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Abstract

In fluid dynamics, an interface splash singularity occurs when a locally smooth
interface self-intersects in finite time. Bymeans of elementary arguments, we prove
that such a singularity cannot occur in finite time for vortex sheet evolution, that is
for the two-phase incompressible Euler equations. We prove this by contradiction;
we assume that a splash singularity does indeed occur in finite time. Based on
this assumption, we find precise blow-up rates for the components of the velocity
gradient which, in turn, allow us to characterize the geometry of the evolving
interface just prior to self-intersection. The constraints on the geometry then lead
to an impossible outcome, showing that our assumption of a finite-time splash
singularity was false.
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1. Introduction

1.1. The Interface Splash Singularity

The fluid interface splash singularity was introduced by Castro et al. in [11].
A splash singularity occurs when a fluid interface remains locally smooth but self-
intersects in finite time. For the two-dimensional water waves problem, Castro
et al. [11] showed that a splash singularity occurs in finite time using methods
from complex analysis together with a clever transformation of the equations. In
Coutand and Shkoller [18], we showed the existence of a finite-time splash
singularity for the water waves equations in two or three-dimensions (and, more
generally, for the one-phase Euler equations), using a very different approach,
founded upon an approximation of the self-intersecting fluid domain by a sequence
of smooth fluid domains, each with non self-intersecting boundary.

1.2. The Two-Fluid Incompressible Euler Equations

A natural question, then, is whether a splash singularity can occur for vortex
sheet evolution, in which two phases of the fluid are present. Consider the two-
phase incompressible Euler equations: let D ⊆ R

2 denote an open, bounded set,
which comprises the volume occupied by two incompressible and inviscid fluids
with different densities. At the initial time t = 0, we let �+ denote the volume
occupied by the lower fluid with density ρ+ and we let �− denote the volume
occupied by the upper fluid with density ρ−. Mathematically, the sets �+ and
�− denote two disjoint open bounded subsets of D such that D = �+ ∪ �− and
�+ ∩ �− = ∅. The material interface at time t = 0 is given by � := �+ ∩ �−,
and ∂D = ∂(�− ∪�+)/�. (We can also consider the case that�+ = T× (−1, 0),
�− = T × (0, 1), and � = T × {0}).

For time t ∈ [0, T ] for some T > 0 fixed, �+(t) and �−(t) denote the
time-dependent volumes of the two fluids, respectively, separated by the moving
material interface �(t). Let u± and p± denote the velocity field and pressure func-
tion, respectively, in �±(t). A planar vortex sheet �(t) evolves according to the
incompressible and irrotational Euler equations:

ρ±(u±
t + u± · Du±) + Dp± = −ρ±ge2 in �±(t), (1.1a)

curl u± = 0, div u± = 0 in �±(t), (1.1b)

p+ − p− = σH on �(t), (1.1c)

(u+ − u−) · N = 0 on �(t), (1.1d)

u− · N = 0 on ∂D, (1.1e)
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Fig. 1. Two examples of the evolution of a vortex sheet �(t) by the Euler equations. The
two fluid regions are denoted by �+(t) and �−(t)

u(0) = u0 on {t = 0} × D, (1.1f)

V(�(t)) = u+(t) · N (t), (1.1g)

where V(�(t)) denotes the speed of the moving interface �(t) in the normal direc-
tion, and N (·, t) denotes the outward-pointing unit normal to �(t) (pointing into
�−(t)), N denotes the outward-pointing unit normal to the fixed boundary ∂D, g
denotes gravity, and e2 is the vertical unit vector (0, 1). Equation (1.1g) indicates
that �(t) moves with the normal component of the fluid velocity. The variables
0 < ρ± denote the densities of the two fluids occupying �±(t), respectively, H(t)
is twice the mean curvature of �(t), and σ > 0 is the surface tension parameter
which we will henceforth set to one. For notational simplicity, we will also set
ρ+ = 1 and ρ− = 1 (Fig. 1).

Via an elementary proof by contradiction, we prove that a finite-time splash
singularity cannot occur for vortex sheets governed by (1.1). We rule-out a single
splash singularity in which one self-intersection occurs, as well as the case that
many (finite or infinite) simultaneous self-intersections occur. We also rule-out a
splat singularity, wherein the interface �(t) self-intersects along a curve (see [11]
and [18] for a precise definition).

1.3. Outline of the Paper

In Section 2, we introduce Lagrangian coordinates (using the flow of u−) for
the purpose of fixing the domain and the material interface. Rather than using an
arbitrary parameterization of the evolving interface �(t), we specifically use the
Lagrangian parameterization which has some important features for our analysis
that general parameterizations do not. With this parameterization defined, we state
the main theorem of the paper in Section 3 which states that a finite-time splash sin-
gularity cannot occur in this setting. In Section 4, we derive the evolution equations
for the vorticity along the interface as well as the evolution equation for the tangen-
tial derivative of the vorticity; the latter plays a fundamental role in our analysis. In
particular, under the assumption that the tangential derivative of vorticity blows-up
in finite time, we find the precise blow-up rates for the components of ∇u−(·, t).
Letting η(·, t) : � → �(t) denote the Lagrangian parameterization of the vortex
sheet, and supposing that the two reference points x0 and x1 in � evolve toward
one another so that |η(x0, t) − η(x1, t)| → 0 as t → T , in Section 6, we find the
evolution equation for the distance δη(t) = η(x0, t) − η(x1, t) between the two
contact points. We can determine that the two portions of the curve �(t) converge
towards self-intersection in an essentially horizontal approach.
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Finally, using the evolution equation for δη(t), we prove our main theorem
in Section 7; in particular, we show that our assumption of a finite-time self-
intersection of the curve �(t) as t → T leads to the following contradiction: we
first show that u−

1 (η(x0, T ), T ) − u−
1 (η(x1, T ), T ) = 0, where u−

1 = u− · e1
and e1 is the tangent vector at η(x0, T ), and then we proceed to show that
u−
1 (η(x0, T ), T ) − u−

1 (η(x1, T ), T ) 	= 0. We first arrive at this contradiction for a
single splash singularity, meaning that one self-intersection point exists for �(T );
then, we proceed to prove that a finite (or even infinite) number of self-intersections
also cannot occur. We conclude by showing that a splat singularity, wherein �(T )

self-intersects along a curve rather than a point, also cannot occur.

1.4. A Brief History of Prior Results

1.4.1. Local-in-TimeWell-Posedness We begin with a short history of the local-
in-time existence theory for the free-boundary incompressible Euler equations. For
the irrotational case of thewaterwaves problem, and for twodimensional fluids (and
hence one dimensional interfaces), the earliest local existence results were obtained
byNalimov [31],Yosihara [41], and Craig [12] for initial data near equilibrium.
Beale et al. [8] proved that the linearization of the two dimensional water wave
problem is well-posed if the Rayleigh–Taylor sign condition ∂p

∂n < 0 on�×{t = 0}
is satisfied by the initial data (see [33] and [36]). Wu [37] established local well-
posedness for the two dimensional water waves problem and showed that, due to
irrotationality, the Taylor sign condition is satisfied. LaterAmbrose andMasmoudi
[5], proved local well-posedness of the two dimensional water waves problem as
the limit of zero surface tension. Disconzi and Ebin [20,21] have considered
the limit of surface tension tending to infinity. For three dimensional fluids (and
two dimensional interfaces),Wu [38] usedClifford analysis to prove local existence
of the three dimensional water waves problem with infinite depth, again showing
that the Rayleigh–Taylor sign condition is always satisfied in the irrotational case
by virtue of the maximum principle holding for the potential flow. Lannes [29]
provided a proof for the finite depth case with varying bottom. Recently, Alazard
et al. [1] have established low regularity solutions (below the Sobolev embedding)
for the water waves equations. See also [6,7].

The first local well-posedness result for the three dimensional incompressible
Euler equations without the irrotationality assumption was obtained by Lindblad
[30] in the case that the domain is diffeomorphic to the unit ball using a Nash–
Moser iteration, following the a prior estimates of [15]. Coutand and Shkoller
[16] proved local well-posedness for arbitrary initial geometries that have at least
H3-class boundaries without derivative loss; see also [17]. Shatah and Zeng
[34] established a priori estimates for this problem using an infinite-dimensional
geometric formulation, and Zhang and Zhang [42] proved well-posedness by
extending the complex-analytic method of Wu [38] to allow for vorticity. Again,
in the latter case the domain was with infinite depth.

1.4.2. Long-Time Existence It is of great interest to understand if solutions to
the Euler equations can be extended for all timewhen the data is sufficiently smooth
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and small, or if a finite-time singularity can be predicted for other types of initial
conditions.

Because of irrotationality, the water waves problem does not suffer from vor-
ticity concentration; therefore, singularity formation involves only the loss of reg-
ularity of the interface or interface collision. In the case that the irrotational fluid is
infinite in the horizontal directions, certain dispersive-type properties can be made
use of. For sufficiently smooth and small data, Alvarez-Samaniego and Lannes
[4] proved existence of solutions to the water waves problem on large time-intervals
(larger than predicted by energy estimates), and provided a rigorous justification
for a variety of asymptotic regimes. By constructing a transformation to remove the
quadratic nonlinearity, combined with decay estimates for the linearized problem
(on the infinite half-space domain), Wu [39] established an almost global exis-
tence result (existence on time intervals which are exponential in the size of the
data) for the two dimensional water waves problem with sufficiently small data.
In a different framework, Alazard et al. [1] have also proven this result. Using
position-velocity potential holomorphic coordinates, Hunter et al. [25] have also
proved almost global existence of the two dimensional water waves problem.

Wu [40] proved global existence in three dimensional for small data. Using
the method of spacetime resonances, Germain et al. [24] also established global
existence for the three dimensional irrotational problem for sufficiently small data.
More recently, global existence for the two dimensional water waves problem with
small data was established by Ionescu and Pusateri [28], Alazard and Delort
[2,3], and Ifrim and Tataru [26,27].

1.4.3. TheFinite-TimeSplash andSplat Singularity The finite-time splash and
splat singularities were introduced by Castro et al. [11]; therein, using methods
from complex analysis, they proved that a locally smooth interface can self-intersect
in finite time for the two dimensional water waves equations and hence established
the existence of finite-time splash and splat singularities (see also [9] and [10]). In
Coutand and Shkoller [18], we established the existence of finite-time splash
and splat singularities for the two dimensional and three dimensional water waves
and Euler equations (with vorticity) using an approximation of the self-intersecting
domain by a sequence of standard Sobolev-class domains, each with non self-
intersecting boundary. Our approach can be applied to many one-phase hyperbolic
free-boundary problems, and shows that splash singularities can occur with sur-
face tension, with compressibility, with magnetic fields, and for many one-phase
hyperbolic free-boundary problems.

Recently, Fefferman et al. [22] have proven that a splash singularity can-
not occur for planar vortex sheets (or two-fluid interfaces) with surface tension.
Their proof relies on a sophisticated harmonic analysis of the integral kernel of the
Birkhoff–Rott equation. Other than vortex sheet evolution for the two-phase Euler
equations, it is of interest to determine the possibility of finite-time splash singulari-
ties for other fluids models. In this regard,Gancedo and Strain [23] have recently
shown that a finite-time splash singularity cannot occur for the three-phase Muskat
equations. In addition to the study of other fluids models, it is also of great interest
to determine amechanism for the loss of regularity of the evolving interface, which,
in turn, could allow for finite-time self-intersection.
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Fig. 2. The mapping η(·, t) fixes the two fluid domains and the interface. The moving
interface �(t) is the image of � by η(·, t)

2. Fixing the Fluid Domains Using the Lagrangian Flow of u−

Let η̃ denote the Lagrangian flow map of u− in �− so that η̃t (x, t) =
u−(η̃(x, t), t) for x ∈ �− and t ∈ (0, T ), with initial condition η̃(x, 0) = x
(Fig. 2). Since div u− = 0, it follows that det∇η̃ = 1. By a theorem of [19], we
define 	 : �+ → �+(t) as incompressible extension of η̃, satisfying det∇	 = 1
and ‖	‖Hs (�+) � C‖η−|�‖Hs−1/2(�) for s > 2. We then set

η(x, t) =
{

η̃(x, t), x ∈ �−
	(x, t), x ∈ �+ .

We define the following quantities set on the fixed domains and boundary:

v± = u± ◦ η, in �± × [0, T ],
q± = p± ◦ η, in �± × [0, T ],
A = [∇η]−1, in D × [0, T ],
H = H ◦ η, on � × [0, T ],
δv = v+ − v−, on � × [0, T ].

The momentum equations (1.1a) can then be written on the fixed domains �±
as

v+
t + ∇v+ A (v+ − 	t ) + AT∇q+ = −ge2 in �+ × [0, T ], (2.1a)

v−
t + AT∇q− = −ge2 in �− × [0, T ], (2.1b)

and the pressure jump condition (1.1c) is δq = H on � × [0, T ], where δq =
q+ − q−.

Using theEinstein summation convention, [∇v+ A (v+−	t )]i = v+i
,r Ar

j (v
+
j −

∂t	 j ). This is the advection term; when 	 is the identity map, we recover the
Eulerian description, while if 	 is the Lagrangian flow map, then we recover the
Lagrangiandescription.The form (2.1.a) is called theArbitraryLagrangianEulerian
(ALE) description of the fluid flow in �+

3. The Main Result

In [13,14], we proved that if at time t = 0, u±
0 ∈ Hk(�±) and � of class

Hk+1 for integers k � 3, then there exists a solution (u±(·, t), �(t)) of the system
(1.1) satisfying u± ∈ L∞(0, T0; Hk(�±(t))) with �(t) being of class Hk+1, for
all t ∈ [0, T0], for some T0 > 0. (See also [35] and [32]).
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Theorem 3.1. (No finite-time splash singularity). Let D be a bounded domain of
class H4. We assume the existence of a closed curve � ⊂ D of class W 4,∞ which
does not self-intersect and such that D = �+ ∪ � ∪ �−, where the open sets �+
and �− are connected and disjoint and do not intersect �. Our assumption of non
self-intersection means that �+ and �− are both (locally) on one side of �.

Let u± be a solution to (1.1) on [0, T ) such that u± ∈ H3(�±(t)) and �(t) is
of class W 4,∞ for each t ∈ [0, T ). Suppose that

(1) �+(t) and �−(t) are both (locally) on one side of �(t) for all t ∈ [0, T );
(2) there exists a constant 0 < M < ∞, such that

for all t ∈ [0, T ), dist(�(t), ∂D) >
1

M .

and
sup

t∈[0,T )

(∥∥u+(·, t)∥∥W 2,∞(�(t)) + ‖H(·, t)‖W 2,∞(�(t))

)
< M. (3.1)

Then �(t) cannot self-intersect at time t = T ; that is, there does not exist a
finite-time splash singularity.

