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Abstract

The classical one-phase Stefan problem describes the temperature distribution in
a homogeneous medium undergoing a phase transition, such as ice melting to
water. This is accomplished by solving the heat equation on a time-dependent
domain whose boundary is transported by the normal derivative of the temper-
ature along the evolving and a priori unknown free boundary. We establish a
global-in-time stability result for nearly spherical geometries and small temper-
atures, using a novel hybrid methodology, which combines energy estimates,
decay estimates, and Hopf-type inequalities. © 2015 Wiley Periodicals, Inc.
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1 Introduction
1.1 The Problem Formulation

We consider the problem of global existence and asymptotic stability of classical
solutions to the classical Stefan problem describing the evolving free-boundary
between the liquid and solid phases. The temperature of the liquid p.t; x/ and the
a priori unknown moving phase boundary �.t/ must satisfy the following system
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690 M. HADŽIĆ AND S. SHKOLLER

of equations:

pt ��p D 0 in �.t/;(1.1a)

V .�.t// D �@np on �.t/;(1.1b)

p D 0 on �.t/;(1.1c)

p.0; � / D p0; �.0/ D �0:(1.1d)

For each instant of time t 2 Œ0; T �, �.t/ is a time-dependent open subset of Rd

with d � 2, and �.t/ WD @�.t/ denotes the moving, time-dependent free bound-
ary.

The heat equation (1.1a) models thermal diffusion in the bulk�.t/ with thermal
diffusivity set to 1. The boundary transport equation (1.1b) states that each point on
the moving boundary is transported with normal velocity equal to�@np D �rp�n,
the normal derivative of p on �.t/. Here n denotes the outward pointing unit nor-
mal to �.t/, and V .�.t// denotes the speed or the normal velocity of the hyper-
surface �.t/. The homogeneous Dirichlet boundary condition (1.1c) is termed the
classical Stefan condition, and problem (1.1) is called the classical Stefan problem.
It implies that the freezing of the liquid occurs at a constant temperature p D 0. Fi-
nally, we must specify the initial temperature distribution p0 W �0 ! R, as well as
the initial geometry �0. Because the liquid phase �.t/ is characterized by the set
fx 2 Rd W p.x; t/ > 0g, we shall consider initial data p0 > 0 in�0. Problem (1.1)
belongs to the category of free boundary problems that are of parabolic-hyperbolic
type. Thanks to (1.1a), the parabolic Hopf lemma implies that @np.t/ < 0 on �.t/
for t > 0, so we impose the nondegeneracy condition or so-called Taylor sign
condition1

(1.2) � @np0 � � > 0 on �.0/

on our initial temperature distribution. Under the above assumptions, we proved in
Hadžić and Shkoller [28] that (1.1) is indeed well-posed.

1.2 The Reference Domain� and the Dimension
For our reference domain, we choose the unit ball in R2 given by

� D B.0; 1/ WD fx 2 R2 W jxj < 1g;

with boundary � D S1 WD fx 2 R2 W jxj D 1g. We shall consider initial domains
�0 whose boundary �0 is a graph over the reference boundary � . In order to
simplify our presentation, we consider evolving domains �.t/ in R2, but as we
shall explain in Section 5, our methodology works equally well in any dimension
d � 2.

1 This type of stability condition dates back to the early work of Lord Rayleigh [45] and Tay-
lor [48] in fluid mechanics, and appears as a necessary well-posedness condition on the initial data in
many free boundary problems wherein the effects of surface tension are ignored; examples include
the Hele-Shaw cell, the water waves equations [50], and the full Euler equations in both incompress-
ible [16] and compressible form [15, 18].
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Our choice of the reference domain � follows from two considerations. First,
we need employ only one global coordinate system near the boundary � rather than
a collection of local coordinate charts that a more general domain would necessi-
tate, and the use of one coordinate system greatly simplifies the presentation of our
energy identities, which provide very natural estimates for the second fundamental
form of the evolving free boundary �.t/. Second, we shall need quantitative Hopf-
type inequalities in order to bound the term defined in (1.2) from below, and such
estimates are available in a particularly satisfying form in the case of the nearly
spherical domains, thanks to the explicit construction of comparison functions in
Oddson [40].

1.3 Notation
For any s � 0 and given functions f W �! R, ' W � ! R, we set

kf ks WD kf kH s.�/ and j'js WD k'kH s.�/:

H s.�/0 shall denote the dual space of H s.�/, while on the boundary H s.�/0 D

H�s.�/. If i D 1; 2, then f;i WD @xif is the partial derivative of f with respect
to xi . Similarly, f;ij WD @xi@xj f , etc. For time differentiation, ft WD @tf . Fur-
thermore, for a function f .t; x/, we shall often write f .t/ for f .t; � /, and f .0/ to
mean f .0; x/. We use x@ WD � � r to denote the tangential derivative, so that

x@f WD @�f; x@
kf WD @k�f;

where � 2 Œ0; 2�/ denotes the angular component in polar coordinates. The Greek
letter ˛ will often be reserved for multi-indices ˛ D .˛1; ˛2/, with @˛ WD @

˛1
x1@

˛2
x2

and j˛j D ˛1 C ˛2. The identity map on � is denoted by e.x/ D x, while
the identity matrix is denoted by Id. We use C to denote a universal (or generic)
constant that may change from inequality to inequality. We write X . Y to denote
X � CY . We use the notation P.�/ to denote a generic real polynomial function
of its argument(s) with positive coefficients. The Einstein summation convention
is employed, indicating summation over repeated indices. The L2–inner product
on � is denoted by . � ; � /L2 .

1.4 Fixing the Domain
We transform the Stefan problem (1.1), set on the moving domain �.t/, to an

equivalent problem on the fixed domain �. For many problems in fluid dynam-
ics, the Lagrangian flow map of the fluid velocity provides a natural family of
diffeomorphisms that can be used to fix the domain, but for the classical Stefan
problem, we use instead (in the parlance of fluid dynamics) the so-called arbitrary
Lagrangian-Eulerian (ALE) family of diffeomorphisms; these ALE maps interpo-
late between the Lagrangian and Eulerian representations of the equations. For
this problem, we choose a simple type of ALE map, consisting of harmonic coor-
dinates, also known as the harmonic gauge.
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The Diffeormorphism ‰.t/

We represent our moving domain �.t/ as the image of a time-dependent family
of diffeomorphisms ‰.t/ W � ! �.t/. In order to define these diffeomorphisms,
we let h.t; � / W � ! R denote the signed height function whose graph (over �) is
the set �.t/. For � 2 � D S1, we define the map

‰.t; �/ D .1C h.t; �//� D R.t; �/�;

which is a diffeomorphism of � onto �.t/ as long as h.t/ remains a graph. The
outward-pointing unit normal vector n.t; � / to the moving surface �.t/ is defined
by

.n ı‰/.t; �/ D .R�/?� =j.R�/
?
� j:

We shall henceforth drop the explicit composition with the diffeomorphism ‰ and
simply write

n.t; �/ D .R�/?� =j.R�/
?
� j

for the unit normal to the moving boundary at the point ‰.t; �/ 2 �.t/.
Introducing the unit normal and tangent vectors to the reference surface � as

(1.3)
N WD �; � WD �� or equivalently

N.�/ D .cos �; sin �/; �.�/ D .� sin �; cos �/;

we write the unit normal to �.t/ as

(1.4) n.t; �/ D
RN � h��q
R2 CR2�

:

The evolution of h.t/ is then given by

(1.5) ht D v �N.�/ �
h�

R
v � �.�/:

Assuming that the signed height function h.t; � / is sufficiently regular and re-
mains a graph, we can define a diffeomorphism ‰ W � ! �.t/ as the elliptic
extension of the boundary diffeomorphism � 7! .1C h.�; t//� by solving the fol-
lowing Dirichlet problem:

(1.6)
�‰ D 0 in �;

‰.t; �/ D R.t; �/�; � 2 �:

Since the identity map e W �! � is harmonic in� and‰�e D h� on � , standard
elliptic regularity theory for solutions to (1.6) shows that

(1.7) k‰ � ekH s.�/ � CkhkH s�0:5.�/; s > 0:5;

so that for h.t/ sufficiently small and s large enough, the Sobolev embedding theo-
rem shows that r‰.t/ is close to the identity matrix Id, and by the inverse function
theorem, each ‰.t/ is a diffeomorphism.
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The Temperature and Velocity Variables on the Fixed Domain�
First we introduce the velocity variable u D �rp in �.t/. Next, we introduce

the following new variables set on the fixed domain �:

q D p ı‰ (temperature);

v D u ı‰ (velocity);

w D ‰t (extension of boundary velocity vector);

A D ŒD‰��1 (inverse of the deformation tensor);

J D detD‰ (Jacobian determinant);

a D JA (cofactor matrix of the deformation tensor):

The relation u D �rp is then written as vi C Aki q;kD 0 for i D 1; 2. By the
chain rule,

qt D pt ı‰ C .rp ı‰/ �‰t D pt ı‰ � v � w

and
�p ı‰ D �‰q WD A

j
i .A

k
i q;k /;j :

Letting zn D J�1.R2 CR2
�
/1=2n, we see that

(1.8) zni .t; x/ D A
k
i .t; x/Nk.x/;

and equation (1.5) can be written as ht D v � zn=RJ , where RJ D RJ�1. Note that
RJ D RJ

�1 D .1C h/J�1 is very close to 1.

The Classical Stefan Problem Set on the Fixed Domain�
The classical Stefan problem on the fixed domain � is written as

qt � A
j
i .A

k
i q;k /;j D �v �‰t in .0; T � ��;(1.9a)

vi C Aki q;kD 0 in Œ0; T � ��;(1.9b)

q D 0 on Œ0; T � � �;(1.9c)

ht D v �N � .1C h/
�1h�v � � on .0; T � � �;(1.9d)

�‰ D 0 on Œ0; T � ��;(1.9e)

‰ D .1C h/N on Œ0; T � � �;(1.9f)

q D q0 > 0 on ft D 0g ��;(1.9g)

h D h0 on ft D 0g � �;(1.9h)

where the initial boundary @�0 is given as a graph over � with the initial height
function h0, i.e., @�0 D fx 2 R2 W x D .1 C h0.�//�; � 2 S1g. Note that
ˆ D ‰.0/ W � ! �0 is a near-identity transformation, mapping the reference
domain � onto the initial domain �0. The initial temperature function q0 equals
p0 ıˆ. Problem (1.9) is a reformulation of problem (1.1).
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Henceforth, without loss of generality, we shall assume that the initial domain
�0 is the unit ball B1.0/ or, in other words, h0 D 0. In this case, we set ˆ D e,
where e W � ! � is the identity map, and ‰.t/jtD0 D e. In Section 5, we will
explain the minor modification required when h0 ¤ 0, as well as the case that the
dimension d D 3.

Observe that the boundary condition (1.9d) implies that

(1.10) ‰t � n.t/ D v � n.t/ on Œ0; T � � � so that ‰.t/.�/ D �.t/:

The Energy and Dissipation Functions
Near � D @�, it is convenient to use tangential derivatives x@ WD @� with �

denoting the polar angle, while near the origin, Cartesian partial derivatives @xi are
natural. For this reason, we introduce a nonnegative C1 cutoff function � W x�!
RC with the property

�.x/ � 0 if jxj � 1=2; �.x/ � 1 if 3=4 � jxj � 1:

DEFINITION 1.1 (Higher-Order Norms). The following high-order energy and dis-
sipation functionals are fundamental to our analysis:

(1.11)

E .t/ WDE .q; h/.t/

D
1

2

X
aC2b�5



�1=2x@a@bt v

2L2x C 1

2

2X
bD0

ˇ̌
.�@N q/

1=2RJ�1x@6�2b@bt h
ˇ̌2
L2x

C
1

2

X
aC2b�6



�1=2�x@a@bt q C x@a@bt‰ � v�

2L2x
C

X
j ĘjC2b�5



.1 � �/1=2@ Ę@bt v

2L2x
C
1

2

X
j ĘjC2b�6



.1 � �/1=2�@ Ę@bt q C @ Ę@bt‰ � v�

2L2x
and

(1.12)

D.t/ D D.q; h/.t/

WD

X
aC2b�6



�1=2x@a@bt v

2L2x C 2X
bD0

ˇ̌
.�@N q/

1=2RJ�1x@5�2b@bt ht
ˇ̌2
L2x

C

X
aC2b�5



�1=2�x@a@bt qt C x@a@bt‰t � v�

2L2x
C

X
j ĘjC2b�6



.1 � �/1=2@ Ę@bt v

2L2x
C

X
j ĘjC2b�5



.1 � �/1=2�@ Ę@bt qt C @ Ę@bt‰t � v�

2L2x :
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Note that the boundary norms of the height function are weighted by
p
�@N q.

We thus introduce the time-dependent function

�.t/ WD inf
x2�

.�@N q/.t; x/ > 0;

which will be used to track the weighted behavior of h. We will show that E is
indeed equivalent to

3X
lD0



@ltq

2H6�2l .�/
C �.t/

3X
lD0

ˇ̌
@lth

ˇ̌2
H6�2l .�/

;

and that D is equivalent to

kqk2
H6:5.�/

C

2X
lD0



@ltqt

2H5�2l .�/
C �.t/

2X
lD0

ˇ̌
@lC1t h

ˇ̌2
H5�2l .�/

:

The elliptic operator in the parabolic equation (1.9)a for q has coefficients that
depend on A D ŒD‰��1, which in turn depend on h; hence, the regularity of q is
limited (and, in fact, determined) by the regularity of h on the boundary � . Since
the regularity of h is given by norms that are weighted by the factor �.t/, a naive
application of elliptic estimates would thus lead to the crude bound

(1.13)


@ltq

26:5�2l .

D

�.t/
;

which could a priori grow in time. However, by using the fact that lower-order
norms of q have exponential decay (in time), estimate (1.13) can be improved to
yield

(1.14) kqk26:5 C


@ltqt

25�2l . e�
tE CD ; l D 0; : : : ; 2;

for some positive constant 
 > 0. This is one of the essential ingredients of our
analysis, as (1.14) will be used to control error terms arising from higher-order
energy estimates in Section 3.

In order to capture the exponential decay of the temperature q, we introduce the
lower-order decay norms:

Eˇ .t/ WD e
ˇt
� 2X
bD0



@bt q.t/

2H4�2b.�/
C

1X
bD0



@bt v

2H3�2b.�/

�
;

D.t/ WD

2X
bD0



@bt q.t/

2H5�2b.�/
;

(1.15)

with the constant ˇ denoting a positive real number given by

(1.16) ˇ WD 2�1 � �;

where �1 is the smallest eigenvalue of the Dirichlet-Laplacian on� D B1.0/ and �
is a small positive constant related to the size of the initial data, which will be made
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precise below. Note that the smallness of Eˇ in particular implies an exponential
decay (in time) estimate for the H 4-norm of the temperature q.t/.

