no part of the interface which is horizontally close to η(x1, t) can intersect it (other than η(x1, t)).
The second curve γ2(t) is the portion of Γ0(t) linking η(z(t), t) to η(x0, t).
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γ1(t)

γ2(t)η(x0, t) η(x1, t)

η(z(t), t)

Γ0(t)

Γ1(t)

Figure 5. Since δη2(t) = 0, the η(x0, t) is approaching η(x1, t) horizontally. The
portion of the interface Γ0(t), near η(x0, t), is shown to have an oscillation that may
only disappear in the limit as t→ T .

We now simply write

δu−1 (t) = u−1 (η(x0, t), t)− u−1 (η(z(t), t) + u−1 (η(z(t), t), t)− u−1 (η(x1, t)

= u−1 (η(x0, t), t)− u−1 (η(z(t), t) +

∫
γ1(t)

∇u−1 · τ dl

= u−1 (η(x0, t), t)− u−1 (η(z(t), t) +

∫
γ1(t)

∂u−1
∂x2

dx2 , (7.10)

where we have used that e2 is the tangent vector to γ1(t) in the last equality of (7.10).
Next, we estimate the length of the vertical segment γ1(t), by simply noticing that

|η(x0, t)− η(x1, t)|2 = |η(x0, t)− η(z(t), t)|2 + |η(z(t), t)− η(x1, t)|2

+ 2|η(x0, t)− η(z(t), t)||η(z(t), t)− η(x1, t)| cos θ , (7.11)

where θ denotes the angle between the two vectors η(x0, t) − η(z(t), t) and η(z(t), t) − η(x1, t). By
continuity, the direction of the tangent vector T on Γ0(t) in a small neighborhood of η(x0, t) is very
close to e1; hence, we have that η(x0, t) − η(z(t), t) is in direction close to e1. On the other hand,
η(z(t), t)− η(x1, t) is in the direction e2. Therefore, θ is very close to π

2 which then, in turn, implies
from (7.11) that

|η(x0, t)− η(x1, t)|2 ≥ |η(x0, t)− η(z(t), t)|2 + |η(z(t), t)− η(x1, t)|2

− 1

2
|η(x0, t)− η(z(t), t)||η(z(t), t)− η(x1, t)|

≥ 3

4
|η(x0, t)− η(z(t), t)|2 +

3

4
|η(z(t), t)− η(x1, t)|2 ,

which shows that the square of the length of the vertical segment satisfies

|η(x0, t)− η(z(t), t)|2 ≤4

3
|η(x0, t)− η(x1, t)|2

≤4

3
|η(x0, t)− η(x0, T )− η(x1, t) + η(x1, T )|2

≤4

3

∣∣∣∣∫ t

T

v−(x0, s) ds−
∫ t

T

v−(x1, s) ds

∣∣∣∣2
≤16

3
(T − t)2‖v−‖2L∞(Γ)

.M(T − t)2 . (7.12)

thanks to Lemma 5.1.
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Then, with our estimate (5.9) on
∂u−2
∂x1

and the fact that curlu− = 0, we then have with (7.12)
that ∣∣∣∣∣

∫
γ1(t)

∇u−1 · τ dl

∣∣∣∣∣ . √M (T − t) ε

T − t
= ε
√
M ≤ εM . (7.13)

It remains to estimate the difference u−1 (η(x0, t), t) − u−1 (η(z(t), t) appearing on the right-hand
side of (7.10). Let Γ0 ⊂ Γ denote that portion of the reference interface such that η(·, t) : Γ0 → Γ0(t).
From Lemma 5.1, v− is continuous along Γ0. Next, we have that η is continuous and injective from
γ0 × [0, T ], γ0 being a closed part of Γ0 next to x0, into a closed subset K of the space containing
∪t∈[t0,T ][γ2(t) × {t}]. As a result, η−1 is also continuous and injective from K into γ0 × [t0, T ].

By composition, u− = v− ◦ η−1 is also continuous on K. Therefore, u1(η(x0, t), t) − u1(η(z0(t), t)
converges to zero as t→ T .