Note, that we give a precise definition for the Wk,∞(�(t))-norm below in Def-
inition 4.1.

Remark 1. The condition (1) in Theorem 3.1, requiring �+(t) and �−(t) to both
(locally) be on one side of �(t) for all t ∈ [0, T ), is equivalent to requiring the
chord-arc function to be strictly positive for all t in [0, T ) (without specifying a
lower bound as t → T , other than 0).

Remark 2. In Theorem 3.1, we have assumed that D = �+(t) ∪ �(t) ∪ �−(t) is
a bounded domain simply because the local well-posedness theorem for the two-
phase Euler equations given in [13] used such a geometry; however, as our proof
by contradiction relies on a local analysis in a spacetime region near an assumed
point (or points) of self-intersection of the curve �(t), we can also treat the case
that our two fluids occupy all of R2 or occupy a channel geometry with periodic
boundary conditions in the horizontal direction.

As part of condition (2) in Theorem 3.1 for the case that D is bounded, we
assume that dist(�(t), ∂D) > 1

M so that the moving interface �(t) stays away
from the fixed domain boundary ∂D.

4. Evolution Equations on � for the Vorticity and Its Tangential Derivative

4.1. Geometric Quantities Defined on � and �(t)

We set

N (x, t) = unit normal vector field on �(t), n = N ◦ η

T (x, t) = unit tangent vector field on �(t), τ = T ◦ η.
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We choose the unit-normal N (·, t) to point into �−(t). In a sufficiently small
neighborhood U of the material interface � at t = 0, we choose a local chart
θ : B(0, 1) → U . The unit ball B(0, 1) has coordinates (x1, x2), and θ : {(x1, x2) :
x2 = 0} → U ∩ �, θ{(x1, x2) : x2 > 0} → U ∩ �−, and θ{(x1, x2) : x2 <

0} → U ∩ �+. In order to define a tangent vector, we also assume that the length
|θ ′(x1, 0)| of the vector θ ′(x1, 0) is bounded away from 0 by some constant C > 0.
For notational convenience in our computations, we shall write η ◦ θ simply as η.
We define

G(x, t) = |η′(x, t)|−1, where (·)′ = ∂(·)/∂x1.
Hence,

τ(x, t) = Gη′(x, t), n(x, t) = Gη′⊥(x, t), x⊥ = (−x2, x1). (4.1)

On �(t), we let∇T denote the tangential derivative, that is, the derivative in the
direction of the unit tangent vector T . Let f denote any Eulerian quantity. Then,
by the chain-rule,

(∇T f ) ◦ η = G( f ◦ η)′. (4.2)

Definition 4.1. (Wk,∞(�(t))-norm). For a function f (·, t) : �(t) → R and inte-
gers k � 0, we define

‖ f (·, t)‖Wk,∞(�(t)) =
k∑

i=0

‖∇ i
T f (·, t)‖L∞(�(t)).

Remark 3. From our assumed bounds (3.1) we have that |∇T u+| � M. Since
div u+ = 0, we have that |∇Nu+ · N | = |∇T u+ · T | � M, and since curl u+ = 0,
|∇Nu+ · T | = | − ∇T u+ · N | � M, which shows that

‖∇u+‖L∞(�(t)) � M (4.3)

(where the norm of a matrix is chosen to be the maximum of the absolute value of
all four components).

Remark 4. We now define φ to be the flow map of u+ in �+. With the chart
θ introduced above, and with x = (x1, 0), we then infer from φt (θ(x), t) =
u+(φ(θ(x), t), t) that

[φt (θ(x), t)]′ = ∇u+(φ(θ(x), t), t) [φ(θ(x), t)]′.
Therefore,

d

dt

∣∣[φ(θ(x), t)]′∣∣2 = 2[φ(θ(x), t)]′ · (∇u+(φ(θ(x), t), t) [φ(θ(x), t)]′)
� −4M|[φ(θ(x), t)]′|2,

where the inequality follows from (4.3). Thus

|[φ(θ(x), t)]′|2 � e−4Mt |θ ′(x)|2 � e−4MtC2 > 0. (4.4)
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Therefore, the unit tangent vector to �(t) can be defined simply as

T (φ(θ(x), t)) = [φ(θ(x), t)]′
|[φ(θ(x), t)]′| ,

or with our notational convention of writing φ ◦ θ simply as φ,

T (φ) = φ′

|φ′| .

Remark 5. Using the same argument as in Remark 4, if ‖∇u−(·, t)‖L∞(�(t))

is bounded from above (which is the case for t < T for a solution u− ∈
L∞(0, T ; H3(�−(t))) so long as there is no self-intersection of �(t)), then the
flow map η of u− satisfies an identity similar to (4.4), ensuring that the definition
of G(x, t) is well-defined for all t ∈ [0, T ).

4.2. Evolution Equation for the Vorticity on �

Equation (2.1a) is v+
t +∇v+ A (v+−	t )+ AT∇q+ = −ge2. By definition, on

�,	t = v−, so that v+−	t = δv. Since δv ·n = 0 on�, we see that δv = (δv ·τ)τ .
Hence, the advection termcan bewritten (using theEinstein summation convention)
as ∂v+

∂xr
Ar
jτ j (δv · τ). From (4.1), τ j = Gη′

j which in our local coordinate system is

the same as G
∂η j
∂x1

. Since A = [∇η]−1, we see that Ar
j

∂η j
∂x1

= δr1, where δr1 denotes
the Kronecker delta.

It follows that on �, (2.1a) takes the form

v+
t + Gv+′

δv · τ + AT∇q+ = −ge2. (4.5)

Equation (2.1b) does not have the advection term, and remains the same on �.
Subtracting (2.1b) from (4.5a), taking the scalar product of this difference with τ ,
and using that δq = H, yields

δvt · τ + Gv+′ · τ(δv · τ) + GH′ = 0,

from which it follows that

(δv · τ)t + Gv+′ · τ(δv · τ) + GH′ = 0 on � × [0, T ), (4.6)

where we have used the fact that τt = G(v′ · n)n and δv · n = 0. Using (4.2), we
write (4.6) as

(δv · τ)t + [∇T u
+ · T ◦ η](δv · τ) + ∇T H ◦ η = 0 on � × [0, T ). (4.7)

4.3. Evolution Equation for Derivative of Vorticity ∇T δu · T
On �, we denote the tangential derivative by ∇T . The chain-rule (4.2) shows

that the tangential derivative of vorticity along particle trajectories can be written as
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[∇T δu · T ] ◦ η = Gδv′ · τ. (4.8)

Our analysis will rely on the evolution equation for Gδv′ · τ . By differentiating
(4.7), we find that

(δv′ · τ)t + [Gv+′ · τ ](δv′ · τ) + (δv · τ)[Gv+′ · τ ]′ + (GH′)′ = 0. (4.9)

Defining our “forcing function” A to be

A = (δv · τ)G[Gv+′ · τ ]′ + G(GH′)′

= (δv · τ)∇T (∇T u
+ · T ) ◦ η + ∇T (∇T H) ◦ η, (4.10)

we see that Equation (4.9) is simply

(δv′ · τ)t + Gv+′ · τ(δv′ · τ) + G−1A = 0. (4.11)

Multiplying (4.11) by G and commuting G with the time-derivative shows that

(Gδv′ · τ)t + G(v−′ · τ + v+′ · τ)(Gδv′ · τ) + A = 0.

Writing v−′ · τ = −δv′ · τ +v+′ · τ , we arrive at the desired evolution equation
(Gδv′ · τ)t − (Gδv′ · τ)2 + 2Gv+′ · τ(Gδv′ · τ) + A = 0. (4.12)

Notice that the coefficient 2Gv+′ · τ = 2∇T u+ · T ◦ η, as well as the forcing
functionA, are both bounded as a consequence of our assumed bounds (3.1) on u+
and the parameterization of z(·, t) of �(t).

Remark 6. In [22], Fefferman et al. use the notation z(α, t) to denote a smooth
parameterization of �(t). In our analysis, we will make use of the Lagrangian
parameterization η(x, t) of �(t) for points x in the reference curve �. Our notation
η′ corresponds to ∂αz in [22]. Furthermore, our δv · τ is the same as ω

|∂αz| in [22].

The tangential derivative of vorticity [∇T δu ·T ]◦η corresponds to ∂α

(
ω

|∂αz|
)

/|∂αz|
in [22].

5. Bounds for ∇u− and the Rate of Blow-up

Lemma 5.1. Assuming (3.1),

sup
t∈[0,T ]

‖v−(·, t)‖W 1,∞(�) � M. (5.1)

Proof. With τ0 = τ(x, 0), solving (4.7) using an integrating factor, we find that

δv · τ = δu0 · τ0 exp

(
−

∫ t

0
Gv+′ · τ

)
− exp

(
−

∫ t

0
Gv+′ · τ

)
∫ t

0
∇T H ◦ η exp

(∫ s

0
Gv+′ · τ

)
ds. (5.2)



No Splash Singularities for Vortex Sheets 997

We set I(t) = exp
(∫ t

0 ‖Gv+′ · τ‖L∞(�)

)
. Since Gv+′ · τ = [∇T u+ · T ] ◦ η,

by (3.1), I(t) is bounded. It follows from (5.2) that

‖δv · τ(·, t)‖L∞(�) � I(t)‖δu0‖L∞(�) + I(t)
∫ t

0
‖∇T H ◦ η‖L∞(�).

Again from (3.1), the tangential derivative of the mean curvature ∇T H ∈
W 1,∞(�) so we see that ‖δv · τ(·, t)‖L∞(�) is bounded.

Next, as δv · n = 0, and v+ · n is bounded according to (3.1), we find that
‖v−(·, t)‖L∞(�) � M for all t ∈ [0, T ]. Then, from (4.11),

δv′ · τ = δu′
0 · τ0 exp

(
−

∫ t

0
Gv+′ · τ

)
− exp

(
−

∫ t

0
Gv+′ · τ

)
∫ t

0
G−1A exp

(∫ s

0
Gv+′ · τ

)
ds,

so that with G−1 = |η′|,

‖δv′ · τ(·, t)‖L∞(�) � I(t)‖δu′
0 · τ0‖L∞(�) + I(t)

∫ t

0
‖|η′(·, s)|A(·, s)‖L∞(�)ds.

(5.3)

From the fundamental theorem of calculus,

|η′(·, s)| � |η′(·, 0)| +
∫ s

0
|v−′

(·, r)|dr

� |η′(·, 0)| +
∫ s

0
|v+′

(·, r)|dr +
∫ s

0
|δv′(·, r)|dr

� M +
∫ s

0
|δv′(·, r) · n(·, r)|dr +

∫ s

0
|δv′(·, r) · τ(·, r)|dr,

where we have used our assumed bounds (3.1) for the last inequality. Next, since
δv · n = 0 on �, we see that δv′ · n = −δv · n′; as n′ = (H ◦ η)τ , and as
‖H ◦ η(·, t)‖L∞(�) and ‖δv · τ(·, t)‖L∞(�) are bounded, we see from (5.3) that

‖δv′ · τ(·, t)‖L∞(�) � M + TM
∫ t

0
‖δv′ · τ(·, s)‖L∞(�)ds.

By taking the convention that � incorporates T (which we view in this paper
as a given constant, namely the eventual finite-time of self-intersection), this shows
that

‖δv′ · τ(·, t)‖L∞(�) � M + M
∫ t

0
‖δv′ · τ(·, s)‖L∞(�)ds.

Hence, by Gronwall’s inequality, supt∈[0,T ] ‖δv′ · τ(·, t)‖L∞(�) is bounded.
We have already shown that supt∈[0,T ] ‖δv′ · n(·, t)‖L∞(�) is bounded; thus,
supt∈[0,T ] ‖δv′‖L∞(�) is bounded, from which we may conclude that
‖v−′

(·, t)‖L∞(�) � M for all t ∈ [0, T ]. ��
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Remark 7. Note that u− is Lipschitz continuous, uniformly on any time interval
[0, t] with t < T . This, in turn, allows us to define the Lagrangian flow map η in a
classical sense for any time interval [0, t] for t < T . We then extend this definition
of η to the time interval [0, T ] by η(x, T ) = x + ∫ T

0 v−(x, s)ds by the bounds in
Lemma 5.1.

Lemma 5.2. Assuming (3.1),

sup
t∈[0,T ]

‖∇u−(·, t)‖L∞(η(�−,t)) � M
min� |η′(·, t)| . (5.4)

Proof. From (4.8) and Lemma 5.1, ‖[∇T δu · T ] ◦ η‖L∞(�) � M/min� |η′(·, t)|.
Then, we see that maxy∈η(�,t) |∇T δu · T | � M/min� |η′(·, t)|. Hence, with our
assumed bounds (3.1),

max
y∈η(�,t)

∣∣∇T u
− · T ∣∣ � M

min� |η′(·, t)| . (5.5)

Next, as δu · N = 0 (where recall that δu = u+ − u− on �(t)), we have the
identity 0 = ∇T (δu · N ) = (∇T δu) · N + δu · ∇T N ; hence, we see that

∇T u
− · N = ∇T u

+ · N + δu · ∇T N .

Lemma 5.1 provides us with L∞(�) control of u−; hence, with (3.1), it follows
that

max
y∈η(�,t)

∣∣[∇T u
− · N ](y)∣∣ � M. (5.6)

The inequalities (5.5) and (5.6) together with the fact that div u− = curl u− = 0
in η(�−, t) implies that for any t < T ,

‖∇u−(·, t)‖L∞(η(�,t)) � M
min� |η′(·, t)| . (5.7)

As �∇u− = 0 in η(�−, t), the maximum and minimum principle applied to
each component of ∇u−, together with (5.7), provide the inequality (5.4). ��
Remark 8. As a consequence of Lemma 5.2, we see that supy∈�(t)

‖∇u−(y, t)‖L∞(η(�−,t)) → ∞ as t → T if and only if limt→T |η′(x, t)| → 0
for some x ∈ �. If we assume that there are distinct points x0, x1 ∈ � which come
into contact, such that η(x0, T ) = η(x1, T ) and that such an intersection point
is unique at time t = T , then |∇u−(·, t)| can only blow-up at the contact point
η(x0, T ).