Taylor Sign Condition or Nondegeneracy Condition on q0
With respect to q0 D p0 ı ˆ, condition (1.2) becomes infx2� Œ�@N q0.x/� �

� > 0 on � . For initial temperature distributions that are not necessarily strictly
positive in �, this condition was shown to be necessary for local well-posedness
for (1.1) (see [28, 39, 41]). On the other hand, if we require strict positivity of our
initial temperature function,2

(1.17) q0 > 0 in �;

the parabolic Hopf lemma (see, for example, [21]) guarantees that �@N q.t; x/ > 0
for 0 < t < T on some a priori (possibly small) time interval, which, in turn,
shows that E and D are norms for t > 0, but uniformity may be lost as t ! 0. To
ensure a uniform lower bound for �@N q.t/ as t ! 0, we impose the Taylor sign
condition with the following lower bound:3

(1.18) � @N q0 � C

Z
�

q0'1 dx:

Here '1 is the positive first eigenfunction of the Dirichlet-Laplacian, and C > 0

denotes a universal constant. The uniform lower bound in (1.18) thus ensures that
our solutions are continuous in time; moreover, (1.18) allows us to establish a time-
dependent optimal lower bound for the quantity �.t/ D infx2�.�@N q/.t; x/ > 0

for all time t � 0, which will be crucial for our analysis.

Compatibility Conditions
The definition of our higher-order energy function E , restricted to time t D 0,

requires an explanation of the time derivates of q and h evaluated at t D 0. Specifi-
cally, the values qt jtD0, qt t jtD0, ht jtD0, and ht t jtD0 are defined via space deriva-
tives using equations (1.9a) and (1.9d). To ensure that the solution is continuously
differentiable in time at t D 0, we must impose compatibility conditions on the
initial data (such conditions are, of course, only necessary for regular initial data).
By restricting the equation (1.9a) to the boundary at time t D 0 and using the fact
that qt .0/ D 0 on � and that Aki jtD0 D ı

k
i , where ıki denotes the Kronecker delta

which equals 1 if k D i and 0 otherwise, we obtain the first-order compatibility
condition

(1.19) �q0 D .@N q0/
2 on �:

2 Condition (1.17) is natural, since it determines the phase: �.t/ D fq.t/ > 0g.
3 When h0 ¤ 0, the unit normal to the initial surface �0 is given by

N D
.1C h0/� � @�h0�q
.1C h0/2 C @�h

2
0

where � D .cos �; sin �/ and � D .� sin �; cos �/:
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Upon differentiating (1.9a) with respect to time and then restricting to � at t D 0

and using (1.19), we arrive at the second-order compatibility condition

(1.20) �2q0 D �j@N q0j
2
C 2@N .�q0 � j@N q0j

2/@N q0 � 2j@NN q0j
2 on �;

where we have used that ht .t; �/ D v � ŒN.�/ � �.�/h� .1C h/�1�.
We note that our functional framework only requires specification of two higher-

order compatibility conditions (the condition q0 D 0 on � being the zeroth-order
condition).

Main Result
Our main result is a global-in-time stability theorem for solutions of the classical

Stefan problem for surfaces that are nearly spherical and for temperature fields
close to 0. The notion of “near” is measured by our energy norms as well as the
dimensionless quantity

(1.21) K WD
kq0k4

kq0k0

as expressed in the following theorem.

THEOREM 1.2. Let .q0; h0/ satisfy the Taylor sign condition (1.18), the strict posi-
tivity assumption (1.17), and the compatibility conditions (1.19) and (1.20). Let K
be defined as in (1.21). Then there exists an �0 > 0 and a monotonically increasing
function F W .1;1/! RC such that if

(1.22) E .q0; h0/ <
�20

F.K/
;

then there exist unique solutions .q; h/ to problem (1.9) satisfying

sup
0�t�1

E .q.t/; h.t// < C�20

for some universal constant C > 0. Moreover, the temperature q.t/ ! 0 as
t !1 with bound

kqk2
H4.�/

� Ce�ˇt ;

where ˇ D 2�1 � O.�0/ and �1 is the smallest eigenvalue of the Dirichlet-
Laplacian on the unit disk. The moving boundary �.t/ settles asymptotically to
some nearby steady surface x� , and we have the uniform-in-time estimate

sup
0�t<1

jh � h0j4:5 .
p
�0:

Remark 1.3. The increasing function F.K/ given in (1.22) has an explicit form.
For generic constants xC ;C > 1 chosen in Sections 3 and 4 below,

(1.23) F.K/ WD maxf8K2C xCK
2

; xC 10.lnK/10K20 xC�1g:
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Remark 1.4. The use of the constant K in our smallness assumption (1.22) allows
us to determine a time T D TK when the dynamics of the Stefan problem become
strongly dominated by the projection of q onto the first eigenfunction '1 of the
Dirichlet-Laplacian. Explicit knowledge of the K-dependence in the smallness as-
sumption (1.22) permits the use of energy estimates to show that solutions exist in
our energy space on the time interval Œ0; TK �. For t � TK , certain error terms (that
cannot be controlled by our energy and dissipation functions for large t ) become
sign definite with a good sign.

1.5 A Brief History of Prior Results on the Stefan Problem
There is a large amount of literature on the classical one-phase Stefan prob-

lem. For an overview we refer the reader to Friedman [23], Meirmanov [39],
and Visintin [49]. First, weak solutions were defined by Kamenomostskaja [31],
Friedman [22], and Ladyženskaja, Solonnikov, and Ural0ceva [37]. For the one-
phase problem studied herein, a variational formulation was introduced by Fried-
man and Kinderlehrer [24], wherein additional regularity results for the free sur-
face were obtained. Caffarelli [5] showed that in some space-time neighborhood
of points x0 on the free boundary that have Lebesgue density, the boundary is C 1

in both space and time, and second derivatives of temperature are continuous up
to the boundary. Under some regularity assumptions on the temperature, Lips-
chitz regularity of the free boundary was shown by Caffarelli [6]. In related work,
Kinderlehrer and Nirenberg [34, 35] showed that the free boundary is analytic in
space and of second Gevrey class in time under the a priori assumption that the
free boundary is C 1 with certain assumptions on the temperature function. In [8],
Caffarelli and Friedman showed the continuity of the temperature in d dimensions.
As for the two-phase classical Stefan problem, the continuity of the temperature in
d dimensions for weak solutions was shown by Caffarelli and Evans [7].

Since the Stefan problem satisfies a maximum principle, its analysis is ide-
ally suited to another type of weak solution called the viscosity solution. Regu-
larity of viscosity solutions for the two-phase Stefan problem was established by
Athanasopoulos, Caffarelli, and Salsa in a series of seminal papers [3,4]. Existence
of viscosity solutions for the one-phase problem was established by Kim [32] and
for the two-phase problem by Kim and Požar [33]. A local-in-time regularity result
was established by Choi and Kim [11], where it was shown that initially Lipschitz
free boundaries become C 1 over a possibly smaller spatial region. For an exhaus-
tive overview and introduction to the regularity theory of viscosity solutions we
refer the reader to Caffarelli and Salsa [9]. In [36], Koch showed by the use of
von Mises variables and harmonic analysis that an a priori C 1 free boundary in the
two-phase problem becomes smooth.

Local existence of classical solutions for the classical Stefan problem was estab-
lished by Meirmanov (see [39] and references therein) and Hanzawa [29]. Meir-
manov regularized the problem by adding artificial viscosity to (1.1b) and fixed
the moving domain by switching to the so-called von Mises variables, obtaining
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solutions with less Sobolev regularity than the initial data. Similarly, Hanzawa
used Nash-Moser iteration to construct a local-in-time solution, but again, with de-
rivative loss. A local-in-time existence result for the one-phase multidimensional
Stefan problem was proved by Frolova and Solonnikov [47] usingLp-type Sobolev
spaces. For the two-phase Stefan problem, a local-in-time existence result for clas-
sical solutions was established by Prüss, Saal, and Simonett [41] in the framework
of Lp-maximal regularity theory.

In a related work, local existence for the two-dimensional two-phase Muskat
problem (with varying viscosity and density) was proved by Córdoba, Córdoba,
and Gancedo [13] and in three dimensions in [14]. Their methods rely on a bound-
ary integral formulation for the Muskat problem, together with the Taylor sign
condition. In a subsequent work [12], various global existence results were estab-
lished. An overview can be found in [10].

As to the Stefan problem with surface tension (also known as the Stefan problem
with Gibbs-Thomson correction), global weak solutions (without uniqueness) were
given by Almgren and Wang, Luckhaus, and Röger [2, 38, 46]. In Friedman and
Reitich [25] the authors considered the Stefan problem with small surface tension,
i.e., with � � 1, whereby (1.1c) is replaced by v D ��, � denoting mean curvature
of the boundary. Local existence of classical solutions was studied by Radkevich
[44]; Escher, Prüss, and Simonett [20] proved a local existence and uniqueness
result for classical solutions under a smallness assumption on the initial height
function close to the reference flat boundary. Global existence close to flat hyper-
surfaces was proved by Hadžić and Guo in [27], and close to stationary spheres for
the two-phase problem in Hadžić [26] and Prüss, Simonett, and Zacher [42].

In order to understand the asymptotic behavior of the classical Stefan problem
on external domains, Quirós and Vázquez [43] proved that on a complement of a
given bounded domain G, with nonzero boundary conditions on the fixed bound-
ary @G, the solution to the classical Stefan problem converges, in a suitable sense,
to the corresponding solution of the Hele-Shaw problem, and sharp global-in-time
expansion rates for the expanding liquid blob are obtained. Moreover, the blob
asymptotically has the geometry of a ball. Note that the nonzero boundary condi-
tions act as an effective forcing that is absent from our problem, and the techniques
of [43] do not directly apply. Since the corresponding Hele-Shaw problem (in the
absence of surface tension and forcing) is not a dynamic problem, possessing only
time-independent solutions, we are not able to use the Hele-Shaw solution as a
comparison problem for our problem.

A global stability result for the two-phase classical Stefan problem in a smooth
functional framework was also established by Meirmanov [39] for a specific (and
somewhat restrictive) perturbation of a flat interface, wherein the initial geometry
is a strip with imposed Dirichlet temperature conditions on the fixed top and bot-
tom boundaries, allowing for only one equilibrium solution. A global existence
result for smooth solutions was given by Daskalopoulos and Lee [19] under the
log-concavity assumption on the initial temperature function, which in light of the
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level-set reformulation of the Stefan problem, requires convexity of the initial do-
main (a property that is preserved by the dynamics).

In [28], we established the local-in-time existence, uniqueness, and regularity
for the classical Stefan problem in L2 Sobolev spaces, without derivative loss, us-
ing the functional framework given by (1.11) and (1.12). This framework is natural
and relies on the geometric control of the free boundary, analogous to that used in
the analysis of the free boundary incompressible Euler equations in Coutand and
Shkoller [16, 17]; the second fundamental form is controlled by a a natural coer-
cive quadratic form, generated from the inner product of the tangential derivative
of the cofactor matrix a and the tangential derivative of the velocity of the moving
boundary, and yields control of the norm

R
�.�@N q.t//j

x@khj2 dx0 for any k � 3.
The Hopf lemma ensures positivity of �@N q.t/, and the Taylor sign condition on
q0 ensures a uniform lower bound as t ! 0; on the other hand, �@N q.t/ ! 0 as
t ! 1, and so an optimal lower bound for .�@N q.t// for large t is essential to
establish a global existence and stability theory.

We remark that global stability of solutions in the presence of surface tension
(see, for example, [26, 27, 42]) does not require the use of a function framework
with a decaying weight, such as �@N q.t/. In this regard, the surface tension prob-
lem is simpler for two important reasons: first, the surface tension contributes a
positive definite energy contribution that is uniform-in-time and provides better
regularity of the free boundary (by one spatial derivative), and second, the space
of equilibria is finite-dimensional, and thus it is easier to understand the degrees of
freedom that regulate the asymptotic state of the system given the initial conditions.

1.6 Methodology and Outline of the Paper
Our present work builds on our new energy method for the Stefan problem that

we developed in [28]. We obtain global and uniform control of the geometry of the
free boundary by controlling the weighted boundary norm supt2Œ0;T � k

p
�.t/hk6

for all t � 0. We are thus able to track the location of the moving free boundary
and measure its deviation from the initial state; this geometric control is strongly
coupled to, and dependent upon, the exponential-in-time decay of the temperature
function to 0.

There exist infinitely many steady states for the classical Stefan problem: for any
sufficiently smooth hypersurface x� � Rd , the pair . xp; x�/ � .0; x�/ forms an equi-
librium solution of the Stefan problem (1.1). This abundance of possible attractors
for the long-time behavior of the solution �.t/ creates a conceptual difficulty in
approaching the question of “asymptotic” convergence.

We address the temporal asymptotics by requiring our initial surface to be a
small perturbation of the reference sphere. We use the energy spaces introduced
in [28]; moreover, we do not expect to observe any decay for the height of the mov-
ing surface in this norm. Rather, given the expectation that the solution does con-
verge to some nearby shape (so that h remains small), we expect the temperature
q.t/ to converge to 0 exponentially fast, since it is a solution of the nonlinear heat
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equation (1.9a). Returning to the definition of the energy space E given in (1.11),
we immediately encounter a potential problem for global-in-time estimates; specif-
ically, the coefficient �@N q.t/ in the energy expression

R
�.�@N q.t//j

x@6hj2 d� is
also expected to decay as t ! 1, and it is a priori unclear how to uniformly-in-
time control the regularity of the boundary height function h. To understand the
relationship between the decay of q.t/ and the smallness of E , we will analyze the
dynamics in three different and coupled regimes.

High-Order Energy Estimates
We do not expect the height function h.t/ to decay to 0 as t ! 1; rather, we

expect h.t/ to remain close to the initial height function h0. Assuming, without
loss of generality, that h0 D 0, to guarantee the smallness of h � h0 D h we will
prove that

sup
0�s�t

E .s/C

Z t

0

D.s/ds

� E .0/C sup
0�s�t

P.Eˇ /E .s/C ı

Z t

0

D.s/ds

� E .0/CO.�0/ sup
0�s�t

E .s/C ı

Z t

0

D.s/ds;(1.24)

where P is some polynomial function of the low-norm Eˇ . The above estimate
yields an a priori bound on E if �, ı, and E .0/ are sufficiently small.

However, to close the higher-order energy estimates and thus obtain (1.24), we
must contend with a very problematic integral (or error term) given by

N WD �

Z T

0

Z
�

@N qt jx@
6hj2 d� dt:

Driven by intuition from the linear heat equation, we expect @N qt to decay ex-
actly as fast as �@N q. Comparing N to the energy contribution

R
�.�@N q/j

x@6hj2

above, we note that N cannot be controlled by E , as it is the same order as E .
Hence, to bound N , we prove that after a sufficiently long time has elapsed, the
quantity @N qt turns strictly positive and hence N can be bounded from above
by 0. In Lemma 4.2 we will quantify the meaning of “sufficiently long” time
t D TK from the previous sentence, expressing it as a function of the ratio K D
kq0k4=kq0k0.

More precisely, we break the total time interval into a (possibly long) transient
interval Œ0; TK � and ŒTK ;1/. On the transient time interval Œ0; TK � we do treat
N as an error term, and by choosing E .0/ sufficiently small, a straightforward
application of a Gronwall-type inequality verifies that the interval of existence is
greater than TK , as explained in our proof of the main theorem (given Section 4.4).
The bound for N grows exponentially with time, and as such, cannot be used to
establish global-in-time estimates. Instead, a significantly more refined analysis
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is employed on the time interval ŒTK ;1/, wherein we prove in Lemma 4.2 the
negativity of N for t D TK and then use a maximum-principle-type argument to
guarantee the negativity for all t � TK .