With this fact, we can infer from (7.10) and (7.12) that as t→ T

|δu−1 (T )| ≤ εM ,

this being true for any ε > 0. Therefore,

|δu−1 (T )| = 0 ,

which is a contradiction with (7.9).
We shall next explain why a non-singular gradient of the velocity u− also does not allow for a

splash singularity, which will finish the proof of our main result in the case of a single self-intersection.

7.1.2. The case that |∇u−(x, t)| remains bounded. If ‖∇u−(·, t)‖L∞(Ω−(t)) is bounded on [0, T ], we
can still obtain the differential equation δηt(t) = M(t)δη(t) using the same path integral that we used
in the proof of Theorem 6.1, with paths shown in Figure 4; in this case, however, the components
of the matrix M are bounded on [0, T ]. The two components of δηt(t) = M(t)δη(t) are given by
δη1(t) = M11δη1(t) + M12δη2(t) and δη2(t) = M21δη1(t) + M22δη2(t).

Hence, we see that

∂t|δη|2 = 2M11|δη1|2 + 2M12(t) + M21(t)δη1 δη2 + 2M22|δη2|2 .

with Mij bounded for i, j = 1, 2. Therefore,

∂t|δη|2 ≥ −C(M)|δη|2 ,

which then provides

|δη(t)|2 ≥ |δη(0)|2e−C(M)t .

Since δη(0) 6= 0, we then cannot have δη(T ) = 0 for any finite T .

7.2. An arbitrary number (finite or infinite) of splash singularities at time T is not
possible. We assume that an arbitrary number of simultaneous splash singularities occur at time
T > 0. We now focus one of the many possible self-intersection points. To this end, let x0 and x1

be two points in Γ such that η(x0, T ) = η(x1, T ). Let Γ0 ⊂ Γ be a local neighborhood of x0 and let
Γ1 ⊂ Γ be a local neighborhood of x1.

Then, there exists a sequence of points xn0 ∈ Γ0 converging to x0, and of a sequence of points
xn1 ∈ Γ1 converging to x1 such that

dn0 := d(η(xn0 , T ), η(Γ1, T )) 6= 0 , dn1 := d(η(xn1 , T ), η(Γ0, T )) 6= 0 ∀n ∈ N , (7.14)

where d denotes the distance function; otherwise, if (7.14) did not hold, then we would have non
trivial neighborhoods γ0 of x0 and γ1 of x1 such that η(γ0, T ) = η(γ1, T ), which means a splat
singularity occurs at t = T , and we treat that case below in Section 7.3.
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We continue to let e1 denote the tangent direction to Γ(T ) at the splash contact point η(x0, t).
We then have, by the continuity of the tangent vector T to the interface, that for both sequences of
points,

|e1 − T (η(xn0 , T ), T )| ≤ ε , (7.15)

for ε > 0 fixed and n large enough. We now call zn1 the orthogonal projection of η(xn0 , T ) onto
η(Γ1, T ). We then have from (7.14) that

|η(xn0 , T )− zn1 | = dn0 > 0 . (7.16)

Furthermore, we denote by the unit vector en0 the direction of the vector η(xn0 , T ) − zn1 (with base
point at zn1 and “arrow” at η(xn0 , T )). By definition, en0 points in the normal direction to η(Γ1, T )
at zn1 and by (7.15), en0 is close to e2. For each point xn0 , the segment (η(xn0 , T ), zn1 ) is contained in
η(Ω−, T ).

By continuity of η on Γ×[0, T ] we also infer from (7.16) that there exists a connected neighborhood
γn0 of xn0 on Γ, of length Ln > 0, such that for any x ∈ γn0 we have

d(η(x, T ), η(Γ1, T )) ≥ dn0
2

; (7.17)

moreover, the direction of the vector η(x, T )−Pη(Γ1,T )(η(x, T )), normal to η(Γ1, T ) at Pη(Γ1,T )(η(x, T )),
is close to e2, where Pη(Γ1,T ) denotes the orthogonal projection onto η(Γ1, T ).