The explanation is as follows: since u− is harmonic, by using a smooth cut-off
function ϕ whose support does not intersect η(x0, T ), and proceeding as in the
proof of (5.40) (just after (5.30)), elliptic estimates show that |∇u−(x, t)| must be
bounded for x ∈ spt(ϕ), namely away from x0.

Next, suppose that |∇u−(η(x0, t), t)| remains bounded as t → T ; then, by
employing a similar argument as we used to establish (4.4) (considering now the
flow η of u−), we obtain that |η′(x0, t)| � λ > 0 as t → T for some constant
λ. By continuity of η′, this means that |η′(x, t)| > 0 in a small neighborhood of
η(x0, t) which means that, by Lemma 5.2, |∇u−(x, t)| cannot blow-up as t → T
for x close to x0.
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Theorem 5.1. With the assumed bounds (3.1), if there is a sequence tn → T such
that

max
x∈�

|[∇T δu · T ](η(x, tn), tn)| → ∞, (5.8)

then for 0 < ε � 1, there exists t0(ε) such that T − t0(ε) < ε and

max
y∈η(�−,t)

|∇u−(y, t)| � 1 + ε

T − t
∀t ∈ [t0(ε), T ). (5.9)

Furthermore, if there exists a unique point of �(T ) such that there are two
distinct points x0, x1 ∈ � with η(x0, T ) = η(x1, T ) with tangent vector to �(T )

at η(x0, T ) given by e1, then

max
y∈η(�−,t)

∣∣∣∣∣
∂u−

2

∂x1
(y, t)

∣∣∣∣∣ � ε

T − t
∀t ∈ [t0(ε), T ). (5.10)

Remark 9. We note that 0 < ε � 1 is a fixed positive constant which only depends
on the initial data and the boundM in (3.1). Note also that t0(ε) depends on ε, and
will be chosen closer and closer to T in the course of the proof, and is eventually
fixed as a function of ε.

Proof. Step 1. Blow-up rate for the derivative of vorticity [∇T δu ·T ](η(x0, t), t) as
t → T . We first suppose that for some x0 ∈ �, |[∇T δu · T ](η(x0, tn), tn)| → ∞,
and establish that [∇T δu · T ](η(x0, t), t) (which, recall, equals Gδv′ · τ(x0, t)) has
a precise blow-up rate.

We set

X(x0, t) = Gδv′ · τ(x0, t),

and define the coefficient function

A(x0, t) = 2Gv+′ · τ(x0, t).

Then, (4.12) reads

Xt (x0, t) − X2(x0, t) + A(x0, t)X(x0, t) = −A(x0, t), (5.11)

where A(x, t) is defined in (4.10). This equation can be written as[
exp

∫ t

0
A(x0, s)ds X(x0, t)

]
t
− exp

∫ t

0
A(x0, s)ds X

2(x0, t)

= − exp
∫ t

0
A(x0, s)ds A(x0, t)

so that∫ t

0
exp

(∫ s

0
A(x0, r)dr

)
X2(x0, s)ds=exp

(∫ t

0
A(x0, s)ds

)
X(x0, t)−X(x0, 0)

+
∫ t

0
exp

(∫ s

0
A(x0, r)dr

)
A(x0, s)ds.

(5.12)
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Thanks to (3.1),A(x0, t) has a minimum and maximum on [0, T ]. Hence, there are
positive constants c1, c2, c3 such that for any t ∈ [0, T ),

c1

∫ t

0
X2(x0, s)ds − c3 � X(x0, t) � c2

∫ t

0
X2(x0, s)ds + c3,

and by (5.8), the limit as t → T is well-defined and

lim
t→T

X(x0, t) = ∞. (5.13)

For t > t̄0 sufficiently close to T , we can then divide (5.11) byX2, and integrate
from t̄0 to t , to find that

− 1

X(x0, t)
+ 1

X(x0, t̄0)
− t + t̄0 +

∫ t

t0

(
A(x0, s)

X(x0, s)
+ A(x0, s)

X2(x0, s)

)
ds = 0.

Using the limit in (5.13),

1

X(x0, t̄0)
− T + t̄0 +

∫ T

t0

(
A(x0, s)

X(x0, s)
+ A(x0, s)

X2(x0, s)

)
ds = 0, (5.14)

from which we obtain the following identity: for t ∈ [t0, T ),

X(x0, t) =
[
T − t −

∫ T

t

(
A(x0, s)

X(x0, s)
+ A(x0, s)

X2(x0, s)

)
ds

]−1

, (5.15)

since we can replace t0 with t in (5.14).
From (5.13), this formula implies that the integrand is small as t is close to T ,

and then provides the rate of blow-up:

lim
t→T

X(x0, t)(T − t) = 1.

Using (3.1), we see that

lim
t→T

[∇T u
− · T ](η(x0, t), t) (T − t) = −1. (5.16)

Step 2. Maximum of vorticity derivative blows-up on �(t). Having established the
blow-up rate for [∇T δu ·T ](η(x0, t), t), we shall next prove that for any t ∈ [0, T ),
the quantity maxx∈�[∇T δu · T ](η(x, t), t) (which equals maxx∈� Gδv′ · τ(x, t))
has the same blow-up rate. For each x ∈ � and t ∈ [0, T ), we set

A(x, t) = 2Gv+′ · τ(x, t) and X(x, t) = Gδv′ · τ(x, t). (5.17)

Following (5.12), we see that

X(x, t) � exp

(
−

∫ t

0
A(x, s)ds

)
X(x, 0) − exp

(
−

∫ t

0
A(x, s)ds

)

×
∫ t

0
exp

(∫ s

0
A(x, r)dr

)
A(x, s)ds ; (5.18)
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hence, there exists a positive constant c4 such that X(x, t) > −c4. Since Xt =
X2 − AX − A, there is a positive constant c5,

Xt > X2/2 − c5.

It follows that if X(x, t0) �
√
2c5, then X(x, ·) is increasing on [t0, T ). For

x ∈ � we choose t0(ε) < T sufficiently close to T so that for 0 < ε � 1 fixed,

X(x, t0(ε)) >
√
2c5 + 1 + 8c6

ε
, c6 = sup

(t,x)∈[0,T ]×�

(|A(x, t)| + A(x, t)|) ,

(5.19)
with c6 denoting a bounded constant thanks to (3.1). Since X(x, ·) is increasing for
such an x , for t ∈ [t0(ε), T ), the limit of X(x, t) as t → T is well-defined in the
interval (1 + √

2c5 + 8c6/ε,∞], and thus so is the limit of 1
X(x,t) . Analogous to

(5.15), we obtain that

X(x, t) =
[

1

limt→T X(x, t)
+ T − t +

∫ t

T

(
A(x, s)

X(x, s)
+ A(x, s)

X2(x, s)

)
ds

]−1

.

From (5.19), we then have that for all t ∈ [t0(ε), T ),

X(x, t) �
[

1

limt→T X(x, t)
+ (T − t)(1 − ε)

]−1

and since limt→T X(x, t) � 0, then for all t < T ,

X(x, t) � 1

(T − t)(1 − ε)
. (5.20)

Step 3. Blow-up rate for ∇u− in �−(t) as t → T . From (5.20), for any t ∈
[t0(ε), T ),

max
y∈η(�,t)

|[∇T δu · T ](y, t)| � 1 + 2ε

(T − t)
. (5.21)

The inequalities (5.6) and (5.21), together with the fact that div u− = curl u− =
0 in η(�−, t), show that

max
y∈η(�,t)

|∇u−(y, t)| � 1 + 2ε

T − t
, (5.22)

where maxy∈η(�,t) |∇u−(y, t)| denotes the maximum over all of the components
of the matrix ∇u−. Now, for any fixed t ∈ [0, T ), since each component of ∇u− is
harmonic in the domain η(�−, t), the maximum and minimum principles together
with the boundary estimate (5.22) shows that (5.9) holds.
Step 4. Asymptotic estimates for the components of ∇u− as t → T in an ε-
neighborhood of the splash. Since

∂u−

∂x1
:= ∇e1u

− = (T · e1)∇T u
− + (N · e1)∇Nu−,
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we have that

∂u−
2

∂x1
= (T · e1)∇T u

− · (T · e2 T + N · e2 N )

+ (N · e1)∇Nu− · (T · e2 T + N · e2 N )

= (T · e1)(T · e2)∇T u
− · T + (T · e1)(N · e2)∇T u

− · N
+ (T · e2)(N · e1)∇Nu− · T + (N · e1)(N · e2)∇Nu− · N . (5.23)

By rotating our coordinate system, if necessary, we suppose that the tangent
and normal directions to �(T ) at η(x0, T ) are given by the standard basis vectors
e1 = (1, 0) and e2 = (0, 1), respectively (which we refer to as the horizontal and
vertical directions, respectively).

Next, choose a point η(x, t) ∈ �(t) in a small neighborhood of η(x0, t), and let
the curve S(t) denote that portion of �(t) that connects η(x0, t) to η(x, t). Let �l(t) :
[0, 1] → S(t) denote a unit-speed parameterization such that �l(t)(1) = η(x, t) and
�l(t)(0) = η(x0, t). Then,

N (η(x, t), t) · e1 − N (η(x0, t), t) · e1 =
∫
S(t)

∇(N · e1) · d�l

T (η(x, t), t) · e2 − T (η(x0, t), t) · e2 =
∫
S(t)

∇(T · e2) · d�l. (5.24)

From our assumed bounds (3.1), there is a constant c7 > 0 such that for t � T

|N (η(x, t), t) · e1 − N (η(x0, t), t) · e1| + |T (η(x, t), t) · e2 − T (η(x0, t), t) · e2|
� c7|η(x, t) − η(x0, t)|. (5.25)

Next, with G = |η′|−1, we compute that

τt = (Gv−′ · n) n = −(Gδv′ · n) n + (Gv+′ · n) n

= (G n′ · δv) n + (Gv+′ · n) n = [
(∇T N · δu)N + (∇T u

+ · N )N
] ◦ η,

where we have used (4.2) in the last equality. There is a similar formula for nt =
−(Gv−′ · n) τ . It follows from Lemma 5.1 and our assumed bounds (3.1) that

sup
t∈[0,T ]

(‖τt (·, t)‖L∞(�) + ‖nt (·, t)‖L∞(�)

)
� M. (5.26)

Then, using the fundamental theorem of calculus, we see that

N(η(x0, t), t) · e1 = N(η(x0, t), t) · e1 − N(η(x0, T ), T ) · e1 =
∫ t

T
∂t n(x0, s) · e1ds

T (η(x0, t), t) · e2 = T (η(x0, t), t) · e2 − T (η(x0, T ), T ) · e2 =
∫ t

T
∂tτ(x0, s) · e2ds,

so that (by readjusting the constant c7 if necessary), we have that

|N (η(x0, t), t) · e1| + |T (η(x0, t), t) · e2| � c7(T − t). (5.27)
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Next, we choose t0(ε) ∈ [0, T ) and a sufficiently small neighborhood γ0(ε) ⊂ �

of x0 s.t.{
(T − t) < min

(
ε

100c7(1+M)
, ε

)
and |η(x, t) − η(x0, t)| < ε

2c7
|N (η(x, t), t) · e1| + |T (η(x, t), t) · e2| < ε

}
∀ x ∈ γ0(ε), t ∈ [t0(ε), T ),

(5.28)

where the constant c7 was defined in (5.25) Consequently, from (5.6), (5.22) and
(5.23), we see that∣∣∣∣∣

∂u−
2

∂x1
(η(x, t), t)

∣∣∣∣∣ � 3ε

T − t
+ |∇T u

− · N |(η(x, t), t)+2ε|∇Nu− · T |(η(x, t), t),

which thanks to (5.6) and the fact that curl u− = ∇T u− · N − ∇Nu− · T = 0,
provides us with∣∣∣∣∣

∂u−
2

∂x1
(η(x, t), t)

∣∣∣∣∣ � 3ε

T − t
+ c8M ∀ x ∈ γ0(ε), t ∈ [t0(ε), T ),

for a constant c8 > 0. Thus , by choosing t0(ε) closer to T if necessary, we have
that ∣∣∣∣∣

∂u−
2

∂x1
(η(x, t), t)

∣∣∣∣∣ � 3ε

T − t
∀ x ∈ γ0(ε), t ∈ [t0(ε), T ). (5.29)

In a similar fashion, we choose t0(ε) ∈ [0, T ) and a sufficiently small neigh-
borhood γ1(ε) ⊂ � of x1 s.t.{

(T − t) < min
(

ε
100c7(1+M)

, ε
)

and |η(x, t) − η(x1, t)| < ε
2c7

|N (η(x, t), t) · e1| + |T (η(x, t), t) · e2| < ε

}

∀ x ∈ γ1(ε), t ∈ [t0(ε), T ) (5.30)

and such that the inequality (5.28) holds. Now, we choose x ∈ � but in the comple-
ment of γ0(ε) ∪ γ1(ε). For such an x , we have that |∇u−(η(x, t), t)| � Mε < ∞.
This bound is obtained as follows.

For each t ∈ [t0(ε), T ), we let Bε,t ⊂ R
2 denote a small closed ball containing

η(γ0(ε), t)∪η(γ1(ε), t). The ball Bε,t can be taken with a fixed radius independent
of t ∈ [t0(ε), T ) (for T − t0(ε) sufficiently small), with a center which is simply
translated as t varies. This is possible as we assume at that there is a single point of
self-intersection for the curve �(T ), and so the width of the domain �−(t) cannot
shrink to zero in other locations as t → T . With the unit tangent vector field T
defined on �(t), we define a smooth extension of T to the set �−(t) ∩ Bc

ε,t , which
is possible since the interface �(t) ∩ Bc

ε,t remains W 4,∞ for all t ∈ [0, T ]; we
continue to denote this extension by T , and we note that the extension of T does
not necessarily have modulus 1. Since �(t) ∩ Bc

ε,t does not self-intersect for all
t ∈ [0, T ] by the hypothesis (1) of Theorem 3.1, there exists a minimum positive
radius rε > 0 such that for all x ∈ �(t) ∩ Bc

ε,t and all t ∈ [t0(ε), T ], there exists a
translated open ball Bε,t,x (rε) ⊂ �−(t) of radius rε with x ∈ ∂Bε,t,x (rε). In other
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words, for each x ∈ �(t) away from the region of self-intersection, there exists an
open ball of smallest radius rε that is contained in the set �−(t) and such that x is
on the sphere of smallest radius.