Exponential Decay-in-Time of the Temperature Function q
The last inequality in (1.24) holds only if Eˇ itself remains small; in fact, we

will prove that as t !1, kq.t/k24 has the nearly optimal decay rate

(1.25) e�.2�1�C�0/t ;

where �1 denotes the smallest eigenvalue of the Dirichlet-Laplacian on the unit
disk. Moreover, the parabolic estimate we prove will be roughly of the form

(1.26) @tEˇ CD � C

�
�0 C kq0k4

e�ˇt=2

�.t/1=2

�
D;

where the norms Eˇ and D have been defined in (1.15). A nice consequence of
our analysis is that the potentially growing term e�ˇt=2=�.t/1=2 in fact remains
small and decays in time. Next, we explain why this is true.

Lower Bound for the Velocity of the Free Boundary
We may think of the presence of the denominator 1=�.t/1=2 in estimate (1.26)

as a possible obstruction to controlling the regularity of h and thus potentially
preventing uniform ellipticity bounds for the parabolic operator (1.9a). To deal
with this issue, we need a quantitative lower bound on the decay rate of �.t/.
Moreover, this lower bound has to favorably compare to the size of e�ˇt . With
some extra work, such a Hopf-type inequality is implied by a result of Oddson [40],
which leads to the lower bound

(1.27) �.t/ & c1e
�.�1Cc�0/t ;

where c > 0 denotes a generic constant, and as before c1 D
R
� q0'1 is the first

coefficient in the eigenfunction expansion of the initial datum q0 with respect to
the L2 orthonormal eigenbasis of the Dirichlet-Laplacian on the unit disk. Finally,
combining (1.25) and (1.27), we will show in Lemma 2.3, that for small initial
data,

(1.28) kq0k4
e�ˇt=2

�.t/1=2
.
p
�0 e
�
�t

for some positive constant 
�.
The result of Oddson [40] relies on a good choice of a barrier function that,

combined with a maximum principle, allows for very precise information on the
decay rate. That choice is, however, only one possible choice of a comparison
function, and it is possible that there are different ones since [40] gives nearly sharp
decay rate only in a nearly radial regime. If nearly radial, it is possible that in a
viscosity or weak solution framework, one can use comparison principle arguments
to deduce that “no-thin tentacles” form (cf. [30], which is in spirit close to [43],
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but again relies on the presence of the forcing term) and the moving boundary
remains in an annulus of width O.�/. To that end, but in the absence of forcing,
the ideas from [4,11,43] may be very valuable—they would require a construction
of an adaptive family of comparison functions that yield precise decay rates as time
evolves. In forthcoming work, we plan to address the Stefan problem on arbitrary
domains diffeomorphic to the unit ball as well as the case of the two-phase Stefan
problem. In both instances and not unrelated to the above discussion, we shall need
a better, new choice of barrier functions related to the existence of so-called half-
eigenvalues for the extremal Pucci operators in order to get the sharp decay rates.
In particular, our approach is insensitive to the convexity properties of the initial
domain, but it requires sufficient regularity.

Another advantage of the techniques developed in this paper is that it provides a
general and robust framework for addressing the global stability questions for re-
lated free boundary problems in fluid mechanics in the absence of surface tension.

Plan of the Paper
In Section 2, we introduce the bootstrap assumptions and obtain various a pri-

ori estimates that allow us to control low norms of the boundary function h as
well as the decaying low-norm Eˇ , and also establish the equivalence between the
energies and the norms as mentioned earlier in the introduction (Section 2.5). In
Section 3, we state energy identities and then perform the energy estimates. Finally,
in Section 4, we prove the main theorem. In Section 5, we discuss the modifications
required for the analysis in three space dimensions and for initial height functions
h0 ¤ 0. Appendix A is devoted to the proof of the energy identities stated in
Section 3. The very short Appendix B provides a simple proof for the upper bound
of @N qt .

2 Bootstrap Assumptions and A Priori Bounds
Let us assume that the solution .q; h/ to the Stefan problem (1.9) exists on some

time interval Œ0; T �, T > 0, which is guaranteed by [28]. With the positive constant
�0 < � � 1 to be specified later, we make the following bootstrap assumptions:

sup
0�s�T

E .s/C

Z t

0

D.s/ds � �2;

sup
0�s�T

Eˇ .s/C

Z t

0

D.s/ds � zCEˇ .0/;

(smallness)(2.1a)

�.t/ & c1e
�.�1C�=2/t .lower bound/(2.1b)

where the definitions of E , D ,Eˇ , andD are provided in (1.11), (1.12), and (1.15),
respectively. With ˇ given in (1.16), ˇ D 2�1��, the bootstrap assumption (2.1b)
can be written as �.t/ & c1e

�.ˇ=2C�/t . Moreover, � > 0 is a fixed small constant,
and it will be shown in the proof of the main theorem, Section 4.4, that � must be
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chosen smaller than 1=
p
C lnK for some universal constant C . Note that since

Eˇ .0/ � �2, (2.1a) implies the decay estimate kqk24 � �2e�ˇt . Recall that the
constant c1 in the estimate (2.1b) is defined as

R
� q0.x/'1.x/dx.

We now briefly explain the logic of the proof of global existence that will be
carried out in Section 4. If T is defined to be the maximal time at which the
solution .q; h/ exists and satisfies the bootstrap assumptions, the first objective is
to show that the bootstrap assumptions (2.1a) and (2.1b) yield improved smallness
and lower bound estimates at time T . If T were finite, by the local-in-time well-
posedness theory and continuity of our norms, we can extend the solution to an
interval T C T � while preserving the bootstrap assumptions (2.1a) and (2.1b),
thus arriving at a contradiction to the definition of T . Hence T must be infinite.

It remains to show that for � chosen small enough, the smallness and the lower
bound estimates can indeed be improved. In Corollary 2.14 we will show that
the assumption (2.1b) is in fact improved, and in Lemma 4.1 we show that the
assumption on Eˇ C

R T
0 D in (2.1a) is also improved. Finally, in Section 4.4, we

will prove that the smallness of E C
R t
0 D assumed in (2.1a) is also preserved. Thus

the smallness regime introduced through (2.1a)–(2.1b) will be shown to remain
preserved by the dynamics of (1.9) for � > 0 chosen sufficiently small.

2.1 Poincaré-Type Inequality
Because the first eigenfunction '1 of the Dirichlet-Laplacian is positive in �

while the remaining eigenfunctions oscillate about 0, it will be necessary to intro-
duce a constant into our estimates that gives a measure of the initial temperature
distribution in the first mode of the dynamics. To this end, we will make use of the
following lemma.

LEMMA 2.1. For k � 3, let f 2 Hk.�/\H 1
0 .�/, f W �! RC, be a strictly pos-

itive function on the interior of �. Let '1 be the first eigenvector of the Dirichlet-
Laplacian on the unit ball B1.0/ D �. Then there exists a universal constant C �

such that

kf k20 � C
�

�Z
�

f .x/'1.x/dx

�
kf k3:

PROOF. We have thatZ
�

f 2 dx � max
x2�

f .x/

'1.x/

Z
�

f '1 dx:

Since �@'1
@N
.x/ � c > 0 for all x 2 � , the higher-order Hardy inequality (lemma 1

in [18]) together with the Sobolev embedding theorem shows that

max
x2�

f .x/

'1.x/
� C





 f'1





2

� Ckf k3;

which proves the lemma. �
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COROLLARY 2.2. Let q0 2 H 4.�/ \H 1
0 .�/ with q0 > 0 in �. We consider the

eigenfunction expansion q0 D
P1
jD1 cj'j of q0 with respect to the L2 orthonor-

mal basis f'1; '2; : : : g consisting of the Dirichlet-Laplacian eigenfunctions on the
unit disk B1.0/ D �. Then, if kq0k4=kq0k0 � K, it follows in particular that

jcj j

c1
< K; j D 1; 2; : : : :

LEMMA 2.3. If the bootstrap assumptions (2.1a) and (2.1b) hold, then

(2.2)
E
1=2

ˇ
.t/e�ˇt=2

�.t/1=2
�

zC 1=2Eˇ .0/
1=2e�ˇt=2

�.t/1=2
.
p
�e�
t=2

where 
 D ˇ
2
� � > 0.

PROOF. By (2.1b), we have that

Eˇ .t/
1=2e�ˇt=2

�.t/1=2
� C

e�ˇt=2

e�.�1=2C�=4/t

Eˇ .0/
1=2

c
1=2
1

� Ce�
t=2
kq0k4

c
1=2
1

� CKkq0k
1=2
4 e�
t=2 � C

p
�e�
t=2;

where we have used the fact that c1=21 & 1
K1=2
kq0k

1=2
0 and kq0k4 . Kkq0k0.

We have also used the bound Kkq0k
1=2
4 � C

p
� (since �0 < �), as well as the

smallness assumption (1.22) so that Kkq0k
1=2
4 . K�0=F.K/

1=2 � C�. Note that

 is explicitly given by 
 D .ˇ

2
� �/ > 0, and that �� �1=2. �

2.2 A Priori Bounds on h
LEMMA 2.4 (Suboptimal Decay Bound for ht ). Under the bootstrap assump-
tions (2.1a) and (2.1b), the following decay bound holds:

(2.3) jht j2:5 . �e�
t=2:

PROOF. Differentiating equation (1.5), the Sobolev embedding theorem com-
bined with the fact that h � 0 (by the maximum principle) show that

jht j1 . jvjW 1;1 C jhj2jvj2 C jhj1jvj1jhj1

. jvj2 C jhj2jvj2 C jhj1jvj1.jh0j1 C t sup
0�s�t

jht j1/;

where we have used the fundamental theorem of calculus for the last inequality.
Using the bootstrap assumption (2.1a), we see that jv.t/j . e�ˇt , while thanks to
Lemma 2.3 and the fact that

p
E . �0 < �,

jhj2jvj2 .
p
�jhj2

jvj1
p
�

.
p
Eˇ
p
�

p
E e�ˇt=2 . �e�
t=2:
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Hence
sup
0�s�t

jht j1 . �e�ˇt=2 C �e�
t=2.1C sup
0�s�t

jht j1/;

and with � > 0 sufficiently small, we see that

(2.4) sup
0�s�t

jht j1 . �e�
t=2 . �:

Taking more derivatives of (1.5), the Sobolev embedding theorem shows that for
k D 2; 3,

(2.5)
jht jk � jvjk C

ˇ̌̌̌
h�

1C h

ˇ̌̌̌
L1
jvjk C

ˇ̌̌̌
h�

1C h

ˇ̌̌̌
k

jvjL1

. jvjk C jh� j1jvjk C
ˇ̌̌̌
h�

1C h

ˇ̌̌̌
k

jvj1;

where we have again used the fact that h � 0. Sinceˇ̌̌̌
h�

1C h

ˇ̌̌̌
k

. jhjkC1.1C P.jhjk�1//; k D 2; 3;

for some polynomial function P , and since jhjk � jh0jk C t sup0�s�t jht jk , we
see that

(2.6)
ˇ̌̌̌
h�

1C h

ˇ̌̌̌
k

. jhjkC1.1C P.t/P. sup
0�s�t

jht jk�1//:

We now use (2.6) and (2.5) to infer that

(2.7) jht jk . jvjk.1C sup
0�s�t

jht j2/C jhjkC1jvj1.1C P.t/P. sup
0�s�t

jht j2//;

where we have used jh� j1 . t sup0�s�t jht j2. Interpolating between k D 2 and
k D 3 yields

jht j2:5 . jvj2:5.1C sup
0�s�t

jht j2/C jhj2:5jvj1.1C P.t/P. sup
0�s�t

jht j2//;(2.8)

and as above, Lemma 2.3 provides us with the inequality jhj2:5jvj1 . �e�
t=2,
which together with the bootstrap assumption (2.1a) shows that

sup
0�s�t

jht j2:5 . �e�ˇt=2.1C sup
0�s�t

jht j2:5/C �e
�
t=2.1C P.t/P. sup

0�s�t

jht j2//;

and therefore with � > 0 sufficiently small,

(2.9) sup
0�s�t

jht j2:5 . �e�ˇt=2 C �e�
t=2.1C P. sup
0�s�t

jht j2//;

where the polynomial P.t/ has been absorbed in some universal constant due to
the exponentially decaying factor e�
t=2. On the other hand, the inequality (2.7)
with k D 2 together with the estimate (2.4) shows that jht j2 . �, so that with
(2.9), we conclude the proof. �
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Remark 2.5. Note that the estimate (2.3) can be stated more precisely by keeping
track of constant c1 on the right-hand side, in which case

(2.10) jht j2:5 . �1=2
p
c1 e
�
t=2:

The proof follows from the last line of the proof of Lemma 2.4 since Eˇ .0/1=2 �
K2c1, due to the bound kqk4 � Kkq0k � K2c1. Note that

p
� on the right-hand

side of (2.2) can be replaced by
p
c1 for the same reason.

LEMMA 2.6 (Smallness of the Height Function). Let c1 D
R
� q0'1 dx and sup-

pose that the bootstrap assumptions (2.1a) and (2.1b) hold. For � > 0 taken suffi-
ciently small,

(2.11) sup
0�s�t

jh.s/j4:5 .
p
�;

while for lower-order norms

(2.12) sup
0�s�t

jh.s/j2:5 . c1 and sup
0�s�t

jh.s/j4 . �1=2c
1=4
1 :

PROOF. Observe that

jhj22:5 � 2

Z t

0

jhj2:5jhsj2:5 ds � sup
0�s�t

jh.s/j2:5

Z t

0

jhsj2:5 ds

. sup
0�s�t

jh.s/j2:5

Z t

0

�1=2
p
c1 e
�
t=2;

where we have used (2.10) in the last bound. Taking the supremum over the time
interval Œ0; t � we deduce

sup
0�s�t

jh.s/j2:5 . �1=2
p
c1:

Using the well-known interpolation estimate (see, for example, [1])

(2.13) jf jk � jf j
�
l jf j

1��
m ; � D

m � k

m � l
; l � k � m;

with k D 3, l D 2:5, m D 4, and the fact that j
p
�x@4ht j

2
0 is bounded by E , we

have that

jht j3 . jht j1=34 jht j
2=3
2:5 .

E 1=6

�.t/1=6
�1=3c

1=3
1 e�
t=3

. �2=3c
1=6
1 e�


�t ;

where 
� D �1
3

 C 1

6
.ˇ
2
C

�
2
/ D �1

6
ˇ C 5�

12
> 0 (by definition, 
 D �ˇ

2
� �).

As a consequence,

jhj23 .
Z t

0

jhj3jht j3 . sup
0�s�t

jh.s/j3

Z t

0

jht .s/j3 ds . � sup
0�s�t

jh.s/j3:
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Upon taking the supremum over the interval Œ0; t �, we finally have that

(2.14) sup
0�s�t

jh.s/j3 . �:

We can now improve the decay result of Lemma 2.4, first for the quantity jht j2.
Simply using the bound (2.14), exactly as in the proof of Lemma 2.4 , we infer the
improved estimate

(2.15) jht j2 . kvk2:5.1C jhj3/ . c1e
�ˇt=2:

As an immediate consequence, we get the smallness bound for sup0�s�t jh.s/j4:Z
�

jx@4hj2 d� D

Z t

0

Z
�

x@4hx@4ht d� ds D

Z t

0

Z
�

x@6hx@2ht d� ds

�

Z t

0

jx@6hj0jx@
2ht j0 ds .