Note that for each x ∈ γn0 , the segment (η(x, T ), Pη(Γ1,T )(η(x, T ))) is contained in η(Ω−, T ). By
continuity of the direction of these vectors, we then have that

ωn = ∪x∈γn0 (η(x, T ), Pη(Γ1,T )(η(x, T ))) , (7.18)

is an open set contained in η(Ω−, T ). Furthermore, ∂ωn contains the set η(γn0 , T ) of length Ln > 0

η(γn0 , T )

η(γn1 , T )

∂ω̃n

∂ωn
∂ωn

∂ω̃nωn  cusp at η(x0, T )

Figure 6. The open set ωn is contained in the larger open set ω̃n

(as its top boundary), and by continuity of the directions, ∂ωn also contain a connected subset
η(γn1 , T ) of η(Γ1, T ), of length greater than Ln

2 (as its bottom boundary). Because ωn does not
intersect the cusp which occurs at the contact point, we define the open set ω̃n ⊃ ωn, such that the
lateral part of ∂ω̃n is parallel to the lateral part of ∂ωn and connects η(Γ0, T ) and η(Γ1, T ) as shown
in Figure 6.

Next, we introduce the stream functions ψ± such that u±(·, T ) = ∇⊥ψ±, and we recall that u+

(and hence ψ+) has the good regularity in Ω+(T ) given by (3.1). Let Wn be an open set such that
ωn ⊂ Wn ⊂ ω̃n. Let 0 ≤ ϑn ≤ 1 denote a C∞ cut-off function which is equal to 1 in ωn and equal
to 0 on ω̃n/Wn.

We have that ψ− is an H1(Ω−(T )) weak solution of ∆ψ− = 0 in Ω−(T ) and ψ− = ψ+ on ∂Ω−(T ).
Then ϑnψ

− satisfies

−∆(ϑnψ
−) = −ψ−∆ϑn − 2∇ϑn · ∇ψ− , in ω̃n ,

ϑnψ
− = ψ+ on η(Γ0, T ) ∪ η(Γ1, T ) ∩ ∂ω̃n ,
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and as ψ+ ∈ H3.5(η(Γ0, T )) ∪H3.5(η(Γ1, T )), standard elliptic regularity shows that

ψ− ∈ H4(ωn) ,

and therefore that

∇u−(·, T ) ∈ H3(ωn) ⊂ L∞(ωn) . (7.19)

Let Dr
n denote the pre-image of ωn under the map η(·, T ). Let us assume that ∂Dr

n ∩ Γ0 lies to
the right of x0. Since ωn does not intersect the splash singularity at time T , η(·, T ) is bijective and
continuous from Dr

n into ωn, and therefore Dr
n is an open connected set.

Furthermore, ∇u− ◦ η is also continuous on Dr
n × [0, T ] which, thanks to (7.19), shows that for

all t ∈ [0, T ],

‖∇u−(·, t)‖L∞(η(Dr
n,t))
≤Mr

n . (7.20)

We can also choose the sequence xn0 to lie on the left of x0 (otherwise, we would have a splat
singularity). This similarly gives an open neighborhood Dl

n of the same type as Dr
n satisfying for

all t ∈ [0, T ],

‖∇u−(·, t)‖L∞(η(Dl
n,t))
≤Ml

n . (7.21)

We now denote by Crn (respectively Cln) the lateral part of ∂Dr
n (respectively ∂Dl

n) joining Γ0 to
Γ1, and we denote by Kn the open set delimited by Crn; the subset of Γ0 containing x0 linking Crn to
Cln; Cln; and the subset of Γ1 containing x1 linking Cln to Crn.

η(Γ0, T )

η(Γ1, T )

η(Kn, t)

η(Crn, t)

η(Cln, t)

 
η(x0, T )

For n large enough, we will have estimate (7.15) satisfied at any point of ∂Kn ∩Γ, with moreover
the length of ∂Kn ∩Γ being of order ε. This then implies in a way similar to Step 4 of Theorem 5.1,
that ∥∥∥∥∂u−2∂x1

(·, t)
∥∥∥∥
L∞(η(∂Kn∩Γ,t))

≤ ε

T − t
, (7.22)

for any t < T . Moreover, for t close enough to T , the maximum of the two constants Mr
n and Ml

n

of (7.20) and (7.21) will become smaller than ε
T−t . Thus, for any t < T close enough to T ,∥∥∥∥∂u−2∂x1