We note that the radius rε → 0 as ε → 0; hence, on the domain �−(t) ∩ Bc
ε,t ,

we have an estimate of the type

‖T ‖H3(�−(t)∩Bc
ε,t )

� C(M, ε), (5.31)

where C(M, ε) > 0 denotes a constant depending onM and ε (with C(M, ε) →
∞ as ε → 0).

We now introduce the stream function ψ− such that u− = ∇⊥ψ−; then,

T · ∇ψ− = u− · N = u+ · N on �(t),

which then shows, using our bounds in (3.1), that

‖ψ−‖H3(�(t)) � C(M, ε). (5.32)

Furthermore, due to the conservation law

1

2
‖u−(t)‖2L2(�−(t)) + length of �(t) = 1

2
‖u−

0 ‖2L2(�−)
+ length of �, (5.33)

we have that
‖ψ−‖H1(�−(t)) � C(M, ε), (5.34)

where we have used that ‖ψ−‖H1(�−(t)) � C(‖∇ψ−‖L2(�−(t)) + ‖ψ−‖H3(�(t)))

and (5.32).
Next, we fix t ∈ [t0(ε), T ], and choose a smooth cut-off function 0 � ϕ(·, t) �

1whose support is contained in the complement ofBε,t . Since�(t)∩Bc
ε,t is assumed

to be of classW 4,∞ for each t ∈ [0, T ], we consider the following elliptic problem:

�(ϕψ−) = 2∇ϕ · ∇ψ− + �ϕ ψ− in �−
ε (t),

ϕψ− = ϕψ− on ∂�−
ε (t),

where�−
ε (t) is a smooth open subset of�−(t) containing�−(t)∩Bc

ε,t , and where
we have used the fact that ψ− is harmonic, since curl u− = 0. From (5.34), (5.32),
we have by elliptic regularity that

‖ϕψ−‖H2(�−
ε (t)) � C(M, ε). (5.36)

We next consider the elliptic problem:

�(ϕT · ∇(ϕψ−)) = 2∇(ϕT i ) · ∇ ∂(ϕψ−)

∂xi
+ �(ϕT i )

∂(ϕψ−)

∂xi
+ ϕT · ∇ [

2∇ϕ · ∇ψ− + �ϕ ψ−]
in �ε,

ϕT · ∇(ϕψ−) = ϕT · ∇(ϕψ−) on ∂�ε.

Due to (5.36), (5.32) and (5.31), we have by elliptic regularity:

‖ϕT · ∇(ϕψ)‖H2(�ε) � C(M, ε). (5.38)
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In the same manner as we obtained (5.38) from (5.36), we can also obtain that

‖ϕT · ∇(ϕT · ∇(ϕψ))‖H2(�ε) � C(M, ε). (5.39)

By the trace theorem and the Sobolev embedding theorem, we infer from (5.39)
that

‖ϕ3∇u− · N (·, t)‖L∞(�(t)) � C(M, ε).

Since u− is divergence and curl free this immediately ensures by the algebraic
expression of the divergence and curl that

‖ϕ3∇u−(·, t)‖L∞(�(t)) � C(M, ε), (5.40)

showing that ∇u− · N (η(x, t), t) is bounded for η(x, t) outside of Bε,t . Therefore,
our previous estimates obtained for x in γ0(ε) and γ1(ε) ensure that for all x ∈ �,
|∇u−(η(x, t), t)| < ε

T−t for t sufficiently close to T ; thus, for T − t0(ε) suffi-
ciently small (which means that once again, we have taken t0(ε) even closer to T
if necessary),

max
y∈η(�,t)

∣∣∣∣∣
∂u−

2

∂x1
(y, t)

∣∣∣∣∣ � 3ε

T − t
∀t ∈ [t0(ε), T ),

which, thanks to the maximum and minimum principles applied to the harmonic

function
∂u−

2
∂x1

, provides us with (5.10). Since 0 < ε � 1, we replace 3ε by ε, and
replace 1 + 2ε by 1 + ε. This completes the proof. ��
Corollary 5.1. With (3.1) and (5.8) holding, and for 0 < ε � 1, there exists
t0(ε) ∈ [T − ε, T ) such that

‖∇T u
− · T (·, t)‖L∞(�(t)) � 1 + (1 + 2c6)(T − t)

T − t
∀t ∈ [t0(ε), T ), (5.41)

where the constant c6 is defined in (5.19).

Proof. Using the notation from the proof of Theorem 5.1,

X(x, t) = ∇T δu · T (η(x, t), t).

and we recall that X(x0, t) = χ(t) and that X(x, t) satisfies

Xt (x, t) − X2(x, t) + A(x, t)X(x, t) = −A(x, t). (5.42)

We let δt = T − t , and fix 0 < ε � 1. Since limt→T X(x0, t)(T − t) = 1, for
δt sufficiently small, we have that

(1 − ε)δt−1 � X(x0, t) � (1 + ε)δt−1.

Substituting this inequality into (5.15), we see that

X(x0, t) � 1

(1 − c6δt)δt
� 1 + 2c6δt

δt
. (5.43)

If we replace x0 with x1, then (5.43) continues to hold.
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Now, for the sake of contradiction, we will assume that there exists a sequence
of points (x∗, t∗), with x∗ ∈ � and t∗ converging to T , such that

X(x∗, t∗) >
1 + (1 + 2c6)(T − t∗)

T − t∗
. (5.44)

We will later prove that set of possible contact points xi ∈ �, such that
η(x0, T ) = η(x1, T ) = η(xi , T ), is finite. Then, from this set of all possible
reference points which can self-intersect at time t = T , we relabel x0 so that x0 is
the limit of a subsequence of points x∗ converging toward it along �. Henceforth,
we restrict the sequence of points (x∗, t∗) to the subsequence which converges to
the point x0.

By Remark 7, if there exists C > 0 such that |∇u−(η(x0, t), t)| � C for any
t ∈ [t0(ε), T ), we would also have the existence of a neighborhood of x0 on � such
that for any x in this neighborhood, |∇u−(η(x, t), t)| � 2C for any t ∈ [t0(ε), T ).
This would then make (5.44) impossible. Therefore, we have X(x0, T ) → ∞ as
t → T .

We assume that this point is x0 (for otherwise we can reverse the labels on the
two points x0 and x1). Notice that since x∗ → x0 as t∗ → T , then for T − t∗
sufficiently small,

|x∗ − x0| < ε. (5.45)

We define

Y(t) = X(x∗, t) − X(x0, t) and Z(t) = X(x∗, t) + X(x0, t),

δA(t) = A(x∗, t) − A(x0, t) and δA(t) = A(x∗, t) − A(x0, t).

Then, setting P(t) = Z(t) − A(x∗, t), from (5.42), Y(t) satisfies

Yt (t) − P(t)Y(t) = −δA(t)X(x0, t) − δA(t),

and hence[
e− ∫ t

t∗ P(s)dsY(t)
]
t
= −e− ∫ t

t∗ P(s)ds [δA(t)X(x0, t) + δA(t)] .

Integrating from t∗ to t , we see that

Y(t) = e
∫ t
t∗ P(s)ds

(
Y(t∗) −

∫ t

t∗
e− ∫ s

t∗ P(r)dr [δA(s)X(x0, s) + δA(s)] ds

)
.

(5.46)
Our goal is to show that Y(t) � 0, for all t � t∗. By (5.43) and (5.44), we see

that
Y(t∗) > 1, (5.47)

so all we need to prove is that the second term on the right-hand side of (5.46),

κ(t∗, t) = −
∫ t

t∗
e− ∫ s

t∗ P(r)dr [δA(s)X(x0, s) + δA(s)] ds, (5.48)

is very small for t∗ and t close to T .
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We first consider− ∫ s
t∗ P(r)dr which is equal to− ∫ s

t∗ Z(r)dr +∫ s
t∗ A(x∗, r)dr .

Since X(x∗, t) is positive, we see that Z(t) > X(x0, t) and so −Z(t) <

−X(x0, t), and as we noted above, X(x0, t) > (1− ε)δt−1. Hence − ∫ s
t∗ Z(r)dr <

− ∫ s
t∗ X(x0, r)dr , so that

e− ∫ s
t∗ Z(r)dr < e− ∫ s

t∗ X(x0,r)dr � e− ∫ s
t∗

1−ε
T−r dr =

[
T − s

T − t∗

]1−ε

and since e
∫ s
t∗ A(x∗,r)dr � M, then

e− ∫ s
t∗ P(r)dr � M

[
T − s

T − t∗

]1−ε

.

From (5.48), we see that

|κ(t∗, t)| � M
∫ t

t∗

[
(T − s)

T − t∗

]1−ε (
1 + ε

T − s
δA(s) + δA(s)

)
ds

� M(1 + ε)

(T − t∗)1−ε

∫ t

t∗
(T − s)−εδA(s)ds + M

(T − t∗)1−ε∫ t

t∗
(T − s)1−εδA(s)ds.

Let �r denote a unit-speed parameterization of the path γ ⊂ � starting at x0 and
ending at x∗. From (5.17),A(x, t) = 2Gv+′ ·τ(x, t), so that thanks to our assumed
bounds (3.1), we see that

δA(t) =
∫

γ

∇A · d�r � M|x∗ − x0| � Mε,

the last inequality following from (5.45). It follows that

|κ(t∗, t)| � εM(T − t)1−ε

(T − t∗)1−ε
+ εM + M(T − t)2−ε

(T − t∗)1−ε
+ M(T − t∗)

� M [
ε + (T − t∗)

] ∀t ∈ [t∗, T ).

Hence, for T − t∗ sufficiently small, and t ∈ [t∗, T ), we have |κ(t∗, t)| < 1.
Thanks to (5.47), this implies that for such any such t∗, and for all t ∈ [t∗, T ),
Y(t) � 0, which by the definition of Y(t), implies that

X(x∗, t) � X(x0, t),

and thus limt→T X(x∗, t) = ∞. Now, from our assumption of a single splash
contact in this section, this implies that either x∗ = x0 or x∗ = x1 or x∗ = xi .
Since x∗ is sequence in � converging to x0, we then have x∗ = x0. Thus, by (5.43)
and (5.44), we then have

1 < 0,

which is the contradiction needed to establish that our assumption (5.44)waswrong.
By definition of X(x, t), this then shows that supy∈�(t) |∇T δu · T (·, t)| �

1+(1+2c6)(T−t)
T−t for all t ∈ [t0(ε), T )with T−t0(ε) taken sufficiently small. Together

with our assumed bounds (3.1) on u+, this completes the proof. ��
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Fig. 3. For t sufficiently close to T , the interface �(t) has a local neighborhood of η(x0, t)
called �0(t) := η(γ0(ε), t) and a local neighborhood of η(x1, t) called �1(t) := η(γ1(ε), t)

6. The Interface Geometry Near the Assumed Blow-up

For the sake of contradiction, we assume the existence of two points x0 and x1
in the reference interface � at time t = 0 which evolve towards a splash singularity
at time t = T ; namely η(x0, T ) = η(x1, T ). In this section, we assume that this
is the only point of self-intersection at time t = T , and that no self-intersection of
�(t) occurs for any t < T . There may indeed also exist additional points xi ∈ �,
such that η(xi , T ) = η(x0, T ) = η(x1, T ), but in the course of our analysis, we
will prove that there can only be a finite number of such points. In the case that
these additional points xi ∈ � exist, we moreover show that we can relabel the
point x1 so that for time t sufficiently close to T , the points η(x1, t) and η(x0, t)
are such that the vertical open segment joining η(x0, t) to a small neighborhood of
η(x1, t) on �(t) is contained in �−(t), as we depict in Fig. 3. We will then prove
that our assumption of a finite-time splash singularity leads to a contradiction, and
is hence impossible.

If a splash singularity occurs at time T , then of course limt→T |η(x0, t)
− η(x1, t)| = 0. In this section, we find the evolution equation for the distance
between the two points η(x0, t) and η(x1, t).

Recall that the tangent and normal directions to �(T ) at η(x0, T ) = η(x1, T )

are given by the standard basis vectors e1 = (1, 0) and e2 = (0, 1), respectively.
In what follows, we will consider 0 < ε � 1 fixed and sufficiently small.

With � denoting the initial interface at time t = 0 and 0 < ε � 1, recall
the definition of the two small neighborhoods γ0(ε) ⊂ � and γ1(ε) ⊂ � given in
(5.28) and (5.30), respectively. According to these definitions, we may fix ε > 0
sufficiently small so that for each x ∈ γ0(ε) ∪ γ1(ε) and for all t ∈ [t0(ε), T ],
N (η(xi , t), t) and T (η(xi , t), t) (i = 0, 1) are almost parallel with e2 and e1,
respectively; in particular, the inequalities given in (5.28) and (5.30) provide a
quantitative estimate for the term “almost parallel.” Hence, by the definition of
(5.28) and (5.30),

�0(t) := η(γ0(ε), t) and �1(t) := η(γ1(ε), t)

are almost flat neighborhoods of η(x0, t) and η(x1, t) for all t ∈ [t0(ε), T ].
Next, we define

δη(t) = η(x0, t) − η(x1, t) and δu−(t) = u−(η(x0, t), t) − u−(η(x1, t), t),
(6.1)
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and

δη1 = δη · e1, δη2 = δη · e2 and δu−
1 = δu− · e1, δu−

2 = δu− · e2.
Since η is the flow of the velocity u−, we see that for any t ∈ [t0(ε), T ),

∂tδη = u−(η(x0, t), t) − u−(η(x1, t), t). (6.2)

Definition 6.1. (Distance function on �(t)). We denote by d�(t)(X,Y ) the distance
along �(t) between two points X and Y of �(t). Let γX,Y (t) ⊂ �(t) denote that
portion of �(t) connecting the points X and Y .

In order to establish our main result, we need the following lemmas.

Lemma 6.1. Let X and Y denote two points in �(t). Then,∣∣T (X, t) − T (Y, t)
∣∣ � Md�(t)(X,Y ),

and, if X1 � Y1 and T 1 � 0 on γX,Y (t),

X1 − Y1 � min
Z∈γX,Y (t)

T 1(Z , t) d�(t)(X,Y ).

Proof. Let θ : [0, 1] → � denote a W 4,∞-class parameterization of the reference
interface �. There exists α(t), β(t) ∈ [0, 1] such that X = η(θ(α(t)), t) and
Y = η(θ(β(t)), t).