Z t

0

�
E 1=2

�.s/1=2
c1e
�ˇs=2

�
ds

.
Z t

0

�
p
c1e
�
s=2 ds . �

p
c1:(2.16)

Note that (2.16) in particular implies the second bound in (2.12).
Next, we establish the a priori smallness of sup0�s�t jh.s/j4:5. Thanks to (2.16),

we improve the decay bound for jht j2:5 in an analogous fashion to the improved
decay estimate (2.15) for jht j2. We obtain jht j2:5 . c1e

�ˇt=2: The first bound
in (2.12) now follows from the fundamental theorem of calculus and the previous
bound. A straightforward interpolation argument for fractional Sobolev spaces on
the unit circle � shows

(2.17) jhj24:5 .
Z t

0

jhj6jht j3 ds:

Using the interpolation estimate (2.13), with l D 2:5, k D 3, and m D 5, we see
that

(2.18) jht j3 � C jht j
4=5
2:5 jht j

1=5
5 :

Using (2.18) with (2.17) and using the above bound on jht j2:5 yields

jhj24:5 .
Z t

0

jhj6jht j
4=5
2:5 jht j

1=5
5 ds .

Z t

0

E 1=2

�.s/1=2
c
4=5
1 e�2ˇs=5jht j

1=5
5 ds

. �c
3=10
1

Z t

0

e�x
sjht j
1=5
5 ds;

where we also used the bootstrap assumption (2.1b). One checks that x
 D �2ˇ
5
C

.ˇ
4
C

�
2
/ D 3

20
ˇ � �

2
> 0. We thus have

jhj24:5 . �c
3=10
1

Z t

0

e�x
s=2 �
�
e�x
s=2jht j

1=5
5

�
ds:



GLOBAL STABILITY FOR THE STEFAN PROBLEM 709

Hölder’s inequality with p D 10
9

and q D 10 then shows that

jhj24:5 . �c
3=10
1

�Z t

0

�
e�x
s=2

�10=9
ds

�9=10�Z t

0

e�5x
sjht j
2
5 ds

�1=10
. �c

3=10
1

�Z t

0

e�5x
sjht j
2
5 ds

�1=10
. �6=5c

1=5
1 ;

where the last inequality follows from the definition of x
 above, the bootstrap as-
sumptions (2.1b) and (2.1a), and the estimateZ t

0

e�5x
sjht j
2
5 ds .

Z t

0

1

c1
e�5x
sC.ˇ=4C�=2/s inf

�
.�@N q.s//jht j

2
5 ds

.
Z t

0

1

c1
e�.ˇ=2C3�/s inf

�
.�@N q.s//jht j

2
5 ds

.
1

c1

Z t

0

Z
�

.�@N q.s//jx@
5ht j

2 d� ds �
�2

c1
: �

2.3 Differentiation Rules for A
Since A D ŒD‰��1, it follows that

@tA
k
i D �A

k
rw

r ;s A
s
i ;
x@Aki D �A

k
r
x@‰r ;s A

s
i :

In particular, a simple application of the above identities and the product rule imply
that for any given a; b 2 N,

x@a@btA
k
i D �A

k
r
x@a@bt‰

r ;s A
s
i C

˚
x@a@bt ; A

k
i

	
;(2.19a) ˚

x@m@nt ; A
k
i

	
WD

X
lCl 0�1

al;l 0x@
l@l
0

t

�
AkrA

s
i

�
x@m�l@n�l

0

t ‰r ;s ;(2.19b)

where the term f � ; � g is the commutator error. Here the constants al;l 0 are some
universal constants, depending only on m, n, l , and l 0 (where 0 � l � m, 0 � l 0 �
n).

2.4 Estimates for r‰ � Id and A � Id
Under assumption (2.1a), the elliptic estimate (1.7) shows that on the time inter-

val Œ0; T �,

kr‰ � IdkL1.B1/ � Ckr‰ � Idk1:5 � C jhj2;(2.20)

and for 0 � s � 3,
kD2‰ks � C jhjsC1:5:

Estimate (2.20) implies that

kA � IdkL1.B1/ D k.Id � r‰/AkL1.B1/ � CkAkL1.B1/jhj2I

thus under assumption (2.1a),

kA � IdkL1.B1/ � C jhj2:(2.21)
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Note that (2.20) and (2.21) together imply that for 0 � s � 3,

kDAks � C jhjsC1:5:

Thus, with Lemma 2.6, we have proven the following:

LEMMA 2.7. With the bootstrap assumptions (2.1a) and (2.1b) and for � > 0 taken
sufficiently small,

kr‰ � Idk4 C kA � Idk4 .
p
�:

2.5 High-Order Derivatives of q
Because our energy function E .t/ is formed using only tangential derivatives in

space, the purpose of this section is show that radial derivatives of the tempera-
ture q are also bounded, and thus the full Sobolev norms of the temperature q are
controlled by our energy function, as was explained in the introduction.

We will make use of the heat equation and its time-differentiated variants:

qt ��‰q D f0;(2.22a)

qt t ��‰qt D f1;(2.22b)

qt t t ��‰qt t D f2;(2.22c)

where �‰ D A
j
i
@
@xj
.Aki

@
@xk

/ and where the forcing functions f0; f1; f2 are given
by

f0 D �‰t � v;

f1 D �.‰t � v/t C A
j
i .@tA

k
i q;k /;j C@tA

j
i .A

k
i q;k /;j ;

f2 D �.‰t � v/t t C 2A
j
i

�
@tA

k
i qt ;k

�
;j C2@tA

j
i

�
Aki qt ;k

�
;j

C 2@tA
j
i

�
@tA

k
i q;k

�
;j C@

2
tA
j
i

�
Aki qt ;k

�
;j CA

j
i

�
@2tA

k
i q;k

�
;j :

We will repeatedly make use of the following elliptic estimate:

LEMMA 2.8 (Elliptic Regularity with Sobolev-Class Coefficients). Let q denote
the unique H 1

0 .�/ solution to

��‰q D F in �;

q D 0 on @�:

Suppose that k > 1, F 2 Hk�1.�/, and A 2 Hk.�/ satisfying Aki A
j
i �j �k �

�j�j2 for all � 2 R2 for some � > 0. Then

kqkHkC1.�/ � C
�
kF kHk�1.�/ C kAk

p

Hk.�/
kF kL2.�/

�
for some power p > 1.

PROOF. We provide the details in the course of the proof of Lemma 2.9. �
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LEMMA 2.9 (Bounding @ltq, l D 0; 1; 2; 3, by E .t/). With the bootstrap assump-
tions (2.1a) and (2.1b) holding, and with � > 0 sufficiently small, there exists a
constant C � such that

kqt t tk
2
0 C kqt tk

2
2 C kqtk

2
4 C kqk

2
6 � C

�E :

PROOF.

Step 1. Estimating jht t t j0:5. We denote the quantity kqt t tk20Ckqt tk
2
2Ckqtk

2
4C

kqk26 by X .t/. Twice time-differentiating (1.9d), we find that

(2.23) ht t t D vt t �N �

�
h�

1C h

�
t t

v � � � 2

�
h�

1C h

�
t

vt � � �
h�

1C h
vt t � �:

By the normal trace theorem (see, for example, equation (6.1) in [18]),

jvt t �N j0:5 . kx@vt tk20 C kdiv vt tk20:

Note that

div vt t D .div‰ v/t t C ..div� div‰/v/t t

D .qt C v �‰t /t t C
��
Aki � ı

k
i

�
vi ;k

�
t t
D qt t t C‰t t t � v CR;

(2.24)

where the remainder R reads

R D 2‰t t � vt C‰t � vt t C
�
Aki � ı

k
i

�
t t
vi ;k

C 2
�
Aki � ı

k
i

�
t
vit;k C

�
Aki � ı

k
i

�
vit t;k :

From Lemma 2.6 and 2.3, we obtain the estimate kRk20 . �E C �X . Thus,
returning to (2.24) and using that kqt t t C ‰t t t � vk

2
0 � E by (1.11), we get

kdiv vt tk20 . E C �X and consequently

(2.25) jvt t �N j0:5 . E C �X :

As for the last term on the right-hand side of (2.23), we use the tangential trace
theorem (see, for example, equation (6.2) in [18]) to infer that

jvt t � � j . kx@vt tk20 C kcurl vt tk20:

Since curl‰ v D 0 (recall v D �rp ı ‰), we have curl vt t D Œ.curl� curl‰/v�t t .
By a similar inequality as above, using Lemmas 2.6 and 2.3, we obtain the bound
kŒ.curl� curl‰/v�t tk20 . �E C �X . Together with (2.25) and k@vt tk20 � E , this
leads to

jvt t � � j0:5 . E C �X :

Together with the smallness of h� and h�t from Lemma 2.6, Lemma 2.3, and the
bound j

p
�x@ht t j

2
1 � E , we finally infer from (2.23) that

(2.26) jht t t j0:5 . E C �X :
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Step 2. L2 Estimates for @ltq. By the triangle inequality and definition (1.11)
of E .t/, we have that for l D 1; 2; 3,

@ltq

20 � 

@ltq C @lt‰ � v

20 C 

@lt‰ � v

20

� E .t/C


@lt‰ � v

20

. E .t/C kvk23


@lt‰

20

. E .t/C �2jht t t j
2
0:5 . E .t/C �X ;

where we used the Sobolev embedding theorem and (2.26).
Step 3. H 2 Estimate for qt t . We consider the elliptic equation ��‰q D f0 �

qt . We note that Lemma 2.7 ensures that Aki A
j
i �k�j �

1
2
j�j2 for all � 2 R2. Given

that kf0 � qtk20 . E , elliptic estimates show that kqk22 . E . This in turn implies
that kf1 � qt tk20 . E , and elliptic estimates then show that kqtk22 . E . Hence,
we have that kf2 � qt t tk20 . E C �X , and once again use elliptic estimates to
conclude that kqt tk22 . E C �X .

Step 4. H 4 Estimate for qt . Since kf0 � qtk22 . E , Lemma 2.8 shows that
kqk24 . E ; thus, kf1 � qt tk22 . E C �X . Another application of Lemma 2.8
together with Lemma 2.7 then shows that kqtk24 . E C �X .

Step 5. H 6 Estimate for q. The elliptic estimates in Steps 3 and 4 made use of
Lemma 2.7. To obtain the H 6 estimate for q requires us to improve the elliptic
estimate in Lemma 2.8 to be linear in k

p
�‰k6. To this end, we write A jk D

A
j
i A

k
i and rewrite (2.22a) as

(2.27) �
�
A jkq;k

�
;j D �qt C f0 � A

j
i ;j A

k
i q;k :

Letting x@˛ act on (2.27), we find that x@˛q satisfies

�
�
A ij .x@˛q/;j

�
;i D �x@

˛.‰t � v C qt /C
X

0<ˇ�˛

C˛ˇ
�
.x@ˇA ij /.x@˛�ˇq/;j

�
;i

�

X
0�ˇ<˛

C˛ˇx@
ˇ
�
A
j
i ;j A

k
i

�
x@˛�ˇq;j ;

where C˛ˇ are constants from the product rule. Multiplying this equation by x@˛q,
integrating by parts, and using the fact that x@˛q D 0 on @� and that A � 1

2
, we

find that

1

2
kx@˛qk21 � k

x@˛�1.‰t � v C qt /k0kx@
˛C1qk0(2.28)

C

X
0<ˇ�˛

C˛ˇ


.x@ˇA ij /.x@˛�ˇq/;j




0
kx@˛q;i k0 C



GLOBAL STABILITY FOR THE STEFAN PROBLEM 713

C

X
0�ˇ<˛

C˛ˇ


x@ˇ �Aji ;j Aki �x@˛�ˇq;j 

0kx@˛qk0

C


x@˛�1�Aji ;j Aki �x@q;j 

0kx@˛qk1:

Let us examine the second term on the right-hand side of (2.28). By Young’s
inequality, for ı > 0,X
0<ˇ�˛

C˛ˇ


.x@ˇA ij /.x@˛�ˇq/;j




0
kx@˛q;i k0 �

ıkx@˛qk21 C Cı
X

0<ˇ�˛

C˛ˇ


x@ˇA x@˛�ˇDq



2
0

where Cı D C=ı. Since

x@5A � x@5D‰P.A/C x@4D‰P.x@D‰;A/

C x@3D‰P.x@2D‰; x@D‰;A/;

it thus follows that for ˛ D 4 or 5,

(2.29) kx@˛A k0 � Ckx@
˛�2.‰ � e/k23 � C

j
p
�hj25:5
�

.
E

�
:

The linear inequality (2.29) shows that our bootstrap assumptions (2.1a) and (2.1b)
imply that the map h 7! A is linear with respect to these high norms.

We first consider the case that ˛ D 4. From (2.29) when ˛ D ˇ D 4

kx@˛ADqk20 .
Eˇe

�ˇt

�
E . �e�
tE :(2.30)

The Cauchy-Schwarz inequality, together with the Sobolev embedding theorem,
shows that kx@3A x@Dqk20 has the same bound. Next,

kx@2A x@2Dqk20 C k
x@A x@3Dqk20 . k‰k24kqk

2
4 . �e�ˇtE . �e�
tE :

The first, third, and fourth terms on the right-hand side of (2.28) are estimated
in a similar fashion, so we do not provide the details. Hence, by choosing ı > 0

sufficiently small and employing Young’s inequality, we find that

kqk24 C
X
˛�4

kx@˛qk21 . E C �X :

To estimate radial derivatives, we use polar coordinates for the disc (with the
usual basis er and e„). Expressing the components of the matrix A as

A D

�
A rr A r�

A �r A ��

�
;
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we may write

div.A rq/ D r�1.rA rrqr/r C r
�1.A r�q� /r C r

�1.A r�qr/�

C r�1.r�1A ��q� /� :

It follows that

(2.31)

�A rrx@˛qrr D r
�1.rA rr/rx@

˛qr C r
�1.A r�x@˛qr/r

C r�1.A r�x@˛qr/� C r
�1.r�1A ��x@˛q� /�

� x@˛.‰t � v C qt /C
X

0<ˇ�˛

C˛ˇ
�
.x@ˇA ij /.x@˛�ˇq/;j

�
;i

�

X
0�ˇ�˛

C˛ˇx@
ˇ
�
A
j
i ;j A

k
i

�
x@˛�ˇq;j :

Let ! D fx 2 � W 1
2
< jxj < 1g. For ˛ � 3, every term on the right-hand side

has the L2.!/-norm bounded by a constant multiple of E . Hence, it follows thatX
˛�3

kx@˛qk22;! . E C �X :

Allowing @
@r

to act on (2.31) as many as three times, we conclude that

(2.32) kqk25;! . E C �X :

We return to the inequality (2.28) and consider the case that ˛ D 5. Once
again, we focus on the second term on the right-hand side, the first and third terms
being similar (and easier). From (2.30) kx@5A Dqk20 . �e�
tE . The Cauchy-
Schwarz inequality, together with the Sobolev embedding theorem, shows that
kx@4A x@Dqk20Ck

x@3A x@2Dqk20Ck
x@2A x@3Dqk20 . �e�
tE . Finally, using (2.32),

we conclude kx@A x@4Dqk20 . �kvk24 . �e�
tE . We conclude that

kqk24 C
X
˛�5

kx@˛qk21 . E C �X :

Then setting ˛ D 0 and letting @4

@r4
act on (2.31) shows that indeed

kqk26;! . E C �X :

By using a smooth cutoff function whose support contains� n !, we easily obtain
the interior estimates and find that kqk26 . E D �X . Recalling the definition
of X and the estimates from Steps 2, 3, and 4, we finally infer X . E , which
concludes the proof of the lemma. �
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LEMMA 2.10 (Bounding @ltq, l D 0; 1; 2; 3, by D.t/). With the bootstrap assump-
tions (2.1a) and (2.1b), and for � > 0 sufficiently small, there exists a 
 > 0 such
that

(2.33)
2X
lD0

k@ltqtk
2
5�2l C kqk

2
6:5 . �e�
tE CD :

COROLLARY 2.11. With the bootstrap assumptions (2.1a) and (2.1b) and a suffi-
ciently small � > 0,

kvk25:5 C jht j
2
5 . �e�
tE CD

with 
 D ˇ=2 � � as defined in Lemma 2.3.