(·, t)
∥∥∥∥
L∞(η(∂Kn,t))

≤ ε

T − t
,

which by application (for each fixed t < T close enough to T ) of the maximum and minimum

principle for the harmonic function
∂u−2
∂x1

(·, t) on the open set η(Kn, t) provides∥∥∥∥∂u−2∂x1
(·, t)

∥∥∥∥
L∞(η(Kn,t))

≤ ε

T − t
. (7.23)

We can then apply the same arguments as in the Sections 6 and 7.1 to exclude a splash singularity
associated with x0 and x1 simply by working in the neighborhood of size Cε (C bounded from below
away from 0) where (7.23) holds.
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7.3. A splat singularity is not possible. We now assume the existence of a splat singlarity:
there exists two disjoint closed subsets of Γ, which we denote by Γ0 and Γ1, with non zero measure,
such that contact occurs at time T and η(Γ0, T ) = η(Γ1, T ). We furthermore assume that the set

S0 = {x ∈ Γ0 : lim
t→T−

|∇u−(η(x, t), t)| =∞} , (7.24)

has a non-empty interior, and denote by x0 and y0 two distinct points on S0 such that the part γ0

on Γ0 linking x0 to y0 is contained in S0. We denote by L(t) the length of the curve η(γ0)(t), which
is given by

L(t) =

∫
γ0

|η′(x, t)| dl . (7.25)

Now, for any x ∈ S0, limt→T− η
′(x, t) = 0. We also have the uniform bound |η′|L∞(Γ,t) ≤M where

M is independent of t < T . Therefore, by the dominated convergence theorem,

lim
t→T−

L(t) = 0 , (7.26)

which shows that η(x0, T ) = η(y0, T ), which is a contradiction with the fact that η is injective on
Γ0 × [0, T ]. Therefore our assumption that S0 has non-empty interior was wrong, which shows that
this set has empty interior. Therefore the set

B0 = {x ∈ Γ0 : lim
t→T−

|∇u−(η(x, t), t)| <∞} , (7.27)

is dense in Γ0. Furthermore, by Lemma 5.1, |v′(·, t)|L∞(Γ) ≤ M where M is independent of t < T .
Hence, by Lemma 5.2, B0 is defined equivalently as

B0 = {x ∈ Γ0 : |η′(x, T )| > 0} ,

which shows that this set is open on Γ0. Therefore, B0 is an open and dense subset of Γ0.
Now since η is continuous and injective from Γ0×[0, T ] onto its image, it also is a homeomorphism

from Γ0× [0, T ] onto its image, which shows that η(B0, T ) is open and dense in η(Γ0, T ). In a similar
way, we can show that

B1 = {x ∈ Γ1 : lim
t→T
|∇u−(η(x, t), t)| <∞} , (7.28)

is also open and dense in η(Γ1, T ). Now our splat singularity assumption means that η(Γ0, T ) =
η(Γ1, T ), showing that η(B0, T ) and η(B1, T ) are two open and dense sets in η(Γ0, T ) = η(Γ1, T ).
They, therefore, have an open and dense intersection.

Let z be a point in this intersection. By definition, there exists z0 ∈ B0 and z1 ∈ B1 such that
η(z0, T ) = η(z1, T ). We are therefore back to the case where interface self-intersection occurs with
non-singular ∇u− (from the definition of the sets B0 and B1), except that we do not have an estimate
for ∇u− valid for the entire interface Γ(t).

We now consider two open connected curves γ0 ⊂ B0 and γ1 ⊂ B1 such that for any point z0 ∈ γ0

there exist a point z1 ∈ γ1 such that η(z0, T ) = η(z1, T ). For t ∈ [T0, T ), T0 being very close to T ,
these two curves are close to each other, and have tangent vector close to e1, the unit tangent vector
at η(x0, T ) (by taking a subset of each curve if necessary). For ε ∈ (0, 1) fixed, we have that for any
z ∈ γ0 ∪ γ1 and any t ∈ [T0, T ),

|T (η(z, t), t)− e1| ≤ ε . (7.29)