We set η̃ = η ◦ θ . Then for α(t) � s � β(s), we have that

T (η̃(α(t), t), t) − T (η̃(β(t), t), t) =
∫ α(t)

β(t)

d

ds
T (η̃(s, t), t)ds.

We write T (η̃(s, t), t) as T (η̃)(s, t) and employ the chain-rule to find that

T (η̃(α(t), t), t) − T (η̃(β(t), t), t) =
∫ α(t)

β(t)
∂iT (η̃)(s, t) η̃′

i (s, t) ds

=
∫ α(t)

β(t)
∇T T (η̃)(s, t)

∣∣η̃′(s, t)
∣∣ds

=
∫ α(t)

β(t)
HN (η̃)(s, t)

∣∣η̃′(s, t)
∣∣ds,

where from (4.2), ∇T T (η̃) = G(Gη̃′)′ which is equal to HN (η̃). Therefore, from
(3.1),

∣∣T (X, t) − T (Y, t)
∣∣ � M

∫ α(t)

β(t)
|[η ◦ θ ]′(s, t)|ds � Md�(t)(X,Y ).

Next, we have that

X1 − Y1 =
∫ α(t)

β(t)
(η ◦ θ)′1(s, t) ds =

∫ α(t)

β(t)
T 1((η ◦ θ)(s, t), t)|(η ◦ θ)′(s, t)| ds

� min
Z∈γX,Y (t)

T 1(Z , t) d�(t)(X,Y ), (6.3)

if X1 � Y1 and T 1 � 0 on γX,Y (t). ��
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Lemma 6.2. For0 < ε � 1fixed, letγ1(ε)denote the curve defined in (5.30). Then,
for all t ∈ [t0(ε), T ], there exist points Xl(t) and Xr (t) in the curve η(γ1(ε), t)
such that

η1(x1, t) − ε

2c7
� Xl

1(t) � η1(x1, t) − ε

4c7
< η1(x1, t) + ε

4c7

� Xr
1(t) � η1(x1, t) + ε

2c7
,

where the constant c7 is defined in (5.25), η1 = η·e1, Xl
1 = Xl ·e1, and Xr

1 = Xr ·e1.
Proof. According to our definition (5.30) of γ1(ε),

|T 1(η(x, t), t)| > 1 − ε ∀ x ∈ γ1(ε), t ∈ [t0(ε), T ).

Let us assume we are in the case

T 1(η(x, t), t) > 1 − ε ∀ x ∈ γ1(ε), t ∈ [t0(ε), T ), (6.4)

the other case

T 1(η(x, t), t) < −1 + ε ∀ x ∈ γ1(ε), t ∈ [t0(ε), T ),

being treated in a way similar as what follows. Next, let X denote a point η(γ1(ε), t)
such that X1 < η1(x1, t), and (by fixing ε even smaller if necessary) satisfying

d�(t)(X, η(x1, t)) = ε

4c7(1 − ε)
. (6.5)

By (6.4), (6.5) and Lemma 6.1, for all t ∈ [t0(ε), T ),

η1(x1, t) − X1 � (1 − ε)d�(t)(X, η(x1, t)) � ε

4c7
.

On the other hand, by (6.3), we also have that

η1(x1, t) − X1 � d�(t)(X, η(x1, t)) = ε

4c7(1 − ε)
� ε

2c7
,

for ε > 0 small enough. We then set Xl(t) = X .
The same argument also provides the point Xr (t) which is on the right of

η(x1, t). ��
Our next result establishes the evolution equation for δη(t).

Theorem 6.1. (Evolution equation for δη(t)). With the assumed bounds (3.1),
and for x0, x1 ∈ � such that |η(x0, t) − η(x1, t)| → 0 as t → T , if
|[∇T δu · T ](η(x0, t), t)| → ∞ as t → T , then for 0 < ε � 1 taken sufficiently
small and fixed, and t0(ε) ∈ [T − ε, T ), we have that for all t ∈ [t0(ε), T ),

∂tδη(t) = M(t)δη(t) where M(t) = 1

T − t

[−β1(t) ε1(t)
E2(t) α2(t)

]
, (6.6)

where the matrix coefficients

β1(t), α2(t) ∈ [−2ε, 1 + 2c9(T − t)] and ε1(t), E2(t) ∈ [−2ε, 2ε],
and where c9 = 1 + 2c6, where c6 is defined (5.19).
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Fig. 4. Left η2(x0, t) � η2(x1, t) Right η2(x0, t) > η2(x1, t)

Proof. Step1. Thegeometric set-up.Fig. 4 shows thegeometry of the twoapproach-
ing curves at some instant of time t ∈ [t0(ε), T ): the left side of the figure shows
the case that η2(x0, t) � η2(x1, t) and the right side of the figure shows the case
that η2(x0, t) > η2(x1, t).1 Our idea is to connect η(x0, t) with η(x1, t) using a
specially chosen path.

We remind the reader of two facts thatwe shallmake use of: (1) for t ∈ [t0(ε), T )

sufficiently small, the two approaching curves �0(t) and �1(t) are nearly flat, as
described in (5.28) and (5.30); (2) there are two small neighborhoods γ0(ε) ⊂ �

and γ1(ε) ⊂ � that are defined in (5.28) and (5.30), respectively.
We now explain why for ε > 0 chosen sufficiently small, the vertical projection

of η(x0, t) must intersect η(γ1(ε), t) at one unique point, for any t ∈ [t0(ε), T ].
Due to Lemma 6.2, for ε > 0 small enough, there exists a point x ∈ γ1(ε) and
another point y ∈ γ1(ε) such that for all t ∈ [t0(ε), T ),

η1(x, t) + ε

4c7
� η1(x1, t) � η1(y, t) − ε

4c7
.

Now, by the fundamental theorem of calculus,

|η(x1, t) − η(x1, T )| �
∣∣∣∣
∫ T

t
v−(x1, s)ds

∣∣∣∣ � M(T − t),

where we have used Lemma 5.1 to bound v−. From (5.30), T − t0(ε) � ε
100c7M ;

it follows that

|η(x1, t) − η(x1, T )| � ε

100c7
.

Similarly, |η(x0, t) − η(x0, T )| � ε
100c7

and using that η(x0, T ) = η(x1, T ),
we see that (by taking ε even smaller if necessary)

η1(x, t) � η1(x, t) + ε

5c7
� η1(x0, t) � η1(y, t) − ε

5c7
� η1(y, t).

1 The actual curves �0(t) and �1(t) are almost flat near the assumed splash point, but we
have made the slopes large to clearly demonstrate the paths r1(t) and r2(t); moreover, both
�0(t) and �1(t) can have very small oscillations near the contact points and do not have
to be parabolas. On the other hand, any potential small oscillations along the curves do not
effect the qualitative picture in any way.
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By the intermediate value theorem, this shows that there exists η(z(t), t) ∈
η(γ1(ε), t) such that η1(z(t), t) = η1(x0, t), and hence

η1(x, t) + ε

5c7
� η1(z(t), t) � η1(y, t) − ε

5c7
. (6.7)

This proves the existence of a point η(z(t), t) in the curve �1(t) := η(γ1(ε), t)
which has the same horizontal component as the point η(x0, t) for every t ∈
[t0(ε), T ).

Let us now show that there cannot be a second point in this intersection. We
proceed by contradiction, and assume the existence of a different point Z(t) ∈ γ1(ε)

such that Z(t) 	= z(t) and satisfies (6.7). Since η1(z(t), t) = η1(Z(t), t), by Rolle’s
theorem, there exists c(t) ∈ γ1(ε) such that

η′
1(c(t), t) = 0. (6.8)

Since for any t < T , det∇η = 1, we then have that for t < T , |η′| 	= 0, and
(6.8) provides

0 = η′
1(c(t), t)

|η′(c(t), t), t)| = T (η(c(t), t), t) · e1. (6.9)

Therefore, T (η(c(t), t), t) = (T (η(c(t), t), t) · e2) e2, which with (5.28) pro-
vides

1 = |τ(η(c(t), t), t) · e2| � ε,

which is a contradiction as ε < 1.
As shown in Fig. 4, we define r1(t) to be the vertical line segment connecting

η(x0, t) ∈ �0(t) to �1(t). Let us now explain why the path r1(t) can always be
assumed to be contained in the closure of �−(t).

We assume that the path r1(t) is not contained in the closure of �−(t). Then,
since �+(t) is an open and connected set, �+(t) ∩ r1(t) is a union of segments
Si :=]Xi (t),Yi (t)[, with Xi (t) > Yi (t) for each i , and each segment Si lies strictly
above the next segment Si+1.

We now show that there can only be a finite number of such segments Si . Let
Si and Si+1 be two such consecutive segments. Let ci (t) ⊂ �(t) denote the portion
of �(t) connecting the point Yi ∈ Si to Xi+1 ∈ Si+1. We denote the open set
Li (t) ⊂ �−(t) as the set enclosed by the curve ci (t) and the vertical segment
]Yi (t),Xi+1(t)[, as shown in Fig. 5. The set Li (t) is either to the left or to the right
of the vertical path r1(t).

Below, we shall prove that the slope of the tangent vector to �(t) at the points
Xi (t) and Yi (t) cannot be too large; specifically, we will show that

|T (Xi , t) · e1| � 1√
2

and |T (Yi , t) · e1| � 1√
2
. (6.10)

We now assume that (6.10) holds, and as shown in Fig. 5, we assume that Li (t)
is to the left of r1(t). Let θ : [0, 1] → � denote a W 4,∞-class parameterization
of the reference interface �. Let Pi (t) ∈ ci (t) denote the left-most extreme point
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Fig. 5. If we suppose that the vertical line segment r(t), connecting η(x0, t) to η(z(t), t)
is not contained in �−(t), then �+(t) ∩ r1(t) consists of the union of finitely many open
intervals Si (shown in red) (color figure online)

on ∂Li (t); then, there exists α(t) ∈ [0, 1] such that Pi (t) = η(θ(α(t)), t), and
N (Pi (t), t) = −e1. Let β(t) ∈ [0, 1] be such that η(θ(β(t)), t) = Yi .

Using Lemma 6.1 and the lower-bound (6.10),

1√
2

�
∣∣T (η(θ(α(t)), t), t) − T (η(θ(β(t)), t), t)

∣∣ � M× length of ci (t). (6.11)

Since each loop ci (t) is of length greater than 1√
2M and ci is disjoint from c j

for i 	= j , the fact that �(t) is of finite length, by (5.33), implies that the number
of such loops ci (t) is bounded; hence, the intersection of r1(t) with �+(t) consists
of a finite number of segments Si .

Having established that this generic loop ci (t) (shown to the left of the vertical
path r1(t) in Fig. 5) is of length greater than 1√

2M , we now turn our attention to

the study of the subset Mi (t) ⊂ �+(t) which is directly to the right of Si ; that is,
Mi (t) is the open set whose boundary consists of that portion of �(t) connecting
Xi (t) with Yi (t), which we call bi (t), and Si .

Next, let Qi (t) ∈ bi (t) denote the right-most extreme point of Mi (t); then,
similarly as for the case of ci (t), we find that the length of bi (t) is greater than

1√
2M .

We now explain why the projection of the set Mi (t)∪ Li (t) onto the horizontal
axis spanned by e1 has a vastly larger length than T − t . In the same way as we
obtained the inequality (6.11), we have that for any x = η(θ(κ(t)), t) ∈ �(t) that

∣∣T (η(θ(β(t)), t), t) − T (η(θ(κ(t)), t), t)
∣∣ � M × d�(t)(x,Yi (t)).

Therefore, with |�(t)| denoting the length of �(t), for any x ∈ �(t) such that
d�(t)(x,Yi (t)) � min( 12 |�(t)|, 1

2
√
2M ), we have that

∣∣T (η(θ(κ(t)), t), t) · e1
∣∣ � 1

2
√
2
.
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We can assume that

T (η(θ(κ(t)), t), t) · e1 � 1

2
√
2
, (6.12)

for the case with the opposite sign can be treated in a similar fashion (as what
follows).

Then, for any κ(t) > β(t) such that x = η(θ(κ(t)), t) satisfies

d�(t)(x,Yi (t)) = min

(
1

2
|�(t)|, 1

2
√
2M

)
,

we have, by Lemma 6.1 and the inequality (6.12), that

(x − Yi (t)) · e1 � 1

2
√
2
d�(t)(x,Yi ) = 1

2
√
2
min

(
1

2
|�(t)|, 1

2
√
2M

)
> 0,

(6.13)

which shows that bi (t) extends to the right of r1(t) by a distance of at least

1

2
√
2
min

(
1

2
|�(t)|, 1

2
√
2M

)
> 0

in the e1-direction. Using the identical argument, we can prove that ci (t) extends
to the left of r1(t) by a distance of at least 1

2
√
2
min( 12 |�(t)|, 1

2
√
2M ) > 0 in the

−e1-direction.
We now prove the inequalities in (6.10). We shall consider the tangent vector

T at Yi (t), as the proof for T at Xi (t) is identical. For the sake of contradiction, we
assume that

|T (Yi (t), t) · e1| <
1√
2
, (6.14)

so that

|T (Yi (t), t) · e2| � 1√
2
.

We choose a point x ∈ bi (t) which is either to the left or to the right of Yi (t)
such that

d�(t)(x,Yi (t))=min

(
1

3
|�(t)|, 1

2
√
2M

)
. (6.15)

In the same way as we obtained (6.13), we see that if we choose x to be on the
correct side of Yi (t) (depending on the sign of T (Yi (t), t) · e2), we have that

(x − Yi (t)) · e2 � 1

2
√
2
d�(t)(x,Yi (t)), (6.16)

as well as

|(x − Yi (t)) · e1| � 3

2
√
2
d�(t)(x,Yi (t)),
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so that x is in the cone with vertex Yi (t) given by

(x − Yi (t)) · e2 � 1

3
|(x − Yi (t)) · e1|. (6.17)

Furthermore, using (6.16), we have that

(x − Yi (t)) · e2 � 1

2
√
2
min

( |�(t)|
3

,
1

2
√
2M

)
. (6.18)

Therefore, we have just established the existence of c̃i (t) ⊂ �(t), such that
c̃i (t) is the shortest curve which connects Yi (t) to x and satisfies

length of c̃i (t) = min

( |�(t)|
3

,
1

2
√
2M

)
,

which is bounded from below by a positive constant as t → T . Moreover, the curve
c̃i (t) is contained in the cone defined in (6.17), whose vertex Yi (t) satisfies

|η(x0, t) − Yi (t)| < |η(x0, t) − η(z(t), t)|,
the right-hand side tending to zero as t → T , since as t → T ,η(z(t), t) → η(x1, T )

which implies that limt→T |η(x0, t) − η(z(t), t)| = 0. To sum up, c̃i (t) is a curve
of length of order 1, of positive vertical extension above Yi (t) of order 1, and is
contained in the cone (6.17) with vertex Yi (t) which is below η(x0, t) (and the
distance between these two points converges to zero as t → T ).