PROOF OF COROLLARY 2.11. We write (1.9b) as

v D Dq � .Id � A/ �Dq:

Using the basic estimate from Lemma 2.7, we see that

kvk5 . .1C
p
�/kqk6 CE

1=2

ˇ
e�ˇt=2k‰ � ek6;

kvk6 . .1C
p
�/kqk7 CE

1=2

ˇ
e�ˇt=2k‰ � ek7;

so that an application of linear interpolation (see, for example, theorem 7.17 in
Adams [1]) provides the inequality

kvk25:5 . .1C
p
�/kqk26:5 CEˇk‰ � ek

2
6:5:

Using Lemmas 2.3 and 2.10, it follows that

kvk25:5 . .1C
p
�/kqk26:5 C

Eˇ .t/e
�ˇt=2

�.t/
�.t/k‰ � ek26:5

. .1C
p
�/kqk26:5 C

Eˇ .t/e
�ˇt=2

�.t/
E .t/

. �2e�
tE CD :

Next, using the formula (1.5), we see that

jht j
2
5 . �.t/jhj26

jvj22:5
�.t/

C �jvj25;

which once again, thanks to Lemmas 2.3 and 2.10, is bounded by a constant mul-
tiple of �2e�
tE CD . �

PROOF OF LEMMA 2.10.
Step 1. H 1 Estimates for @ltq. We make use of the identity rq D v � r‰. It

follows that

rqt D vt � r‰ C v � r‰t ;

rqt t D vt t � r‰ C 2vt � r‰t C v � r‰t t ;

rqt t t D vt t t � r‰ C 3vt t � r‰t C 3vt � r‰t t C v � r‰t t t :
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Employing Hölder’s inequality and the Sobolev embedding theorem,

krqt t tk
2
0 . kvt t tk20 jhj

2
2 C kvt tk

2
0jht j

2
2 C
kvtk

2
2

�
j
p
�ht t j

2
0

C
kvk22
�
j
p
�ht t t j

2
0 . D ;

where we have used Lemma 2.2 for the last inequality. We have similar estimates
for qt t , qt , and q so that

(2.34)
3X
lD0

k@ltqk
2
1 . D :

Step 2. H 3 Estimate for qt t . Just as in the proof of Corollary 2.11, we see that
as a consequence of Lemma 2.9,

(2.35)
2X
lD0

k@ltvk5�2l . E :

Returning to equation (2.22a), we estimate �‰t �v�qt inH 1.�/. By the Sobolev
embedding theorem together with Lemmas 2.4 and 2.3,

(2.36) k‰tkW 1;1 . k‰tk3 .
p
�e�
t=2;

so that together with (2.35), k‰t � vk21 . �e
tE . Then, with (2.34),

(2.37) kqk23 . �e�
tE CD :

Next, we return to (2.22b) and estimate f1 � qt t in H 1.�/. By Lemma 2.4,
k‰t � vtk

2
1 . �e�
tE , while k‰t t � vk21 . E e�ˇt

�
Eˇ . �e�
tE . The estimates

(2.34) and (2.37) then show that kf1 � qt tk21 . �e�
tE CD so that

kqtk
2
3 . �e�
tE CD :

A similar estimate then shows that kf2 � qt t tk21 . �e�
tE C D so that from
(2.22c),

kqt tk
2
3 . �e�
tE CD :

Step 3. H 5 estimate for qt . From (2.35) and (2.36), we see that k‰t � vk23 .
�e�
tE CD , so that with Lemmas 2.7 and 2.8, we have that

kqk25 . �e�
tE CD :

This, in turn, ensures that kf1 � qt tk23 . �e�
tE CD so that

kqtk
2
5 . �e�
tE CD :
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H 6:5 Estimate for q. We first look at the estimate (2.28) with ˛ D 5. We find
that

(2.38)

kx@5qk1 . k‰t � vk4 C kqtk4 C
X

0<ˇ�5



.x@ˇA ij /.x@5�ˇq/;j



0

C

X
0�ˇ<5



x@ˇ �Aji ;j Aki �x@˛�ˇq;j 

0 C 

x@4�Aji ;j Aki �x@q;j 

0:
For the first term on the right-hand side, we note that with the Sobolev embedding
theorem and Lemma 2.3,

k‰t � vkk . k
p
�‰tkk

kvk3
p
�
C k‰tk3kvkk

.
p
�e�
t=2.k

p
�‰tkk C kvkk/; k D 4; 5:

Using the estimate (2.29), we see thatX
0<ˇ�5



.x@ˇA ij /.x@5�ˇq/;j



0

.
p
�e�
t=2.k

p
�.‰ � e/k6 C kqk5/:

The last two terms on the right-hand side of (2.38) are estimated in the same way
so that

kx@5qk1 .
p
�e�
t=2.k

p
�‰tk4 C k

p
�.‰ � e/k6 C kvk4 C kqtk4/:

Using the formula (2.31), we find that

(2.39)
kqk6 .

p
�e�
t=2.k

p
�‰tk4 C k

p
�.‰ � e/k6 C kvk4 C kqtk4/

C kqtk4:

The identical procedure with ˛ D 6 then yields

(2.40)
kqk7 .

p
�e�
t=2.k

p
�‰tk5 C k

p
�.‰ � e/k7 C kvk5 C kqtk5/

C kqtk5:

Applying linear interpolation between (2.39) and (2.40), we have that

kqk6:5 .
p
�e�
t=2.k

p
�‰tk4:5 C k

p
�.‰ � e/k6:5 C kvk4:5 C kqtk4:5/

C kqtk4:5

. �e�
t=2E 1=2 CD1=2: �

2.6 Lower Bound on �.t/
The heat equation (1.9a) for q can be rewritten as

qt � akj q;kj �bkq;k D 0 in �;(2.41a)
q D 0 on �;(2.41b)

q.0; � / D q0 > 0 in �;(2.41c)
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where the coefficient matrix a D .akj /k;jD1;2, and the vector b D .b1; b2/ are
explicitly given by

(2.42) akj WD A
k
i A

j
i ; bk WD A

k
i;jA

j
i C A

k
i ‰

i
t :

We first quote a theorem from [40] that will play an important role in producing
quantitative bounds from below for �.t/.

LEMMA 2.12 (Oddson’s Theorem 2 in [40]). Let q 2 C 1;2.�/ be a supersolution
to (2.41) in the unit disc � D B1.0/, and let 0 < ˛ � 1

2
be the normalized

ellipticity constant satisfying

ajk�j �k � ˛.a11 C a22/j�j
2

for any real vector � D .�1; �2/. Moreover, let us introduce the quantities

k0.T / WD inf
��Œ0;T �

1

a11 C a22
; ˇ.T / WD sup

��Œ0;T �

b � x:

Let J� denote the Bessel function of the first kind of order � and �0 its first positive
zero. If we define

� D
ˇ C 1

2˛
� 1; � D

˛�20
k0
;

then there exists a positive constant m satisfying

q.t; x/ � m�e��t

in B1.0/ � Œ�;1Œ, where � stands for the distance from x to the boundary � and
� is an arbitrary small time.

Remark 2.13 (Optimal Decay Rate for Solutions of the Heat Equation). If we set
A D Id, then problem (2.41) turns into the initial boundary value problem for the
linear heat equation. In this case k0 D 1

2
, ˛ D 1

2
, ˇ � 0, � D 0C1

1
� 1 D 0, and

� D �20 , where �0 stands for the first positive zero of J0.�/. In particular, if qheat

denotes the associated solution, then the above lemma implies that

�heat.t/ WD inf
x2�

.�@N q
heat.t; x// & e��

2
0 t ;

which is the optimal decay rate in the case of the linear heat equation, as the lowest
positive eigenvalue of the Dirichlet-Laplacian on the two-dimensional disk corre-
sponds exactly to

�1 D �
2
0 :

COROLLARY 2.14 (Lower Bound for �.t/). Under bootstrap assumptions (2.1a)
and (2.1b) with � small enough, there exists a universal constant C > 0 such that

�.t/ & c1e
�.�1Cz�.t//t ;

where c1 D
R
� q0'1 dx is the first coefficient in the eigenfunction expansion of

the initial datum q0 with respect to the L2 orthonormal basis f'1; '2; : : : g of the
eigenvectors of the Dirichlet-Laplacian on B1.0/, i.e., q0 D c1'1 C c2'2 C � � � .
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Moreover, z� is nonnegative and satisfies the bound z� � C�: In particular, with
� > 0 sufficiently small so that C� < �=4, we obtain the improvement of the
bootstrap bound (2.1b) given by �.t/ & c1e

�.�1C�=4/t .

PROOF. The proof of Oddson’s theorem 2 in [40] (Lemma 2.12) relies on the
construction of a comparison function of the form v.t; r/ D r��J�.�0r/e

��t ,
where �;�; �0 are given in the statement of Lemma 2.12, J� is a Bessel func-
tion of the first kind, and r D jxj is the radial coordinate. The first property of
v that is important for the proof is that v vanishes at the spatial boundary � and
approaches it like c.1 � r/e��t as r ! 1. This is a consequence of the fact that
limr!1 J�.�0r/=r�.1 � r/ D c for some constant c > 0, a well-known prop-
erty of Bessel functions. The second important property is that v is a subsolution
for (2.41) (and it is constructed with the help of maximal Pucci operators as ex-
plained in detail in [40]).

The goal is to prove that for any arbitrarily small time � > 0 there exists a
strictly positive constant ı.�/ > 0 such that q � ıv is a positive supersolution to
the parabolic problem (2.41) on the time interval Œ�;1Œ. The desired lower bound
for q then follows from the weak maximum principle.

Since v is a subsolution, it follows that for any ı > 0, q � ıv is a supersolution.
The positivity of q � ıv at t D � follows from the parabolic Hopf lemma, from
which we infer the existence of a constant ı.�/ such that q

v
> ı.�/ uniformly over

x�. Note that we have used the fact that v.�; r/ behaves like C.1 � r/ near the
boundary � for some positive constant C . Therefore it follows that the constant m
in the statement of Lemma 2.12 a priori depends on the time � > 0, and moreover,
m is proportional to the lower bound for �@q=@N jtD� on � .

From the proof of the parabolic Hopf lemma (see, for instance, theorem 3.14
in [21]), the value �@q=@N jtD� is proportional to the minimal value of the tem-
perature q on a space-time region of the formK� WD B1�C��Œ

�
2
; 3�
2
� divided by �

(which is roughly the distance of K� from the parabolic boundary of � � Œ0; 2��).
Note that, unlike the elliptic case, we are forced to take into account the time de-
pendence of the solution; in particular, the region K� cannot be chosen uniformly
for all times but only for times greater or equal to some arbitrarily small � > 0.
However, our solution is continuous all the way to t D 0, and we do nevertheless
obtain a lower bound for all times due to the Taylor sign condition; namely, due to
(1.18),

�@N q0 D
�@N q0

c1
c1 & c1:

Note, however, that if we define the dimensionless quantity L D .�@N q0/=c1 > 0
and assume no universal bound onL from below, the only modification in the state-
ment of the main theorem will be that the smallness condition on initial data (1.22)
will additionally depend on L.

As to the bound on z�, note that the exponent � D �..aij /; .bi // depends on
the coefficients .aij /i;jD1;2 and .bi /iD1;2 through the relationship � D ˛�20=k0.
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Since k0 and �0 vary continuously as the coefficients are varied, it proves that �
depends continuously on the coefficients aij ; bi of the parabolic operator. On the
other hand, by Remark 2.13 it follows that �jaijDıij ;biD0 D �1. As a consequence

jz�.t/j D j�.t/ � �1j � C.kA � IdkL1 ; kbkL1/

D O.kD2.‰ � e/kL1 ; k‰tkL1/: �

3 Energy Identity and the Higher-Order Energy Estimate
3.1 The Energy Identity

Much of our analysis is founded on basic higher-order energy identities for the
classical Stefan problem. These identities provide the geometrical control of the
evolving phase boundary, which in turn controls the decay of the temperature func-
tion; moreover, these identities explain our definition of the higher-order energy
function E and the dissipation function D .

PROPOSITION 3.1 (Energy Identity). With R D 1 C h and RJ D RJ�1, suffi-
ciently smooth solutions to the classical Stefan problem satisfy

d

dt
E .t/CD.t/

D

3X
jD0

�Z
�

.�@N qt /R
2
J j
x@6�2j @

j
t hj

2
C

Z
�

.Rj C zRj /C

Z
�

Gj

�

C

3X
jD1

�Z
�

.Sj C zSj /C

Z
�

Hj

�
;

(3.1)

where the error terms Rj , zRj , Sj , zSj , Gj , and Hj are given by (A.14), (A.15),
(A.23), (A.27), (A.16), and (A.24), respectively.

The proof is provided in Appendix A.

Remark 3.2. On the right-hand side of (3.1), we have isolated the error term

(3.2) GHopf D

Z
�

.�@N qt /R
2
J j
x@6�2j @

j
t hj

2 dx0

from the other boundary integral error terms Gj and Hj ; indeed, GHopf can only
be thought of as an “error term” on a transient time interval, for after a sufficiently
large time, we will no longer be able to control GHopf via energy methods and
instead we have to rely upon a Hopf-type argument to prove that GHopf < 0.

3.2 Energy Estimates
To control some of the highest-order error terms in our energy estimates, we

shall make use of the following technical lemma, whose proof is given in [16]
and [17]:
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LEMMA 3.3. Let H 1=2.�/0 denote the dual space of H 1=2.�/. There exists a
positive constant C such that

kx@F k 1
2 .�/0

� CkF k
H
1
2 .�/

for F 2 H 1=2.�/:

As a consequence of the energy identity (3.1), we can establish our fundamental
energy inequality.

PROPOSITION 3.4 (The Energy Estimate). Suppose that the bootstrap assump-
tions (2.1a) and (2.1b) hold with � > 0 and � > 0 sufficiently small. Letting
K D kq0k4=kq0k0,

(3.3) sup
0�s�t

E .s/C
1

2

Z t

0

D.s/ds �

E .0/C CK2
Z t

0

e�sE .s/ds CO.
p
�/ sup
0�s�t

E .s/ for t 2 Œ0; T �:

PROOF. Throughout the proof, we will rely on the a priori bounds of Section 2;
in particular, we will often make use of Lemmas 2.3, 2.6, 2.9, and 2.10.