We now define the following two curves. From η(z0, t) we move along the vertical segment C1(t)
joining η(z0, t) to η(Z1(t), t) ∈ η(γ1, t). This vertical segment is contained in Ω−(t) since the tangent
vector to the boundary is near horizontal in the neighborhood we are considering. We next call C2(t)
the curve joining η(Z1(t), t) to η(z1, t) on η(γ1, t). Then
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u−1 (η(z0, t), t)− u−1 (η(z1, t), t) =
[
u−1 (η(z0, t), t)− u−1 (η(Z1(t), t), t)

]
+
[
u−1 (η(Z1(t), t), t)− u−1 (η(z1, t), t)

]
=

∫
C1(t)

∇u−1 · d~r1 +

∫
C2(t)

∇u−1 · d~r2

=

∫
C1(t)

∂u−2
∂x1

dx2 +

∫
C2(t)

τ1
∂u−1
∂x1

+ τ2
∂u−1
∂x2

ds .

We again evaluate these two integrals using the mean value theorem for integrals, together with our
estimates (5.19)–(5.20) for ∇u−. Thanks to (7.29) and the fact that (by restricting our neighbour-
hood if necessary) ∣∣∣∣∣

∫
C2(t)

ds

∣∣∣∣∣ ≤ (1 + ε) |δη1(t)| , (7.30)

we see that

u−1 (η(z0, t), t)− u−1 (η(z1, t), t) =
α12(t)

T − t
δη2(t) + α11(t)δη1(t) , (7.31)

with α12(t) ∈ [−1 − ε, 1 + ε] thanks to our estimates on ∇u− and |α11(t)| ≤ M thanks to the fact
that ∇u− on C2(t) is controlled in L∞ (independently of t ∈ [T0, T )) due to the fact that γ1 ⊂ B1

and our definition (7.28). Similarly,

u−2 (η(z0, t), t)− u−2 (η(z1, t), t) =
α22(t)

T − t
δη2(t) + α21(t)δη1(t) , (7.32)

with α22(t) ∈ [−1− ε, 1 + ε] and |α21(t)| ≤ M.
By solving equation (6.1), we have that

δη(t) = S(M(t))δη(T0) , (7.33)

with

M(t) =

(
α11(t) α12(t)

T−t
α21(t) α22(t)

T−t

)
,

and S(M(t)) denotes the solution operator. Using the mean value theorem, we have that∫ t

T0

M(s) ds =

(
α11(t1(t))(T − t) −α12(t2(t)) log( T−t

T−T0
)

α21(t3(t))(T − t) −α22(t4(t)) log( T−t
T−T0

)

)
,

where each ti(t) ∈ [0, t]. Since δη(T ) = 0, with δη(T0) 6= 0, we must have

lim
t→T

det e
∫ t
T0

M(s) ds
= 0 ,

which then means

lim
t→T

Tr

∫ t

T0

M(s) ds = −∞ .

Since the first row of the matrix has bounded coefficients as t→ T , we see that

lim
t→T
−α22(t4(t)) log(

T − t
T − T0

) = −∞ . (7.34)

Next, by forming the characteristic polynomial of the matrix, we see that the product of the (even-
tually complex conjugate) eigenvalues is

p(t) = −(α11(t1(t))α22(t4(t))− α12(t2(t))α21(t3(t)))(T − t) log(
T − t
T − T0

)→ 0 ,
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as t→ T since each αij term is bounded, whereas the sum of the eigenvalues is

s(t) = α11(t1(t))(T − t)− α22(t4(t)) log(
T − t
T − T0

)→ −∞ ,

as t → T due to (7.34). Therefore, s2 − 4p > 0 for t close enough to T , which implies that the
eigenvalues are real with the asymptotic behaviour

lim
t→T

(
λ1(t)− p(t)

s(t)

)
= 0 , lim

t→T

(
λ2(t) + α22(t4(t)) log(

T − t
T − T0

)

)
= 0 , (7.35)

and with associated corresponding eigenvectors satisfying

lim
t→T

(e1(t)− e1) = 0 , lim
t→T

(e2(t)− e2) = 0 . (7.36)

Therefore

δη(t) = P (t)−1

(
eλ1(t) 0

0 eλ2(t)

)
P (t) δη(T0) , (7.37)

with P (t) denoting a matrix converging to the identity matrix as t→ T thanks to (7.36). Now, let
us assume that

δη1(T0) 6= 0 . (7.38)

From (7.35) and (7.34), we infer that

lim
t→T

eλ1(t) = 1 , lim
t→T

eλ2(t) = 0 , (7.39)

which with (7.37) and the assumption (7.38) provides:

lim
t→T

(δη1(t)− δη1(T0)) = 0 ,

which is a contradiction with δη(T ) = 0. Therefore the assumption (7.38) was wrong, which estab-
lishes that

δη1(T0) = 0 .