On the other hand, since T (η(x0, T ), T ) · e2 = 0, we have in the same manner
that for T − t sufficiently small, there exists a curve �̃0(t) ⊂ �(t) containing
the point η(x0, t), and of length min

( 1
2 |�(t)|, 1

200M
)
such that the curve �̃0(t) is

contained in the two cones (that are almost horizontal from the definition below)
defined by

|(x − η(x0, t)) · e2| � 1

100
|(x − η(x0, t)) · e1| ; (6.19)

additionally, the curve �̃0(t) extends in the ±e1 direction a distance of at least
1
2 min

( 1
2 |�(t)|, 1

200M
)
on each side of η(x0, t). It is then elementary to show that

the conegivenby (6.17) intersects eachof the four lines enclosing the cone (6.19) at a
distancewhich less than 1

2 min
( 1
2 |�(t)|, 1

200M
)
on each side of η(x0, t). Therefore,

the cone given by (6.17) intersects �̃0(t). The same is true for the curve c̃i (t),
as its starting point Yi (t) lies below �̃0(t) while, due to (6.18), its ending point
x lies above �̃0(t) for t sufficiently close to T , and stays in the cone given by
(6.17). Furthermore, this self-intersection occurs with different tangent vectors,
since thanks to Lemma 6.1, any point z on �̃0(t) satisfies (for t close enough to T )

|T (z, t) · e2| � 1

100
,

while any point z on c̃i (t) will satisfy thanks to Lemma 6.1 that

|T (z, t) · e2| � 1

2
√
2
.
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As �(t) cannot self-intersect for t < T (particularly not with different tangent
vectors), this then leads to a contradiction of (6.14), and hence proves (6.10).

Let γ̄ ⊂ � be the preimage of η of the loops bi (·, t0(ε))∩ ci (·, t0(ε)). It follows
that for all t ∈ (t0(ε), T ), η(γ̄ , t)must continue to intersect the vertical path r1(t) at
thefinite set of pointsXi (t) andYi (t). Sinceη2(x0, t) > Xi (t) > η2(x1, t) (the same
being true forYi (t)), we still have by continuity that η2(x0, t ′) > Xi (t ′) > η2(x1, t ′)
(the same being true for Yi (t ′)) for t ′ ∈ [t, T ), as the case η2(x0, t ′) = Xi (t ′) or
η2(x1, t ′) = Xi (t ′) correspond to a self-intersection of �(t ′) at time t ′ < T , which
is excluded from our definition of T .

This ensures that the already established finite number N of loops bi (t) and
ci (t) stays constant for t ∈ [t0(ε), T ] for T − t0(ε) > 0 small enough. We then
have the existence of a finite number of points x0, x1, x2, ..., xn in � such that

η(x0, T ) = η(x1, T ) = · · · = η(xn, T )

and such that η(xi , t) for i ∈ [2,N ] belongs to the image by the flow of the same
loop (of length of at least 1√

2
min( 12 |�(t)|, 1

2
√
2M ) on each side of a corresponding

point of intersection of r1(t) and �(t)) for all t ∈ [t0(ε), T ]). We can then, if
necessary, replace the point x1 by an appropriate xi ∈ � (with η(xi , t) such that
η(x0, t) and η(xi , t) are on the same loop for all t ∈ [t − t0(ε), T ]). Therefore, the
vertical path r1(t), connecting η(x0, t) to �1(t), is contained in �−(t) for T − t
sufficiently small. In what follows, we assume that this substitution has been made
so that x1 ∈ � is the point which is assumed to flow into self-intersection from
below (by renaming x0 and x1 if necessary).

We can therefore define the unique point z(t) ∈ � such that η(z(t), t) is the
vertical projection of η(x0, t) onto the curve r1(t) (as shown in Fig. 4). Specifically,
we define r1(t) to be the vertical line segment connecting η(x0, t) ∈ �0(t) to
η(z(t), t) ∈ �1(t) (which is contained in �−(t) as we just have shown), and we
define r2(t) to be the portion of �1(t) connecting η(z(t), t) to η(x1, t).

We will rely on the following two claims:
Claim 1. For t ∈ [t0(ε), T ), η2(x1, t)−η2(z(t), t) = b(t)δη1(t) [(T−t)+|δη1(t)|]
for a bounded function b(t).

Proof. Near the point η(x1, t), we consider r2(t) as a graph (X, h(X, t)) (see
Fig. 4), such that h(0, t) = η2(x1, t) with tangent vector (1, h′(X, t)), which at
X = 0 must be close to horizontal, since h′(0, T ) = 0. Since h is a C2 function,
we can write the Taylor series for h(X, t) about X = 0 as

h(X, t) = h(0, t) + h′(0, t)X + 1

2
h′′(ξ, t)X2 for some ξ ∈ (0, X). (6.20)

Next,

|h′(0, t)| =
∣∣∣∣h′(0, T ) +

∫ t

T
h′
t (0, s)ds

∣∣∣∣
=

∣∣∣∣
∫ t

T
v−
2

′
(x1, s)ds

∣∣∣∣ � M(T − t), (6.21)
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the inequality following from the bound on v− given by Lemma 5.1. On the other
hand,

|h′′(ξ, t)| = |H(ξ, h(ξ, t)) (1 + h′2(ξ, t))
3
2 |

=
∣∣∣∣∣∣H(ξ, h(ξ, t))

(
1 +

[
T (ξ, h(ξ, t)) · e2
T (ξ, h(ξ, t)) · e1

]2) 3
2

∣∣∣∣∣∣
� |H(ξ, h(ξ, t))|

(
1 + ε2

(1 − ε)2

) 3
2

� M, (6.22)

where we have used (5.30) for the first inequality and (3.1) for the second. From
(6.20), (6.21) and (6.22), we then have that

|h(X, t) − h(0, t)| � CM|X |(T − t + |X |), (6.23)

for some constant C > 0.
Next, we notice that η2(z(t), t) = h(δη1(t), t); hence, we set X = δη1(t). By

setting b(t) = CMϑ(t) with ϑ(t) ∈ (0, 1), the proof is complete. ��
Claim 2. |δη1(t)| � M(T − t) < ε for t ∈ [t0(ε), T ).

Proof. By the fundamental theorem of calculus, |δη1(t)| �
∫ t
T |δv(s)|ds �

M(T − t) by Lemma 5.1. Then, we choose T − t0(ε) sufficiently small. ��
Step 2. The case that η2(x0, t) > η2(x1, t). We will first consider the geometry
displayed on the right side of Fig. 4. With �r1(t) and �r2(t) denoting unit-speed
parameterizations for r1(t) and r2(t),

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t) = [
u−
1 (η(x0, t), t) − u−

1 (η(z(t), t), t)
]

+ [
u−
1 (η(z(t), t), t) − u−

1 (η(x1, t), t)
]

=
∫
r1(t)

∇u−
1 · d�r1 +

∫
r2(t)

∇u−
1 · d�r2

=
∫
r1(t)

∂u−
2

∂x1
dx2 +

∫
r2(t)

∇T u
−
1 ds,

where we have used the fact that
∂u−

1
∂x2

= ∂u−
2

∂x1
in the last equality, as curl u− = 0.We

will evaluate these two integrals using themeanvalue theorem for integrals, together

with our estimate (5.41) for ∇T u− · T , and hence for
∂u−

1
∂x1

(which is equivalent to
∇T u− for T − t0(ε) sufficiently small, as the ratio of the two quantities is close to

1), and estimate (5.10) for
∂u−

2
∂x1

. In particular,

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t)

= ε1(t)

T − t
(η2(x0, t) − η2(z(t), t)) − �(t)

α1(t)

T − t
δη1(t)
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− ν(t)
α1(t)

T − t
(η2(x1, t) − η2(z(t), t)) ,

= ε1(t)

T − t
δη2(t) + ε1(t)

T − t
(η2(x1, t) − η2(z(t), t)) − �(t)

α1(t)

T − t
δη1(t)

− ν(t)
α1(t)

T − t
(η2(x1, t) − η2(z(t), t)) , (6.24)

where ε1(t) ∈ [−ε, ε], and where we choose α1(t) ∈ [−ε, 1 + c9(T − t)], where
0 < ε � 1 is defined in Step 4 of the proof of Theorem 5.1. The functions �(t)
and ν(t) satisfy |1−�(t)| � 1 and 0 � ν(t) � 1; this follows since r2(t) is nearly
flat near η(x0, t), so the vertical distance |η2(x1, t) − η2(z(t), t)| is nearly zero,
while the horizontal distance |η1(x1, t) − η1(z(t), t)| is nearly the total distance
|η(x1, t) − η(z(t), t)|.

The negative sign in front of α1(t) is determined by the limiting behavior of
∂u−

1
∂x1

given by (5.16). From Claim 1 above, we then see that

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t)

= ε1(t)

T − t
δη2(t) + b(t)(|δη1(t)| + δt)ε1(t)

T − t
δη1(t) − �α1(t)

T − t
δη1(t)

− νb(t)(|δη1(t)| + δt)α1(t)

T − t
δη1(t),

where δt = T − t . We set

β1(t) = [
�(t) + ν(t)b(t)(|δη1(t)| + δt)

]
α1(t) − b(t)(|δη1(t)| + δt)ε1(t).

Then, with Claim 2, we see that β1(t) ∈ [−2ε, 1 + 2c9(T − t)], and that

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t) = − β1(t)

T − t
δη1(t) + ε1(t)

T − t
δη2(t). (6.25)

Similarly, for u−
2 , we have that

u−
2 (η(x0, t), t) − u−

2 (η(x1, t), t)

= [
u−
2 (η(x0, t), t) − u−

2 (η(z(t), t), t)
] + [

u−
2 (η(z(t), t), t) − u−

2 (η(x1, t), t)
]

=
∫
r1(t)

∇u−
2 · d�r1 +

∫
r2(t)

∇u−
2 · d�r2 =

∫
r1(t)

∂u−
2

∂x2
dx2 +

∫
r2(t)

∇T u
−
2 ds,

= α2(t)

T − t
(η2(x0, t) − η2(z(t), t)) + �(t)

ε2(t)

T − t
δη1(t)

+ ν(t)
α2(t)

T − t
(η2(x1, t) − η2(z(t), t)) ,

= α2(t)

T − t
δη2(t) + b(t)(|δη1(t)| + δt)α2(t)

T − t
δη1(t)

+ �(t)ε2(t)

T − t
δη1(t) + ν(t)b(t)(|δη1(t)| + δt)α2(t)

T − t
δη1(t),
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with ε2(t) ∈ [−ε, ε] and α2(t) ∈ [−ε, 1+c9(T − t)], and where 0 � 1−�(t) � 1
and 0 � ν(t) � 1. Setting

E2(t) = (b(t) + ν(t)b(t))(|δη1(t)| + δt)α2(t) + �(t)ε2(t) (6.26)

we see that by Claim 2,
E2(t) ∈ [−2ε, 2ε], (6.27)

and

u−
2 (η(x0, t), t) − u−

2 (η(x1, t), t) = E2(t)
T − t

δη1(t) + α2(t)

T − t
δη2(t). (6.28)

Equations (6.2), (6.25) and (6.28), then give the desired relation (6.6).
Step 3. The case that η2(x0, t) � η2(x1, t). We next consider the geometry dis-
played on the left side of Fig. 4. Again, using �r1(t) and �r2(t) to denote unit-speed
parameterisations for r1(t) and r2(t), we see that once again

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t) = [
u−
1 (η(x0, t), t) − u−

1 (η(z(t), t), t)
]

+ [
u−
1 (η(z(t), t), t) − u−

1 (η(x1, t), t)
]

=
∫
r1(t)

∂u−
2

∂x1
dx2 +

∫
r2(t)

∇T u
−
1 ds,

where s denotes arc length. We again evaluate these two integrals using the mean
value theorem for integrals:

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t) = ε1(t)

T − t
(η2(x0, t) − η2(z(t), t))

− �(t)α1(t)

T − t
δη1(t) − ν(t)α1(t)

T − t
(η2(x1, t) − η2(z(t), t)) ,

where once again α1(t) ∈ [−ε, 1 + c9(T − t)] and ε1(t) ∈ [−ε, ε]. For some
θ(t) ∈ (0, 1],

|η2(x0, t) − η2(z(t), t)| = θ(t) |η2(x1, t) − η2(z(t), t)| .
Hence, by Claim 1,

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t)

= θ(t)b(t)(|δη1(t)| + δt)ε1(t)

T − t
δη1(t) − �(t)α1(t)

T − t
δη1(t)

− b(t)(|δη1(t)| + δt)ν(t)α1(t)

T − t
δη1(t).

With

β1(t) = [�(t) + b(t)(|δη1(t)| + δt)ν(t)]α1(t) − θ(t)b(t)(|δη1(t)| + δt)ε1(t),

then β1(t) ∈ [−2ε, 1 + 2c9(T − t)] and

u−
1 (η(x0, t), t) − u−

1 (η(x1, t), t) = − β1(t)

T − t
δη1(t).
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Similarly, for u−
2 , we have that

u−
2 (η(x0, t), t) − u−

2 (η(x1, t), t)

= [
u−
2 (η(x0, t), t) − u−

2 (η(z(t), t), t)
] + [

u−
2 (η(z(t), t), t) − u−

2 (η(x1, t), t)
]

= α2(t)

T − t
(η2(x0, t) − η2(z(t), t)) + �(t)ε2(t)

T − t
δη1(t)

+ ν(t)α2(t)

T − t
(η2(x1, t) − η2(z(t), t)) ,

with ε2(t) ∈ [−ε, ε] and α2(t) ∈ [−ε, 1 + c9(T − t)]. Hence, from Claim 1, we
see that

u−
2 (η(x0, t), t) − u−

2 (η(x1, t), t)

= θ(t)b(t)(|δη1(t)| + δt)α2(t)

T − t
δη1(t) + �(t)ε2(t)

T − t
δη1(t)

+ ν(t)b(t)(|δη1(t)| + δt)α2(t)

T − t
δη1(t).