Step 1. The estimate for GHopf in (3.2). We claim that

(3.4) jGHopfj � CK
2

Z t

0

e�sE .s/ds:

Note thatˇ̌̌̌Z t

0

Z
�

.�@N qt /R
2
J j
x@6hj2

ˇ̌̌̌
� C

ˇ̌̌̌Z t

0

Z
�

.�@N qt /

�@N q
.�@N q/jx@

6hj2
ˇ̌̌̌

� C

Z t

0

ˇ̌̌̌
@N qt

�@N q

ˇ̌̌̌
L1

E .s/ds:

In order to bound the term
ˇ̌
@N qt
@N q

ˇ̌
, we need a decay estimate for the numera-

tor j@N qt j. The Sobolev embedding theory would yield the bound j@N qt jL1 .
kqtk2Cı for ı > 0, but by definition of our decay norm Eˇ , it is only the H 2.�/-
norm of qt for which we have the desired decay. Thus, we arrive at the decay
estimate for qt by using a comparison principle together with Theorem 1 in Odd-
son [40]; indeed, in Appendix B, we prove that

(3.5) j@N qt jL1 . K2c1e
�ˇt=2:

It then follows from the bootstrap assumption (2.1b) thatˇ̌̌̌
@N qt .s/

�@N q.s/

ˇ̌̌̌
L1
�
CK2c1e

�.�1��=2/s

c1e�.�1C�=2/s
� CK2e�s;

which, in turn, establishes (3.4).
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Step 2. Estimates for Rj , zRj , and Gj in (3.1). Our objective will be to show
that

(3.6)
ˇ̌̌̌Z t

0

Z
�

.Rj C zRj /C

Z t

0

Z
�

Gj

ˇ̌̌̌
�

O.
p
�/ sup
0�s�t

E .s/C ı

Z t

0

D.s/ for j D 0; : : : ; 3:

We establish (3.6) for the most difficult case, j D 0. The case when j D 1, 2,
or 3 can then be proven in a similar fashion. The proof for j D 0 is divided into
three parts, and we shall begin with the term R0.

Estimates for the Integral
R
�

R0
As derived in (A.9), the term R0 can be written as

R0 WD �

5X
lD1

clx@
lAki
x@6�lq;kx@

6vi„ ƒ‚ …
DWI1

C
�
�q;kA

s
iA

k
r

�
;s x@

6‰r�
x@6vi„ ƒ‚ …

DWI2

C �
˚
x@6; Aki

	
q;kx@

6vi„ ƒ‚ …
DWI3

C�Asi
x@6‰rAkr q;k f

x@6; @sgv
i„ ƒ‚ …

DWI4

� .�Aki /;k
x@6qx@6vi„ ƒ‚ …

DWI5

��Aki f
x@6; @kgqx@

6vi„ ƒ‚ …
DWI6

� �

6X
lD1

�
clx@

lAki
x@6�lvi;k.

x@6q C x@6‰ � v/„ ƒ‚ …
DWI7

C dlx@
6�lw � x@lv.x@6q C x@6‰ � v/„ ƒ‚ …

DWI8

�x@6‰ � vt .x@
6q C x@6‰ � v/„ ƒ‚ …
DWI9

�
:

(A.9)

Estimate of
R
� I1. For the extremal case l D 5,ˇ̌̌̌Z

�

x@5Aki
x@q;k x@

6vi
ˇ̌̌̌
� kx@5Aki kL4k

x@q;k kL4k
x@6vik0

. k‰ � Idk6:5kx@q;k k0:5kx@
6vik0

. jhj6kqk4kx@6vik0

.
kqk4

�.t/1=2
E 1=2D1=2

�
C

ı
e�
t�E C ıD ;
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where we have used Hölder’s inequality and the Sobolev embedding theorem, as
well as Young’s inequality together with Lemma 2.3 for the last inequality.

If l D 4, then Lemmas 2.6 and 2.10 and Corollary 2.11 show thatˇ̌̌̌Z
�

x@4Aki
x@2q;k x@

6vi
ˇ̌̌̌
� kx@4Aki k0 k

x@2q;k kL1 kx@
6vik0 .

jhj4:5kqk4:5D
1=2 . �.kqk24:5 CD/ . �.�e�
tE CD/ . �2e�
tE C �D :

The case when l D 1, 2, or 3 are estimated in the same way and yield the same
bound.
Estimates of

R
� Ik for k D 2; 3; 4; 5. The following estimate holds:ˇ̌̌̌Z

�

I2 C I3 C I4 C I5

ˇ̌̌̌
.
C

ı
�e�
tE C ıD :

For the integral of I2, an application of an L1-L2-L2 Hölder’s inequality together
with Lemmas 2.3 and 2.6 leads toˇ̌̌̌Z

�

I2

ˇ̌̌̌
.


��q;kAsiAkr �;s 

L1 kx@6‰rk0 kx@6vik0

.


�AsiAkr 

W 1;1kqk3

E 1=2

�1=2
D1=2 .

C

ı
e�
t�E C ıD :

The estimates for terms I3, I4, I5, and I6 are established in the same manner. Note
that the commutator fx@6; Aki gq;k in I3 is defined in (2.19b) and has at most five
derivatives acting on q;k; moreover, the expression fx@6; @kgf D x@6@kf � @kx@6f
is of the form

P
1�j˛j�6 a˛@˛f , where the a˛ are smooth uniformly bounded func-

tions on the set ! D fx 2 � W 1
2
� jxj � 1g.

Estimate
R
� I7. We first consider the case where l D 6 and writeZ

�

x@6Aki v;
i
k .
x@6q C x@6‰ � v/ D

Z
�

x@6Aki v;
i
k
x@6q

„ ƒ‚ …
J1

C

Z
�

x@6Aki v;
i
k
x@6‰ � v

„ ƒ‚ …
J2

:

Thanks to Lemma 3.3, we see that J1 � kx@5Ak0:5kDvx@6qk0:5. By linear
interpolation and the Sobolev embedding theorem, kDvx@6qk0:5 . kvk3kqk6 C
kvk2:5kqk6:5 . kvk3kqk6:5. It thus follows that

J1 . jhj6k5:5kvk3kqk6:5 .
C

ı
jhj26kvk

2
3 C ıkqk

2
6:5

.
CEEˇe

�ˇt

ı�.t/
. ıD C �e�
tE C ı.�e�
tE CD/
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for some positive constant 
 > 0, where we have employed Lemmas 2.3 and 2.10
with Corollary 2.11.

As for the integral of J2, we again use Lemma 3.3 to deduce thatˇ̌̌̌Z
�

x@6Aki v;
i
k
x@6‰ � v

ˇ̌̌̌
�


x@5Aki 

0:5

v;ik x@6‰ � v

0:5

. kvk22:5k‰ � Idk26:5 . e�ˇtEˇ
E

�.t/
. �e�
tE ;

where 
 > 0 is given by Lemma 2.3.
Now for the case that l D 5 in the integral of the term I7, it follows thatˇ̌̌̌Z

�

x@5Aki
x@v;ik .

x@6q C x@6‰ � v/

ˇ̌̌̌

� kx@5Aki kL4k
x@v;ik kL4k

x@6q C x@6‰ � vk0

. kx@5Aki k0:5kx@v;
i
k k0:5k

x@6q C x@6‰ � vk0

.
E 1=2

�.t/1=2
kvk2:5E

1=2 .
E
1=2

ˇ
e�ˇt=2

�.t/1=2
E .
p
�e�
tE ;

where we used Lemma 2.3 again and the fact that (by definition of E ), kx@6q C
x@6‰ �vk20 . E . Here we used the estimate (2.2). The remaining cases l D 1; 2; 3; 4
follow analogously and the estimates rely on a systematic use of Lemmas 2.3, 2.6,
and 2.10 and Corollary 2.11.

Estimate of
R
� I8. For the case that l D 1 or 2, we have thatˇ̌̌̌Z

�

x@6�lw � x@lv.x@6q C x@6‰/

ˇ̌̌̌
. kx@6�lwk0kx@lvkL1kx@6q C x@6‰ � vk0

.
D1=2

�.t/1=2
E
1=2

ˇ
e�ˇt=2E 1=2 .

�e�
t

ı
E C ıD ;

while for the case that l D 3, 4, 5, or 6,ˇ̌̌̌Z
�

x@6�lw � x@lv.x@6q C x@6‰ � v/

ˇ̌̌̌
. kx@6�lwkL1kx@lvk0kx@6q C x@6‰ � vk0

. �D ;

where we used the Sobolev embedding H 1Cı ,! L1 and Lemma 2.6.
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Estimate of
R
� I9. We see thatˇ̌̌̌Z

�

x@6‰ � vt .x@
6q C x@6‰ � v/

ˇ̌̌̌
. kx@6‰k0kvtkL1k.x@6q C x@6‰ � v/k0

.
E 1=2

�.t/1=2
E
1=2

ˇ
e�ˇt=2E 1=2 .

p
�e�
t=2E ;

with the decay rate 
 > 0 given in Lemma 2.3.

Estimate of
R
�
zR1

In the same manner, we find that j
R
�
zR1j . �e�
tE C ıD .

Estimate of the Boundary Integral
R
�

G0

Recalling (1.8), zn D AN D
q
R2 CR2

�
n, we begin with the formula (A.10)

G0 D �@N qx@
6‰ � znx@6‰ � znt„ ƒ‚ …
K1

� @N q
d

dt

h
Rx@6h

�
�RJ C

5X
aD0

cJa
x@ahx@6�a� � .h� � h�T /

�i
„ ƒ‚ …

K2

C @N q
d

dt

h�
�RJ C

5X
aD0

cJa
x@ahx@6�a� � .h� � h�T /

�2i
„ ƒ‚ …

K3

C

6X
lD1

al.�@N q/x@
6‰ � znx@6�l.v � w/ � x@l zn„ ƒ‚ …

K4

:

(A.10)

Estimate of
R
�K1. Note thatˇ̌̌̌Z

�

@N qtx@
6‰ � znx@6‰ � znt

ˇ̌̌̌
. j@N qt jL1 jznt jL1 jx@6‰j20

. j@N qt j1 jht j2
E

�.t/
. Eˇ

e�ˇt

�.t/
E . �e�
tE ;

where we used the trace theorem and Lemma 2.3.
Estimates of

R
�K2 and

R
�K3. These two integrals are lower order and thanks to

Lemmas 2.6 and 2.3 are bounded by �e�
tE C ıD . Note that jJ j D 1 C O.�/

remains close to 1 due to the a priori smallness bounds from Lemma 2.6.
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Estimate of
R
�K4. The estimate of

R
�K4 requires some explanation, as it has the

largest derivative count in G0. In Appendix A, we derive the identity

(3.7) x@6‰ � zn D RJx@
6h �RJ C

5X
aD0

cJa
x@ahx@6�a� � .h� � h��/;

where we recall that � is the unit tangent defined by (1.3) and RJ D RJ�1. Sub-
stitution of (3.7) in the integral

R
�.�@N q/

x@6‰ � znx@6�l.v � w/ � x@l zn then yieldsˇ̌̌̌Z
�

.�@N q/x@
6‰ � znx@6�l.v � w/ � x@l zn

ˇ̌̌̌

.
ˇ̌̌̌Z
�

.�@N q/x@
6�l.v � w/ � x@l zn

ˇ̌̌̌

C

ˇ̌̌̌Z
�

.�@N q/O.x@
5h/ � znx@6�l.v � w/ � x@l zn

ˇ̌̌̌

C

ˇ̌̌̌Z
�

.�@N q/Rx@
6hx@6�l.v � w/ � x@l zn

ˇ̌̌̌
:

(3.8)

The first and the second integrals on the right-hand side of (3.8) are easily esti-
mated using Hölder’s inequality and the Sobolev embedding theorem, while the
third integral requires some care due to the presence of x@6h. If l D 1 or l D 2,
then ˇ̌̌̌Z

�

.�@N q/Rx@
6hx@6�l.v � w/ � x@l zn

ˇ̌̌̌

�
ˇ̌p
�@N qx@

6h
ˇ̌
0

ˇ̌p
�@N qR

ˇ̌
L1

.jx@4vj1 C jx@
4ht j1/jx@

l
znjL1

. E 1=2kqk1=22 .�e�
t=2E 1=2 CD1=2/� . �2P.E ; Eˇ /e
�
tE C ıD ;

where we have used Corollary 2.11, Lemma 2.6, and then Young’s inequality
for the last estimate. The case that l D 3, 4, or 5 follows similarly from Lem-
mas 2.3, 2.6, and 2.10. The case l D 6 appears problematic because of the term
x@6zn � � , which, modulo coefficients, is essentially x@7h, one derivative more than
appears in E . The integral is, however, easily estimated thanks to the presence of
an exact derivative, formed from the integrand x@7h x@6h.

We set Jh D
q
R2 C h2

�
and write the unit tangent to �.t/ as t D J�1

h
.R� C

h�N/. A simple computation shows that

n� D J
�2
h .R2 C 2h2� CRh�� /t:
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Since v�w D t � .v�w/ t on � , we see that x@6n � .v�w/ D t � .v�w/ x@6n � t.
We then write

x@6zn � .v � w/ D g1 x@
7hC g2;

where g1 D t � .v�w/J�2
h
R, and where g2 is a lower-order term in v�w and has

at most six tangential derivatives on h. We then writeZ
�

.�@N q/Rx@
6h.v � w/ � x@6zn

D

Z
�

.�@N q/Rg1x@
6hx@7hC

Z
�

.�@N q/Rx@
6hg2

D �
1

2

Z
�

x@Œ.�@N q/Rg1�jx@
6hj2 C

Z
�

.�@N q/Rx@
6hg2:

Arguing in a similar fashion as for the case that l D 1 or 2, we see thatˇ̌̌̌Z
�

.�@N q/Rx@
6h.v � w/ � x@6zn

ˇ̌̌̌
.
p
�e�
tE :

Step 3. Estimates for Sj , zSj , and Hj in (3.1). We next prove that

(3.9)
ˇ̌̌̌Z t

0

Z
�

.Sj C zSj /C

Z t

0

Z
�

Hj

ˇ̌̌̌
�

O.
p
�/ sup
0�s�t

E .s/C ı

Z t

0

D.s/; j D 1; 2; 3:

We will analyze the case that j D 1, as the estimates for the case that j D 2 or
3 follow in the same manner. We begin with the definition of S1 given in (A.23)
as

(A.23)

S1 WD

X
0<aCb<6
a�5;b�1

cab�x@
a@btA

k
i
x@5�a@1�bt q;kx@

5vi C S 01

�

5X
lD1

dl�x@
5�l‰t � x@

lv
�
x@5qt C x@

5‰t � v
�

�

5X
lD1

cl�x@
lAki
x@5�lvi;k

�
x@5qt C x@

5‰t � v
�
;
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where S 01 is a lower-order term given by