This property could have been established from any choice of origin between T0 and T . Thus

∀t ∈ [T0, T ) , δη1(t) = 0 , (7.40)

which shows that the splat contact would occur with a relative motion along the normal to the
surface at the point of contact. Thus,

δη2(T0) 6= 0 , (7.41)

which then in turn implies

lim
t→T

δη2(t)

eλ2(t)
= δη2(T0) ,

i.e.

lim
t→T

(
δη2(t)

(
T − t
T − T0

)α22(t2(t))
)

= δη2(T0) 6= 0 , (7.42)

with α22(t) ∈ [−1 − ε, 1 + ε]. This relation was established for any ε > 0. Therefore, α22 ∈ [−1, 1],
and we can write α22(t2(t)) = −1 + σ(t), with σ ≥ 0. Thus

lim
t→T

(
δη2(t)

T − t

(
T − t
T − T0

)(σ(t))
)

=
δη2(T0)

T − T0
6= 0 . (7.43)

Now since

δη2(t) = δη2(T ) +

∫ t

T

δu−2 (s) ds =

∫ t

T

δu−2 (s) ,
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where δu−2 (s) = u−2 (η(x0, s), s)− u−2 (η(x1, s), s), we obtain with (7.43) that

− lim
t→T

(
δu−2 (T )

(
T − t
T − T0

)(σ(t))
)

=
δη2(T0)

T − T0
6= 0 .

Since
(
T−t
T−T0

)(σ(t))

≤ 1, this then provides us with

|δu2(T )| ≥ |δη2(T0)|
T − T0

> 0 , (7.44)

which shows that contact occurs with a non zero relative normal velocity. Furthermore, from time
differentiating (7.40), we also have that

∀t ∈ [T0, T ) , δu−1 (t) = 0 , (7.45)

which shows that contact occurs in the normal direction. The same occurs for any point of γ0 and
γ1. Since u− and T are continuous along η(γ0, [T0, T ]) and η(γ1, [T0, T ]) (the part on u− resulting
from γ0 ⊂ B0 and γ1 ⊂ B1), by restricting if necessary our neighborhoods we can assume that the
tangential vector τ is always at a distance less than ε from e1, and that the difference of velocities
field δu is at a distance less than ε from some C0e2 (C0 6= 0).

We now call ω(t) the rectangle-like subset of Ω−(t) whose boundary is made with η(γ0, t), η(γ1, t)
and the two vertical-like curves joining the extremities of η(γ0, t) and η(γ1, t).

We note that the horizontal like sides of this rectangle like domain are with a length greater than
some L > 0 (independent of t close to T ), whereas the vertical ones are of length less than 2C0δt.

We now notice that ∫
ω(t)

∂u−2
∂x2

dx =

∫
∂ω(t)

u−2 n2dl(t) = O(C0L) as t→ T . (7.46)

Similarly, ∣∣∣∣∣
∫
ω(t)

∂u−1
∂x1

dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂ω(t)

u−1 n1dl(t)

∣∣∣∣∣ ≤ CLε+ 4|C0|δt‖u−‖L∞ . (7.47)

Comparing (7.46) and (7.47) (due to the divergence free condition), we find that

|C0|L ≤ CLε+ 4|C0|δt‖u−‖L∞

which is a contradiction for ε < C
|C0| and δt small enough. This establishes the impossibility of a

splat contact at time T .
Furthermore, we see the analysis was done only in a subset of an eventual splat: This means

any combination of splats and splashes at time T is excluded (since the above study can be done
on an individual splat without change). This finishes the proof of our exclusion of splat or splash
singularities in finite time.
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