Setting

E2(t) = [θ(t) + ν(t)]b(t)(|δη1(t)| + δt)α2(t) + �(t)ε2(t),

we see that by Claim 2, E2(t) ∈ [−2ε, 2ε], and
u−
2 (η(x0, t), t) − u−

2 (η(x1, t), t) = E2(t)
T − t

δη1(t).

In this case, δηt = M δη with

M(t) = 1

T − t

[−β1(t) 0
E2(t) 0

]
,

which is a special case of the matrix given (6.6) with ε1(t) = 0 and α2(t) = 0. This
completes the proof. ��

7. Proof of the Main Theorem

We now give a proof of Theorem 3.1. We assume that either a splash or splat
singularity does indeed occur, and then show that this leads to a contradiction.

We begin the proof with the case that a single splash singularity occurs at time
t = T and that there exist two points x0 and x1 in�, such that η(x0, T ) = η(x1, T ),
as we assumed in Section 6. (In Sections 7.2 and 7.3, we will also rule-out the case
of multiple simultaneous splash singularities, as well as the splat singularity).

7.1. A Single Splash Singularity Cannot Occur in Finite Time

As we stated above, for T − t0 sufficiently small and in a small neighborhood
of η(x0, T ), the interface �(t), t ∈ [t0, T ), consists of two curves �0(t) and r1(t)
evolving towards one another, with η(x0, t) ∈ �0(t) and η(x1, t) ∈ r1(t).

We consider the two cases that either |∇u−(·, t)| remains bounded or blows-up
as t → T .



No Splash Singularities for Vortex Sheets 1021

7.1.1. The Case that |∇u−(η(x0, t), t)| → ∞ as t → T We prove that both
δu−

1 (T ) 	= 0 and δu−
1 (T ) = 0, where recall that δu−(t) is given by (6.1).

Step 1. δu−
1 	= 0 at the assumed splash singularity η(x0, T ).

The scalar product of (6.6) with δη(t) yields

∂t |δη|2 = −2
β1(t)

T − t
|δη1|2 + 2

ε1(t) + E2(t)
T − t

δη1 δη2 + 2
α2(t)

T − t
|δη2|2, (7.1)

where the constantsβ1(t), α2(t), ε1(t), E2(t) are defined inTheorem6.1.Therefore,
since T − t < ε � 1,

∂t |δη|2 � −2 + Cε

T − t
|δη|2,

from which we infer that

|δη(t)|2 � |δη(0)|2 (T − t)2+Cε

T 2+Cε
. (7.2)

We now assume that
δu−

1 (T ) = 0, (7.3)

and now proceed to infer a contradiction from this assumption. Since δη(T ) = 0
(since we have assumed that a splash singularity occurs at t = T ), we have that

δη1(t) =
∫ t

T
(∂tη(x0, s) − ∂tη(x1, s)) ds

=
∫ t

T
(v−

1 (x0, s) − v−
1 (x1, s))ds

=
∫ t

T
(v−

1 (x0, s) − v+
1 (x0, s))ds +

∫ t

T
(v+

1 (x0, s) − v+
1 (x1, s))ds

−
∫ t

T
(v−

1 (x1, s) − v+
1 (x1, s))ds

= −
∫ t

T
δv1(x0, s)ds +

∫ t

T
(v+

1 (x0, s) − v+
1 (x1, s))ds +

∫ t

T
δv1(x1, s)ds

= −
∫ t

T
δv · (e1 − τ)(x0, s)ds −

∫ t

T
δv · τ(x0, s)ds

+
∫ t

T
(v+

1 (x0, s) − v+
1 (x1, s))ds +

∫ t

T
δv · (e1 − τ)(x1, s)ds

+
∫ t

T
δv · τ(x1, s)ds

= −
∫ t

T
δv · (e1 − τ)(x0, s)ds −

∫ t

T

[
δv · τ(x0, T ) +

∫ s

T
∂t (δv · τ)(x0, l)dl

]
ds

+
∫ t

T

[
(v+

1 (x0, T ) − v+
1 (x1, T )) +

∫ s

T
∂t (v

+
1 (x0, l) − v+

1 (x1, l))dl

]
ds

+
∫ t

T
δv · (e1 − τ)(x1, s)ds +

∫ t

T

[
δv · τ(x1, T ) +

∫ s

T
∂t (δv · τ)(x1, l)dl

]
ds.

(7.4)
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Using the fact that τ(x0, T ) = e1 = τ(x1, T ), (7.4) then becomes

δη1(t) = −
∫ t

T
δv · (e1 − τ)(x0, s)ds −

∫ t

T

∫ s

T
∂t (δv · τ)(x0, l)dlds

+
∫ t

T

[−δv1(x0, T ) + v+
1 (x0, T ) − v+

1 (x1, T )

+ δv1(x1, T ) +
∫ s

T
∂t (v

+
1 (x0, l) − v+

1 (x1, l))dl

]
ds

+
∫ t

T
δv · (e1 − τ)(x1, s)ds +

∫ t

T

∫ s

T
∂t (δv · τ)(x1, l)dlds. (7.5)

Next, since −δv1(x0, T ) + v+
1 (x0, T ) − v+

1 (x1, T ) + δv1(x1, T ) = δu−
1 (T ),

(7.5) and the assumption (7.3) then provide us with

δη1(t) = −
∫ t

T
δv · (e1 − τ)(x0, s)ds −

∫ t

T

∫ s

T
∂t (δv · τ)(x0, l)dlds

+
∫ t

T

∫ s

T
∂t (v

+
1 (x0, l) − v+

1 (x1, l))dlds

+
∫ t

T
δv · (e1 − τ)(x1, s)ds +

∫ t

T

∫ s

T
∂t (δv · τ)(x1, l)dlds. (7.6)

Due to the L∞ control of (δv · τ)t provided by (4.7), and by writing e1 −
τ(xi , s) = ∫ T

s τt (xi , s) (for i = 0, 1), (7.6) allows us to conclude that

|δη1(t)| � M(T − t)2. (7.7)

Note here that we used τt (x, t) = T t (η(x, t), t)+∇T T (η(x, t), t)|η′(x, t)|. By
noticing that T t canbe computed fromRemark3,we thenhave |τt (·, t)|L∞(�) � M.

Therefore, |δη1(t)|2 � M(T − t)4, and from (7.2), this implies (since 0 �
ε � 1) that (T − t)2+Cε � C |δη2(t)|2; hence, by choosing t1 ∈ (0, T ) sufficiently
close to T , for any t ∈ [t1, T ],

|δη1(t)| � M(T − t)2 = M(T − t)1+Cε/2(T − t)1−Cε/2

� (T − t)1−Cε/2 |δη2(t)| �
√
T − t |δη2(t)|. (7.8)

Using (7.8) in (7.1) and the fact that 0 < T − t < ε � 1, we then obtain

∂t |δη|2 � −[2(2c9 + 1√
T − t

)+ 8ε√
T − t

+ 4ε

T − t
]|δη2|2

� −[2(2c9 + 1√
T − t

)+ 8ε√
T − t

+ 4ε

T − t
]|δη|2. (7.9)

Thus,

∂t

(
|δη|2e

∫ t
t1

[2(2c9+ 1+4ε√
T−s

)] ds
(T − t)−4ε

)
� 0.
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Fig. 6. The portion of the interface �0(t), near η(x0, t), is shown to have an oscillation that
may only disappear in the limit as t → T

Hence,

|δη|2(t) � |δη|2(t1)e− ∫ T
t1

[2(2c9+ 1+4ε√
T−s

)] ds (T − t)4ε

(T − t1)4ε
> C(T − t)4ε,

with C > 0 finite, since (T − s)− 1
2 is integrable. This is then in contradiction with

our assumption of a splash singularity occurring at time t = T which implies that

|δη|2(t) � M(T − t)2;

therefore, the assumption (7.3) was wrong as it lead to a contradiction, leading us
to conclude that, in fact,

|δu−
1 (T )| > 0. (7.10)

Step 2. δu−
1 = 0 at the assumed splash singularity η(x0, T ). Having shown that

δu−
1 	= 0 at the splash singularity, in order to arrive at a contradiction, we shall next

prove that we also have δu−
1 = 0 at the splash singularity (Fig. 6).

We now define the following two curves. The first curve r1(t) is the vertical
segment joining η(x1, t) ∈ r1(t) to a point η(z(t), t) ∈ �1(t). This segment is
contained in full in the closure of �−(t) (for T − t sufficiently small), as we have
shown in Step 1 of the proof of Theorem 6.1, by simply switching the role of x0
and x1 in the definition of this vertical segment.

The second curve r2(t) is the portion of �0(t) linking η(z(t), t) to η(x0, t).
We now simply write

δu−
1 (t) = u−

1 (η(x0, t), t) − u−
1 (η(z(t), t), t) + u−

1 (η(z(t), t), t) − u−
1 (η(x1, t), t)

= u−
1 (η(x0, t), t) − u−

1 (η(z(t), t), t) +
∫
r1(t)

∇u−
1 · τ dl

= u−
1 (η(x0, t), t) − u−

1 (η(z(t), t), t) +
∫
r1(t)

∂u−
1

∂x2
dx2, (7.11)

where we have used that e2 is the tangent vector to r1(t) in the last equality of
(7.11).
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Next, we estimate the length of the vertical segment r1(t), by simply noticing
that

|η(x0, t) − η(x1, t)|2 = |η(x0, t) − η(z(t), t)|2 + |η(z(t), t) − η(x1, t)|2
+ 2|η(x0, t) − η(z(t), t)||η(z(t), t) − η(x1, t)| cos θ,

(7.12)

where θ denotes the angle between the two vectors η(x0, t) − η(z(t), t) and
η(z(t), t) − η(x1, t). Due to (5.28), the direction of the tangent vector T on
η(γ0(ε), t) in a small neighborhood of η(x0, t) is very close to horizontal; in par-
ticular, |T (η(x, t), t) · e2| < ε for all x ∈ γ0(ε) and t ∈ [t0(ε), T ). Hence, we
have that η(x0, t)−η(z(t), t) is in direction close to horizontal. On the other hand,
η(z(t), t) − η(x1, t) is in the vertical direction. Therefore, θ is very close to π

2
which then, in turn, implies from (7.12) that

|η(x0, t) − η(x1, t)|2 � |η(x0, t) − η(z(t), t)|2 + |η(z(t), t) − η(x1, t)|2

− 1

2
|η(x0, t) − η(z(t), t)||η(z(t), t) − η(x1, t)|

� 3

4
|η(x0, t) − η(z(t), t)|2 + 3

4
|η(z(t), t) − η(x1, t)|2,

which shows that the square of the length of the vertical segment satisfies

|η(x1, t) − η(z(t), t)|2 � 4

3
|η(x0, t) − η(x1, t)|2

� 4

3
|η(x0, t) − η(x0, T ) − η(x1, t) + η(x1, T )|2

� 4

3

∣∣∣∣
∫ t

T
v−(x0, s) ds −

∫ t

T
v−(x1, s) ds

∣∣∣∣
2

� 16

3
(T − t)2‖v−‖2L∞(�)

� M2(T − t)2, (7.13)

thanks to Lemma 5.1.
Then, with our estimate (5.10) on

∂u−
2

∂x1
and the fact that curl u− = 0, we then

have with (7.13) that∣∣∣∣
∫
r1(t)

∇u−
1 · τ dl

∣∣∣∣ � M (T − t)
ε

T − t
= εM. (7.14)

It remains to estimate the difference u−
1 (η(x0, t), t) − u−

1 (η(z(t), t) appearing
on the right-hand side of (7.11). Recall that �0(t) = η(γ0(ε), t), for ε > 0 small
enough fixed. From Lemma 5.1, v− is continuous along �0. Next, we have that η is
continuous and injective from γ0(ε)×[0, T ], into its imageK. Since η is continuous
and injective, and γ0(ε) is closed, K is closed (as the sequential definition of a
closed set is straightforwardly satisfied). As a result, η−1 is also continuous and
injective from K into γ0(ε) × [t0(ε), T ], as the sequential definition of continuity
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is straightforwardly satisfied. By composition, u− = v− ◦ η−1 is also continuous
on K. Since z(t) ∈ γ0(ε) by step 1 of the proof of Theorem 6.1 (by switching the
roles of x0 and x1), and z(t) converges to x0 as t → T , we then have that η(z(t), t)
belongs to K and satisfies

lim
t→T

(η(z(t), t) − η(x0, t)) = 0.

Since we just established the continuity of u− onK, and henceforth its uniform
continuity in the compact set K, we can infer from the previous limit and this
uniform continuity that u1(η(x0, t), t)− u1(η(z(t), t) converges to zero as t → T .

With this fact, we can infer from (7.11) and (7.13) that as t → T,

|δu−
1 (T )| � εM,

this being true for any ε > 0. Therefore,

|δu−
1 (T )| = 0,

which is a contradiction with (7.10).
We shall next explain why a non-singular gradient of the velocity u− also does

not allow for a splash singularity, which will finish the proof of our main result in
the case of a single self-intersection.

7.1.2. TheCase that |∇u−(x, t)|Remains Bounded If ‖∇u−(·, t)‖L∞(�−(t)) is
bounded on [0, T ], we can still obtain the differential equation δηt (t) = M(t)δη(t)
using the same path integral that we used in the proof of Theorem 6.1, with paths
shown in Fig. 4; in this case, however, the components of the matrixM are bounded
on [0, T ]. From δηt (t) = M(t)δη(t), we see that

∂t |δη|2 = 2M11|δη1|2 + 2 (M12(t) + M21(t)) δη1 δη2 + 2M22|δη2|2,

withMi j bounded for i, j = 1, 2. Therefore,

∂t |δη|2 � −C(M)|δη|2,

which then provides

|δη(t)|2 � |δη(0)|2e−C(M)t .

Since δη(0) 	= 0, we then cannot have δη(T ) = 0 for any finite T .

7.1.3. The Case that the Region Between x0 and x1 is �+. In this case, we
can still proceed with the same geometric constructions as before. The difference is
that in this case, the matrix M(t) has bounded coefficients (since ∇u+ is bounded
in L∞(�+(t)), and therefore, we are in the same situation as the case treated
previously where |∇u−(x, t)| remains bounded, which leads to the impossibility
of a splash singularity at time T .
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7.2. An Arbitrary Number (Finite or Infinite) of Splash Singularities at Time T
is not Possible

We assume that an arbitrary number of simultaneous splash singularities occur
at time T > 0. We now focus on one of the many possible self-intersection points.
To this end, let x0 and x1 be two points in � such that η(x0, T ) = η(x1, T ). Let
�0 ⊂ � be a local neighborhood of x0 and let �1 ⊂ � be a local neighborhood of
x1.