S 01 D
�
�q;kA

s
iA
k
r

�
;s x@

5‰rt
x@5vi C

˚
x@5@t ; A

k
i

	
q;kx@

5vi C
˚
x@5Akt;i

	
q;kx@

5vi

C �Asi
x@5‰rtA

k
r q;k f

x@5; @sgv
i
� .�Aki /;k

x@5qtx@
5vi

C �Aki
x@5@

j
t qf
x@5; @kgv

i
C �Aki f

x@5; @kg@tqx@
5vi :

Most of the estimates are completely standard and we focus on the more problem-
atic terms, characterized by the highest number of derivatives applied to two out
of the three terms in our cubic integrands. To illustrate, in the first term on the
right-hand side of (A.23) we analyze the cases .b D 0; a D 1/ and .b D 0; a D 5/.
If .b D 0; a D 1/, then we first integrate by parts and an L1-L2-L2 Hölder’s
inequality to find thatˇ̌̌̌Z

�

x@Aki
x@4@tq;kx@

5vi
ˇ̌̌̌
D

ˇ̌̌̌Z
�

x@2Aki
x@3@tq;kx@

5vi C

Z
�

x@Aki
x@3@tq;kx@

6vi
ˇ̌̌̌

�


x@Aki 

W 1;1



x@3@tq;k

0.kx@5vik C kx@6vk0/
� jhj3:5kqtk4.kx@

5vik C kx@6vk0/ . �D ;

where Lemmas 2.3 and 2.10 have been used. If .b D 0; a D 5/, thenˇ̌̌̌Z
�

x@5Aki @tq;k
x@5vi

ˇ̌̌̌
� jhj6kqtk2kx@

5vk0

�
E 1=2

�.t/1=2
Eˇ .t/

1=2e�ˇt=2D1=2 .
�e�
t

ı
E C ıD ;

where we used Lemmas 2.3, 2.6, and 2.9. The remaining estimates in the expres-
sions (A.23) and (A.26) for S1 and zS1 follow in an identical manner. As to the
boundary integral of H1, we state the formula for the integrand derived in (A.24)
as

H1 WD 2@N qx@
5htRJ

4X
aD0

x@ahtx@
5�a� � zn

C

4X
lD1

al.�@N q/x@
5‰ � znx@5v � znx@5�l.v � w/ � x@l zn:

(A.24)

We consider the boundary integral of the first term on the right-hand side. We
begin with the interpolation bound

(3.10) jht j4 � jht j
1=2
3 jht j

1=2
5 .

p
�

D1=4

�.t/1=4
;
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where we have used (2.18) to bound jx@3ht j and the definition of D given in (1.12).
If a D 4 in the first term of the right-hand side of (A.24), thenˇ̌̌̌Z

�

@N qx@
5htRJx@

4htx@� � zn

ˇ̌̌̌
D
1

2

ˇ̌̌̌Z
�

@N qx@.jx@
4ht j

2/RJx@� � zn

ˇ̌̌̌

.
ˇ̌̌̌Z
�

x@.@N qx@� � zn/jx@
4ht j

2

ˇ̌̌̌

. kqk4�
D1=2

�.t/1=2
. �3=2e�
tD1=2

. �3=2e�2
t C �3=2D ;

where we have once again used Lemma 2.3 in the second inequality, the estimate
(3.10), and Young’s inequality. If a 2 f0; 1; 2; 3g, thenˇ̌̌̌Z

�

@N qx@
5htRJx@

ahtx@
5�a� � zn

ˇ̌̌̌

. j@N qjL1 jx@5ht j0jRJ jL1 jx@aht j0jx@5�a� � znjL1

. kqk3
D1=2

�.t/1=2
� . �3=2e�
tD1=2 . �3=2e�2
t C �3=2D ;

where we used Lemmas 2.6 and 2.3 and the same idea as above. The estimates
for the second term on the right-hand side of (A.24) follow in an analogous vein,
relying crucially on Lemmas 2.6 and 2.3. This finishes the proof of (3.9).

Step 4. The proof of the lemma is a direct consequence of the bounds (3.4),
(3.6), and (3.9). �

4 Existence for All Time t � 0 and Nonlinear Stability
4.1 Structure of the Proof

The basic goal in our strategy for global-in-time existence and decay of the
temperature function is to prove that on any time interval on which the bootstrap
assumptions (2.1a) and (2.1b) are valid, we have that

sup
0�s�t

E .s/C

Z t

0

D.s/ds � CKE .0/;

where CK > 0 is some explicit constant depending on K. Upon choosing the
initial data .q0; h0/ sufficiently small, we can obtain an improvement of the first
bootstrap bound in (2.1a). In Section 4.2 we show the improvement of the bootstrap
assumption on Eˇ in (2.1a), and in Corollary 2.14 we have already shown the
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improvement of the bootstrap assumption (2.1b). By a continuity argument this
leads to a global existence result.

In order to implement the above strategy, we start with the basic energy inequal-
ity given by (3.3). Note, however, the presence of an exponentially growing term
CK2

R t
0 e

�sE .s/ds on the right-hand side of (3.3). That term appears by treat-
ing the terms

R
�.�@N qt /R

2
J j
x@6�2j @

j
t hj

2 d� , j D 0; 1; 2; 3, as error terms. By
applying a straightforward Gronwall-type argument, this will be enough to guar-
antee that solutions to the classical Stefan problem (1.9) exist on a sufficiently long
time interval Œ0; TK �, where the time TK may be larger than the time of existence
guaranteed by our local well-posedness theorem in [28]. As we explained in the
introduction, by a sufficiently long time interval, we mean a time TK after which
the dynamics of the Stefan problem (1.9a) are, in fact, dominated by the projection
of the solution onto the first eigenfunction '1 of the Dirichlet-Laplacian.

To prove global existence we need, however, more refined estimates that will
show that the

R
�.�@N qt /R

2
J j
x@6�2j @

j
t hj

2 d� are in fact sign definite for t � TK ,
leading to the elimination of the exponentially-in-time growing bounds. First, in
Section 4.3 we prove strict positivity of the term @N qt at time TK . Finally, in
Section 4.4, we use a comparison principle to show that @N qt remains positive
after time TK . This allows us, in turn, to prove the uniform-in-time energy bound
and extend the solution for all time t � 0.

4.2 Boundedness of Eˇ
The following lemma shows that under the bootstrap assumptions, the bound on

Eˇ C
R t
0 D.s/ds from (2.1b) is improved.

LEMMA 4.1. There exists a constant zC and � > 0 sufficiently small such that if the
bootstrap assumptions (2.1a) and (2.1b) hold with such � and zC , then

Eˇ .t/C

Z t

0

D.s/ds <
zC

2
Eˇ .0/:

PROOF. We set

x.t/ D kq.t/k24 C kqt .t/k
2
2 C kqt t .t/k

2
0

and recall that
D.t/ D kq.t/k25 C kqt .t/k

2
3 C kqt t .t/k

2
1:

Step 1. Energy Inequality for qt t . From equation (2.22c), we see that

1

2

d

dt
kqt tk

2
0 C kr‰qt tk

2
0 D

Z
�

f2 qt t ;

where the forcing term f2 is defined just below equation (2.22). We next show that
the right-hand side can be bounded by �D. We first focus on the term .‰t � v/t t in
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the forcing function f2. Using the product rule we obtainZ
�

.‰t � v/t t qt t D

Z
�

‰t t t � v qt t

„ ƒ‚ …
A1

C

Z
�

2‰t t � vt qt t

„ ƒ‚ …
A2

C

Z
�

‰t � vt t qt t

„ ƒ‚ …
A3

:

For the integral A1, we see thatˇ̌̌̌Z
�

‰t t t � vqt t

ˇ̌̌̌
� k‰t t tk0kvkL1 kqt tk0 . jht t t j0:5kvk2kqt tk0 . �D;

where we used the bound (2.26) to estimate jht t t j0:5 by E 1=2. The estimate jA2j .
�D follows analogously to the estimate for term A1, and the bound on A3 follows
from

jA3j . k‰tkL1 kvt tk0kqt tk0 . k‰tk2 . �D;

where we have used Lemma 2.6 to infer that k‰tk2 . �. All of the remaining terms
in the forcing function f2 can be estimated by a straightforward application of the
Sobolev embedding theorem together with Lemma 2.6 (to guarantee the smallness
of various Sobolev norms applied to the coefficient matrix .Aki /k;iD1;2). Thus, in
summary,

(4.1)
1

2

d

dt
kqt tk

2
0 C kr‰qt tk

2
0 � C�D:

Step 2. Elliptic Estimates. We next prove that the quantities x and y are respec-
tively controlled by kqt tk20 and kr‰qt tk20. Using the elliptic regularity estimate of
Lemma 2.8, the elliptic equations (2.22), and Lemma 2.6, it follows that

(4.2) kqtk2 . kqt tk0 C kf1k0;
and

(4.3) kqk4 . kqtk2 C kf0k2 . kqt tk0 C kf1k0 C kf0k2:
A straightforward application of the Sobolev embedding theorem together with
Lemma 2.6 implies that

(4.4) kf1k
2
0 C kf0k

2
2 . �x.t/:

Hence, with (4.2)–(4.4),

x.t/ . kqt tk0 C �x.t/;
so that for � > 0 taken sufficiently small,

x.t/ . kqt t .t/k20:

Since kf1k21 C kf0k
2
3 . �D.t/, the same argument provides

(4.5) D . kqt tk21 . krqt tk20 . kr‰qt tk20;

the last inequality following from the uniform lower bound of the matrix AAT.
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Step 3. Poincaré Inequality. The following bound holds:

(4.6) .�1 �O.�//kf k
2
0 � kr‰f k

2
0;

where r‰ D ATr and f 2 H 1
0 .�/. To see (4.6), note that the inequalities (2.21)

and (2.14) show that
kA � IdkL1 . �;

from which it follows that Aki A
j
i �k�j � .1 � O.�//j�j2 for all � 2 R2. The

Poincaré inequality �1kf k20 � krf k
2
0 for all q 2 H 1

0 .�/ then concludes the
proof.

Step 4. The Differential Inequality and Decay. From (4.1) and (4.5) we obtain
that

1

2

d

dt
kqt tk

2
0 C .1 �O.�//kr‰qt tk

2
0 � 0:

Using the Poincaré inequality (4.6), it follows that

d

dt
kqt tk

2
0 C .2�1 �O.�//kqt tk

2
0 � 0:

From this differential inequality, we immediately infer the bound

kqt t .t/k
2
0 � kqt t .0/ke

�.2�1�O.�//t :

From the elliptic estimate in Step 2, it finally follows that

x.t/ � Ckqt t .0/k
2
0e
�.2�1�O.�//t � C 0Eˇ .0/e

�.2�1�O.�//t :

Since Eˇ .t/ D x.t/eˇt and ˇ D 2�1 � � < 2�1 � O.�/ for � sufficiently
small, it is now clear that we can choose zC so that on the time interval of va-
lidity of bootstrap assumptions (2.1a) and (2.1b) we actually have the improved
bound Eˇ .t/ �

zC
2
e�ˇt : �

4.3 Pointwise Positivity of @Nqt at Time TK D xC lnK
LEMMA 4.2. Assume that the solution .q; h/ to the Stefan problem (1.9) exists
on a given time interval Œ0; T �. Let the bootstrap assumptions (2.1a) and (2.1b)
hold on that time interval with � > 0 sufficiently small, and assume the smallness
assumption (1.22) for the initial data. There exists a universal constant xC such
that if T � TK WD xC lnK, then

�qt .TK ; x/ > Cc1e
��1TK'1.x/; x 2 B1.0/;

where '1 is the first eigenfunction of the Dirichlet-Laplacian on � and c1 DR
� q0'1 dx. As a consequence,

inf
x2�

@N qt .TK ; x/ > 0:
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PROOF.
Step 1. Hardy-Type Estimate. As a consequence of the higher-order Hardy in-

equality (see lemma 1 in [18]) and the Sobolev embedding theorem, for any f 2
H 2:25.B1.0// \H

1
0 .B1.0//,

(4.7) sup
x2B1.0/

ˇ̌̌̌
f .x/

'1.x/

ˇ̌̌̌
� Ckf k2:25;

where '1 is the first eigenfunction of the Dirichlet-Laplacian on the unit ball.
Step 2. The Duhamel Formula. Let

q0 D

1X
jD1

cj'j

be the eigenvector decomposition of the initial datum q0 with respect to the L2

orthonormal basis f'1; '2; : : : g associated with the Dirichlet-Laplacian on the unit
disk B1.0/. Writing the time-differentiated Stefan problem as a perturbation of the
linear heat equation, we see that in �, qt satisfies

(4.8) qt t ��qt D N.q; h/;

where
N.q; h/ WD .aij � ıij /qt;ij C biqt;i C aij;tq;ij Cbi;tq;i

C Ak;itq;k w
i
C Aki q;k w

i
t ;

(4.9)

and the coefficients aij , bi are defined in (2.42). Note that at time t D 0, qt .0/ D
�q0 C rq0 � w0; moreover, since �'j D ��j'j and et� is a linear semigroup,
the Duhamel principle implies that the solution qt to (4.8) can be written as

�qt D c1�1e
��1t'1 C

1X
jD2

cj�j e
��j t'j„ ƒ‚ …

DWX

� et�.rq0 � w0/„ ƒ‚ …
DWY

�

Z t

0

e.t�s/�N.q; h/„ ƒ‚ …
DWZ

:

We first prove that X.t/ > 0 for times t D xC lnK, where xC denotes a universal
constant. We shall then show that at time t D xC lnK, jY.t/j C jZ.t/j is bounded
by a small fraction of X.t/.

Step 3. Estimate of X . We begin by writing X as

X.t; x/ D c1�1e
��1t'1.x/

C c1�1e
��1t'1.x/

� 1X
jD2

cj�j

c1�1
e.�1��j /t

'j .x/

'1.x/

�
:

(4.10)

Our goal is to prove that the term

(4.11) � WD

1X
jD2

cj�j

c1�1
e.�1��j /t

'j .x/

'1.x/



734 M. HADŽIĆ AND S. SHKOLLER

is small. By Corollary 2.2,

(4.12)
jcj j

c1
� K for all integers j � 2:

Furthermore, using the normalization k'j k0 D 1 and the eigenvalue problem,
�'j D ��j'j , elliptic regularity shows that k'k2 � �j and that k'k4 � �2j ;
hence, linear interpolation provides us with the inequality

(4.13) k'j k2:25 . �1:25j :

Using (4.12) and (4.13), together with the bound (4.7), we see that

j� j � CK

1X
jD2

�2:25j e.�1��j /t :

Since �1 < �2 � �3 � � � � , there exists a constant c�, uniform in j � 2, such that
�1=�j < .1 � 2c

�/. This implies that

.�1 � �j / < �2c
��j for integers j � 2:

In particular, for t � xC lnK,

CK�2:25j e�c
��j t � CK�2:25j K�

xCc��j D C
�2:25j

K
xCc��j�1

<
1

2

for xC chosen sufficiently large but independent of K. (Recall that K > 1 since
K � kq0k1

kq0k0
� 1 C �1 > 6.) Hence, from (4.11) and the previous inequality it

follows that

j� j �
1

2

1X
jD2

e�c
��j t �

1

2

1X
jD2

K�
xCc��j <

1

2
:

Plugging this into (4.10), we obtain for any x 2 B1.0/

(4.14) X.t; x/ �
1

2
c1�1e

��1t'1.x/ > 0; t � xC lnK:

Step 4. Estimates of Y and Z. The term Y satisfies the estimate

kY.t; x/kL1 . ket�.rq0 � w0/k2 . e��1tkrq0 � w0k2

. e��1tkq0k3kw0k2 . �c1e
��1t ;

where we used the Sobolev embedding theorem together with the bound kq0k3 .
Kc1, which follows from kq0k4=kq0k0 � K. Thus jY.t; x/j < 1

4
jX.t; x/j with �

sufficiently small.
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Next, to estimate Z, which vanishes at the boundary, we have that

jZj

'1.x/
�

Z t

0

ˇ̌̌̌
e�.t�s/N.q; h/.s/

'1.x/

ˇ̌̌̌
ds

.
Z t

0

ke�.t�s/N.q; h/.s/k2:25 ds

.
Z t

0

kN.q; h/.s/k2:25 ds .
p
t

�Z t

0

kN.q; h/.s/k22:25 ds

�1=2
:

In the above chain of inequalities, we have used the bound (4.7) for the second
inequality and the fact that ket�kH s!H s � 1.