Then, there exists a sequence of points xn0 ∈ �0 converging to x0, and of a
sequence of points xn1 ∈ �1 converging to x1 such that

dn0 := d(η(xn0 , T ), η(�1, T )) 	= 0, dn1 := d(η(xn1 , T ), η(�0, T )) 	= 0 ∀n ∈ N,

(7.15)
where d denotes the distance function; otherwise, if (7.15) did not hold, then we
would have non trivial neighborhoods γ0 of x0 and γ1 of x1 such that η(γ0, T ) =
η(γ1, T ), which means a splat singularity occurs at t = T , and we treat that case
below in Section 7.3.

We continue to let e1 denote a tangent unit vector to �(T ) at the splash contact
point η(x0, T ). We then have, by the continuity of the tangent vector T to the
interface, that for both sequences of points,

∣∣e1 − T (η(xn0 , T ), T )
∣∣ � ε, (7.16)

for ε > 0 fixed and n large enough. We now call zn1 the orthogonal projection of
η(xn0 , T ) onto η(�1, T ). We then have from (7.15) that

∣∣η(xn0 , T ) − zn1
∣∣ = dn0 > 0. (7.17)

Furthermore, we denote by the unit vector en0 the direction of the vector
η(xn0 , T ) − zn1 (with base point at zn1 and “arrow” at η(xn0 , T )). By definition,
en0 points in the normal direction to η(�1, T ) at zn1 and by (7.16), en0 is close to e2.
For each point xn0 , the segment (η(xn0 , T ), zn1) is contained in η(�−, T ).

By continuity of η on � × [0, T ] we also infer from (7.17) that there exists a
connected neighborhood γ n

0 of xn0 on �, of length Ln > 0, such that for any x ∈ γ n
0

we have

d(η(x, T ), η(�1, T )) � dn0
2

; (7.18)

moreover, the direction of the vector η(x, T ) − Pη(�1,T )(η(x, T )), normal to
η(�1, T ) at Pη(�1,T )(η(x, T )), is close to e2, where Pη(�1,T ) denotes the orthogonal
projection onto η(�1, T ).

Note that for each x ∈ γ n
0 , the segment (η(x, T ), Pη(�1,T )(η(x, T ))) is con-

tained in η(�−, T ). By continuity of the direction of these vectors, we then have
that

ωn = ∪x∈γ n
0
(η(x, T ), Pη(�1,T )(η(x, T ))), (7.19)

is an open set contained in η(�−, T ). Furthermore, ∂ωn contains the set η(γ n
0 , T )

of length Ln > 0 (as its top boundary), and by continuity of the directions, ∂ωn

also contain a connected subset η(γ n
1 , T ) of η(�1, T ), of length greater than Ln

2 (as



No Splash Singularities for Vortex Sheets 1027

Fig. 7. The open set ωn is contained in the larger open set ω̃n

its bottom boundary). Because ωn does not intersect the cusp which occurs at the
contact point, we define the open set ω̃n ⊃ ωn , such that the lateral part of ∂ω̃n is
parallel to the lateral part of ∂ωn and connects η(�0, T ) and η(�1, T ) as shown in
Fig. 7.

Next, we introduce the stream functions ψ± such that u±(·, T ) = ∇⊥ψ±, and
we recall that u+ (and hence ψ+) has the good regularity on �(t) for t ∈ [0, T ],
given by (3.1). Let Wn be an open set such that ωn ⊂ Wn ⊂ ω̃n . Let 0 � ϑn � 1
denote a C∞ cut-off function which is equal to 1 in ωn and equal to 0 on ω̃n/Wn .

We have that ψ− is an H1(�−(T )) weak solution of �ψ− = 0 in �−(T ) and
ψ− = ψ+ on ∂�−(T ). Then ϑnψ

− satisfies

−�(ϑnψ
−) = −ψ−�ϑn − 2∇ϑn · ∇ψ−, in ω̃n,

ϑnψ
− = ψ+ on η(�0, T ) ∪ η(�1, T ) ∩ ∂ω̃n,

and as ψ+ ∈ H3.5(η(�0, T )) ∪ H3.5(η(�1, T )), standard elliptic regularity shows
that

ψ− ∈ H4(ωn),

and therefore that
∇u−(·, T ) ∈ H3(ωn) ⊂ L∞(ωn). (7.20)

Let Dr
n denote the pre-image of ωn under the map η(·, T ). Let us assume that

∂Dr
n ∩ �0 lies to the right of x0. Since ωn does not intersect the splash singularity

at time T , η(·, T ) is bijective and continuous from Dr
n into ωn , and therefore Dr

n
is an open connected set.

Furthermore,∇u−◦η is also continuous onDr
n×[0, T ]which, thanks to (7.20),

shows that for all t ∈ [0, T ],
‖∇u−(·, t)‖L∞(η(Dr

n ,t)) � Mr
n . (7.21)

We can also choose the sequence xn0 to lie on the left of x0 (otherwise, we would
have a splat singularity). This similarly gives an open neighborhoodDl

n of the same
type as Dr

n satisfying for all t ∈ [0, T ],
‖∇u−(·, t)‖L∞(η(Dl

n ,t))
� Ml

n . (7.22)

We now denote by Crn (respectively Cln) the lateral part of ∂Dr
n (respectively

∂Dl
n) joining �0 to �1, and we denote by Kn the open set delimited by Crn ; the
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subset of �0 containing x0 linking Crn to C
l
n ; C

l
n ; and the subset of �1 containing x1

linking Cln to C
r
n .

Forn large enough,wewill have estimate (7.16) satisfied at anypoint of ∂Kn∩�,
with moreover the length of ∂Kn ∩ � being of order ε. This then implies, in a way
similar to Step 4 of Theorem 5.1, that∥∥∥∥∥

∂u−
2

∂x1
(·, t)

∥∥∥∥∥
L∞(η(∂Kn∩�,t))

� ε

T − t
(7.23)

for any t < T .Moreover, for t close enough to T , themaximumof the two constants
Mr

n andMl
n of (7.21) and (7.22)will become smaller than ε

T−t . Thus, for any t < T
close enough to T , ∥∥∥∥∥

∂u−
2

∂x1
(·, t)

∥∥∥∥∥
L∞(η(∂Kn ,t))

� ε

T − t
,

which by application (for each fixed t < T close enough to T ) of the maximum and

minimum principle for the harmonic function
∂u−

2
∂x1

(·, t) on the open set η(Kn, t)
provides ∥∥∥∥∥

∂u−
2

∂x1
(·, t)

∥∥∥∥∥
L∞(η(Kn ,t))

� ε

T − t
. (7.24)

We can then apply the same arguments as in the Sections 6 and 7.1 to exclude a
splash singularity associated with x0 and x1 simply byworking in the neighborhood
of size Cε (C bounded from below away from 0) where (7.24) holds.

7.3. A Splat Singularity is not Possible

We now assume the existence of a splat singularity: there exists two disjoint
closed subsets of �, which we denote by �0 and �1, with non-zero measure, such
that contact occurs at time t = T and η(�0, T ) = η(�1, T ). We furthermore
assume that the set

S0 =
{
x ∈ �0 : lim

t→T
|∇u−(η(x, t), t)| = ∞

}
(7.25)

has a non-empty interior, and denote by x0 and y0 two distinct points on S0 such
that the curve γ0 ⊂ �0, which connects the points x0 to y0, is contained in S0. We
denote by L(t) the length of the curve η(γ0, t), which is given by

L(t) =
∫

γ0

|η′(x, t)| dl. (7.26)

By Lemma 5.2, for any x ∈ S0, limt→T η′(x, t) = 0, and from Lemma 5.1,
we have the uniform bound supt∈[0,T ] |η′|L∞(�) � M whereM is independent of
t < T . Therefore, by the dominated convergence theorem,

lim
t→T

L(t) = 0, (7.27)
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which shows that η(x0, T ) = η(y0, T ), which is a contradiction with the fact that η
is injective on�0×[0, T ]. Therefore our assumption that S0 has non-empty interior
was wrong, which shows that this set has empty interior. Therefore the set

B0 =
{
x ∈ �0 : lim

t→T
|∇u−(η(x, t), t)| < ∞

}
, (7.28)

is dense in �0. Furthermore, by Lemma 5.1, |v′(·, t)|L∞(�) � M where M is
independent of t < T . Hence, by Lemma 5.2, B0 is defined equivalently as

B0 = {
x ∈ �0 : |η′(x, T )| > 0

}
,

which shows that this set is open in �0. Therefore, B0 is an open and dense subset
of �0.

Now since η is continuous and injective from �0 ×[0, T ] onto its image, it also
is a homeomorphism from �0 × [0, T ] onto its image, which shows that η(B0, T )

is open and dense in η(�0, T ). With

B1 =
{
x ∈ �1 : lim

t→T
|∇u−(η(x, t), t)| < ∞

}
, (7.29)

the same argument shows that η(B1, T ) is also open and dense in η(�1, T ). Our
assumption of a splat singularity at t = T means that η(�0, T ) = η(�1, T ),
showing that η(B0, T ) and η(B1, T ) are two open and dense sets in η(�0, T ) =
η(�1, T ). They, therefore, have an open and dense intersection.

Let Z be a point in this intersection with tangent direction given by e1. By
definition, there exists z0 ∈ B0 and z1 ∈ B1 such that η(z0, T ) = η(z1, T ). We
are therefore back to the case where interface self-intersection occurs with non-
singular ∇u− (from the definition of the sets B0 and B1), except that we do not
have an estimate for ∇u− valid for the entire interface �(t).

We now consider two open connected curves γ0 ⊂ B0 and γ1 ⊂ B1 such that
for any point z0 ∈ γ0 there exist a point z1 ∈ γ1 such that η(z0, T ) = η(z1, T ). For
t ∈ [T0, T ), T0 being very close to T , the two curves η(γ0, t) and η(γ1, t) are very
close to each other, and at each point, have tangent vector close to e1 (to ensure
this, if necessary, we take a sufficiently small subset of each of these two curves).

Furthermore, from the definition of B0, we have that the length of the curve
η(γ0, t) for t ∈ [T0, T ), T0 being very close to T , is close to a number L0 > 0
(which is the length of η(γ0, T ) = η(γ1, T )). Similarly, the length of the curve
η(γ1, t) for t ∈ [T0, T ), is close to L0.

We nowfix two distinct and close-by points η(z0, T0) and η(z̃0, T0) on η(γ0, T0)
such that |η(z0, T0) − η(z̃0, T0)| < L0

200 , and the distance between each of these

points and the complement of η(γ0, T0) in η(�0, T0) is greater than
L0
4 . By taking

T0 closer to T if necessary, we can assume that for any t ∈ [T0, T ] the distance
between η(z0, t) (or η(z̃0, t)) and the complement of η(γ0, t) in η(�0, t) is greater
than L0

5 .
As shown in Fig. 8, we now define η(z1, T0) as being the intersection of the

vertical line passing through η(z0, T0) and η(γ1, T0). This defines a unique point
since the tangent vector to η(γ1, T0) is close to e1, and furthermore the segment



1030 Daniel Coutand & Steve Shkoller

Fig. 8. The region in which we apply the maximum and minimum principle

(η(z0, T0), η(z1, T0)) is contained in η(�−, T0). Similarly, we define η(z̃1, T0) as
being the intersection of the vertical line passing through η(z̃0, T0) and η(γ1, T0).
This defines a unique point, with the segment (η(z̃0, T0), η(z̃1, T0)) contained in
η(�−, T0).

By taking T0 closer to T if necessary, we can assume that for any t ∈ [T0, T ] the
distance between η(z1, t) (or η(z̃1, t)) and the complement of η(γ1, t) in η(�1, t) is
greater than L0

5 . By further taking T0 closer to T , if necessary, we can also assume
that

dist(η(γ0, T0), η(γ1, T0)) � L0

100
, (7.30)

and also that (
1 + sup

[0,T ]
‖v−(·, t)‖L∞(�−)

)
(T − T0) <

L0

12
. (7.31)

We denote by η(ω, T0) the domain enclosed by the two vertical segments
[η(z0, T0), η(z1, T0)], [η(z̃0, T0), η(z̃1, T0)], the portion of the curve η(γ0, T0) link-
ing η(z0, T0) to η(z̃0, T0), and the portion of the curve η(γ1, T0) linking η(z1, T0) to
η(z̃1, T0). This domain is contained in η(�−, T0) (which justifies its name η(ω, T0),
for ω ⊂ �−), and has a non-zero area A0 (since its boundary contains two distinct
vertical lines and two near horizontal and distinct curves).

By incompressibility, for any t ∈ [T0, T ), the area of η(ω, t) remains a constant
which we call A0. Now, as t → T , the two curves η(γ0, t) and η(γ1, t) get close to
a splat contact (which occurs at t = T ); therefore, the domain D(t) between these
two curves and the two short lateral segments joining them has an area converging
to zero (see Fig. 9). Therefore for t < T close enough to T we cannot have
η(ω, t) ⊂ D(t), as points on the lateral edges of η(ω, t) would be pushed-out of
the lateral boundaries of D(t).

Therefore, we have at least a point (in fact a subset of non zero area) η(z, t)
(z ∈ ω) such that

|η(z0, t) − η(z, t)| � L0

5
. (7.32)

From (7.30), and from the fact that the boundary of η(ω, T0) is comprised of
two vertical segments of length less than L0

100 and of two near horizontal curves of

length less than L0
100 , we have that

|η(z0, T0) − η(z, T0)| � L0

50
. (7.33)
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Fig. 9. That portion of �−(t) being squeezed together by the approaching splat singularity

From (7.32) and (7.33) we then have
∣∣∣∣
∫ t

T0
[v(z0, s) − v(z, s)]ds

∣∣∣∣ � L0

5
− L0

50
� L0

6
. (7.34)

Using (7.34), we infer that

2(T − T0) sup
[0,T ]

‖v‖L∞(�−) � L0

6
,

which is in contradiction to (7.31). This establishes the impossibility of a splat
singularity at time t = T .

As our analysis was reduced to a local neighborhood of any assumed splat
singularity, as shown in Fig. 9, this means that any combination of splat and splash
singularities at time t = T can be analyzed in the same way. This finishes the proof
of the exclusion of splat or splash singularities in finite time.
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