We shall conclude our estimate by showing that

(4.15)
Z t

0

kN.q; h/.s/k22:25 ds . c
11=5
1 �9=5:

We recall that

N.q; h/ WD .aij � ıij /qt;ij„ ƒ‚ …
DWZ1

C biqt;i C aij;tq;ij Cbi;tq;i CA
k
;itq;k w

i
C Aki q;k w

i
t„ ƒ‚ …

DWZ2

;
(4.9)

and note thatZ1 is the highest-order term with respect to the number of derivatives
applied to q. Writing Z1 D .a � Id/D2qt , where Id denotes the identity matrix,
we see thatZ t

0

kZ1k
2
2:25 ds . ka � Idk22:25kD

2qtk
2
2:25 . sup

0�s�t

ka � Idk22:25

Z t

0

kqtk
2
4:25:

From the sharp estimate (2.12), we infer that sup0�s�t ka � Idk22:25 . c21 ; fur-
thermore, for the term kqtk4:25 we apply the interpolation estimate kqtk24:25 .
kqtk

1=5
2 kqtk

9=5
4:5 . c

1=5
1 e�ˇt=10kqtk

9=5
4:5 .

Using Lemma 2.10, we then infer thatZ t

0

kZ1k
2
2:25 ds . c

11=5
1

Z t

0

e�ˇt=10kqtk
9=5
4:5 . c

11=5
1 �9=5;

the last inequality following from Hölder’s inequality and the fact that
R t
0 kqtk

2
4:5 .

�2 by Lemma 2.10 and the bootstrap assumption (2.1a).
We apply analogous estimates to the termZ2 to finally deduce (4.15). By (4.15)

and the above chain of estimates, it follows that

jZj

'1.x/
.
p
tc
11=10
1 �9=10:
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Hence, at time T D xC lnK

jZ.T; x/j . xC 1=2 lnK1=2c1c
1=10
1 �9=10'1.x/

. c1
�
1=10
0

F.K/1=20
xC 1=2 lnK1=2�9=10'1.x/

� c1
�

F.K/1=20
xC 1=2 lnK1=2'1.x/ <

1

4
c1�1e

��1T '1.x/ �
1

2
X.t; x/:

Note that we have used the estimate c1=101 . �
1=10
0 =F.K/1=20 (which follows from

kq0k . E .0/1=2 and the smallness assumption (1.22)) as well as �0 � �, which
is going to hold by our choice of �0. Observe that the very last inequality follows
from (4.14). The next-to-last bound is equivalent to

�

F.K/1=20
<

�1

4 xC 1=2 lnK1=2K xC�1
;

which then follows from the choice (1.23) of the function F.K/ in Remark 1.3.
The second inequality above follows from the estimate c1 . kq0k . E .0/1=2 .
�=F.K/1=2.

Step 5. Finishing the Proof. From the above estimates onX , Y , andZ it finally
follows that for any x 2 B1.0/, T D xC lnK,

�qt .T; x/ � jX.T; x/j � jY.T; x/j � jZ.t; x/j

� X.T; x/ �
1

2
X.T; x/ �

1

4
X.T; x/ D

1

4
X.t; x/

� c�c1e
��1T '1.x/:

Finally, since @N'1 � c for some c > 0 uniformly over � and since '1 > 0 in �,
it follows infx2� @N qt .T; x/ > 0. �

4.4 Proof of Theorem 1.2
Step 1. The Gronwall Argument. By Proposition 3.4 with � sufficiently small,

we conclude that

(4.16) sup
0�t�T

E .t/C

Z T

0

D.t/ dt �

2E .0/C CK2
Z T

0

e�tE .t/ dt; t 2 Œ0;T �;

where T is the maximal interval of existence on which the bootstrap assump-
tions (2.1a) and (2.1b) hold (with � sufficiently small). Our goal is to prove that
on Œ0;T � the quantity E .t/ is bounded from above by 2E .0/e2CK

2t . We shall
accomplish that by bounding E .t/ from above by the function g.t/ W RC ! R,
which is defined as the solution of the differential equation

g0.t/ D CK2e�tg.t/; g.0/ D 2E .0/:
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Solving this differential equation, we obtain

g.t/ D 2E .0/e
CK2

�
.e�t�1/

D 2E .0/e.1C
P1
kD2 �

k�1tk=kŠ/CK2t

D 2E .0/e.1CO.�//CK
2t
� 2E .0/e2CK

2t ;

where the convergence of the sum
P1
kD2 �

k�1tk=kŠ is guaranteed for times t �
1=
p
�. Applying the integral Gronwall inequality to the difference E .t/ � g.t/, it

follows from (4.16) and the previous inequality that

E .t/ � g.t/ � 2E .0/e2CK
2t

for any t � T . Our goal is to prove that T � xC lnK. Using (4.16) once again,
we obtain the same smallness bound on

R t
0 D.s/ds to finally conclude that

(4.17) sup
0�s�t

E .s/C

Z t

0

D.s/ds � 2E .0/e2CK
2t :

For t � xC lnK, (4.17) and the smallness assumption (1.22) on E .0/ implies that

sup
0�s�t

E .s/C

Z t

0

D.s/ds �
�

2
:

Moreover, by Lemma 4.1 and since the bootstrap assumptions (2.1a) and (2.1b) are
valid on Œ0;T �, it follows that

Eˇ .t/C

Z t

0

D.s/ds <
zC

2
Eˇ .0/:

Thus, by the continuity of E C Eˇ and the maximality of T , we conclude that
minfT ; xC lnKg D xC lnK D TK since the bootstrap assumptions are still satisfied
at time t D xC lnK (the argument is true as long as � above is chosen in such a
way that 1=

p
� > xC lnK). By the local well-posedness theorem from [28] and

the continuity of E and Eˇ in time, we actually have the strict inequality T > TK
as we can extend the solution locally in time. We will argue by contradiction that
T D1. Assume T <1.

Step 2. Preserving the Positivity of @N qt . We next show that @N qt > 0 on
the time interval ŒTK ;T Œ. This will be done with the help of Lemma 4.2 and the
maximum principle. We start by constructing a suitable comparison function,

(4.18) P.t; r/ D �1e
� 3
2
�1t .'1.r/ � �2.1 � r

2//;
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with positive constants �1; �2 to be specified later. A straightforward calculation
shows that

(4.19)

.@t � aij @ij � bi@i /P

D �1e
� 3
2
�1t

�
�
1

2
�1'1 � 2�2Tr.a/C

3

2
�1�2.1 � r

2/

� .aij � ıij /'1 � b � .r'1 C 2�2x/

�
:

Observe that both '1 and .1 � r2/ vanish for r D 1, the trace of the matrix a is
very close to 2, i.e., a11 C a22 D 2CO.�/ and the coefficients bi are very small,
i.e., jbj D O.�/. Note that the first and the second term in the parentheses on the
right-hand side of (4.19) are negative, while the fourth and the fifth terms are small
of order �. If r D jxj is close to 1, then the second term dominates the third term,
and if r is away from the boundary r D 1, then one can choose �2 > 0 so that the
first term dominates the third term. It follows easily that there exists a �2 > 0 and
some constant C1 such that

(4.20) .@t � aij @ij � bi@i /P < �C1�1e
� 3
2
�1t :

It then follows from (4.20) and (2.42) that

(4.21) .@t � aij @ij � bi@i /.�qt � P / >

�
�
@taij q;ij C@tbiqi C @tA

k
;iq;k w

i
C Aki q;k w

i
t

�
C C1�1e

� 3
2
�1t :

Note, however, that the term in parentheses on the right-hand side above is a qua-
dratic nonlinearity and as such decays at least as fast as e�2ˇt :

@taij q;ij C@tbiqi C @tAk;iq;k wi C Aki q;k wit

L1

� k@taij q;ij k1Cı C k@tbiqik1Cı C


@tAk;iq;k wi

1Cı

C


Aki q;k wit

1Cı

� C2Eˇ .0/
1=2�e�2ˇt � C2c1�e

�2ˇt :

(4.22)

Now, using (4.21) and the above bound, we note that by choosing the constant
�1 WD

C2
C1
c1�, we have that

.@t � aij @ij � bi@i /.�qt � P / > C2c1�e
� 3
2
�1t � C2c1�e

�2ˇt > 0;

since 2ˇ D 2�1 � � >
3
2
�1. The previous bound implies that �qt � P is a

supersolution for the operator @t � aij @ij � bi@i . Moreover, by the construction
of P , we have �qt � P D 0 on � D @B1.0/. Furthermore, at time TK D xC lnK,
we have by Lemma 4.2 and (4.18), that

.�qt � P /jTD xC lnK > Cc1e
��1T '1.x/ � Cc1�e

� 3
2
�1T '1.x/

C Cc1��2e
� 3
2
�1T .1 � r2/ > 0
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for � sufficiently small. Thus, by Lemma 2.12 there exists a constant m > 0 such
that

�qt � P � m.1 � r/e
�.�1�O.�//t ; t > TK ;

or in other words

�qt � m.1 � r/e
�.�1�O.�//t C Cc1�.1 � r/e

� 3
2
�1t

�
'1.r/

1 � r
� �2.1C r/

�
D .1 � r/e�.�1�O.�//t

�
mC Cc1�e

.� 1
2
�1t�O.�//t

�
'1.r/

1 � r
� �2.1C r/

��
;

which readily gives the positivity of @N qt on the time interval ŒTK ;T Œ since
'1.r/
1�r
� �2.1C r/ > 0 by our choice of �2 above. We conclude that the positivity

of �qt at time TK D xC lnK is a property preserved by our bootstrap regime, and
moreover we get a quantitative lower bound on @N qt on the time interval ŒTK ;T Œ.

Step 3. Conclusion. Thus for any t 2 ŒTK ;T Œ, the energy identity takes the
form

E .t/C

Z t

TK

D.t/C
1

2

3X
jD0

Z t

TK

Z
�

@N qtR
2
J

ˇ̌
x@6�2j @

j
t h
ˇ̌2
dx

D E .TK/C
4X
iD1

Z t

TK

Z
�

fRi CSig C

4X
iD0

Z t

TK

Z
�

f zRi C
zSig

C

4X
iD0

Z t

TK

Z
�

fGi CHig;

where we formally define S4 D
zS4 D G4 D 0. In particular, by the energy esti-

mates stated in (3.6) and (3.9) the right-hand side of the above identity is bounded
by

E .TK/CO.
p
�/ sup
TK�s�t

E .s/C .O.�/C ı/

Z t

TK

D.s/ds:

Note here the absence of the exponentially growing term in the above bound
as opposed to their presence in Proposition 3.4. This is due to the fact that termsR t
TK

R
� @N qtR

2
J j
x@6�2j @

j
t hj

2 dx, j D 0; 1; 2; 3, are positive and no longer treated
as error terms. By absorbing the small multiples of

sup
TK�s�t

E .s/ and
Z t

TK

D.s/ds

into the left-hand side and using the positivity of @N qt from Step 2, we obtain

(4.23) sup
TK�s�t

E .s/C

Z t

TK

D.s/ds � 2E .TK/ � 8E .0/e
2CK2TK
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by (4.17). Finally, we choose �0 in the statement of Theorem 1.2 so that �20 < �
2=2.

Bound (4.23) and the condition E .0/ . �20=F.K/ (with F.K/ given as in (1.23))
imply

sup
TK�s�t

E .s/C

Z t

TK

D.s/ds �
�2

2
:

Together with Lemma 4.1 and Corollary 2.14, we infer that the bootstrap assump-
tions (2.1a) and (2.1b) are improved. Since E is continuous in time, we can extend
the solution by the local well-posedness theory to an interval Œ0;T CT �� for some
small positive time T �. This, however, contradicts the maximality of T and hence
T D1. This concludes the proof of the main theorem.

5 The d-Dimensional Case on General Near-Spherical Domains
In this section we briefly sketch the setup of the problem in general dimensions

and explain how to adapt the arguments from the two-dimensional case to the three-
dimensional case. Let �.t/ � Rd be an open, simply connected subset of Rd ,
d � 2. The moving boundary �.t/ D @�.t/ is parametrized as a graph over the
unit sphere Sd�1,

�.t/ D fx W x D R.t; �/� D .1C h.t; �//�; � 2 Sd�1g:

Initially R0.�/ is assumed to be close to 1, i.e., R0.�/ � 1 D h0.�/ D O.�/:

We shall assume that �0 is diffeomorphic to B1.0/, where ˆ W � ! �0 is the
diffeomorphism mapping of the unit ball onto the initial domain. Moreover, let z‰
denote the family of diffeomorphisms from the initial domain�0 to the moving do-
main �.t/ satisfying the harmonic equation �z‰ D 0 and the boundary condition
z‰.�0/ D �.t/.

We shall pull back the Stefan problem onto the unit ball B1.0/ via the map
‰ W B1.0/! �.t/ given as a composition of z‰ and ˆ:

‰ D z‰ ıˆ:

Upon defining q, v, w, and A just as in Section 1, the Stefan problem (1.1) takes
exactly the same form as (1.9). Abusing the notation, the normal velocity V .�.t//
is now given by

V .�.t// D
RtRq

R2 C jrRj2
Sd�1

:

Here jrRj2
Sd�1

stands for the squared norm of the Riemannian gradient of R.t; � /
on the unit sphere Sd�1, which is a coordinate invariant expression.

The gauge equation for ‰ transforms into

�ˆ�1‰ D 0; ‰.t;Sd�1/ D �.t/;

due to the assumption �z‰ D 0 and the definition of ‰. This easily implies the
optimal trace bound k‰kH s.�/ . j‰jH s�0:5.�/ due to the the smoothness of ˆ
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and the closeness assumption kDˆ � IdkH s . �, with s sufficiently large. When
d D 3, the Sobolev embedding theorem requires us to raise the degree of spatial
regularity in the definition our energy spaces by one derivative.

The second key observation is that the lower bound for the quantity �.t/ is
obtained in the same way as in the case where d D 2, from Lemma 2.12. We
denote by �1 the first eigenvalue of the operator ��ˆ�1 , which is the pullback of
the negative Laplacian from the initial domain �0 to B1.0/. By Lemma 2.12 we
obtain that

�.t/ & c1e
��t ;

where j� � �1j � O.jh � h0jW 2;1 C jht jL1/ D O.�/. Since kDˆ � IdkH s . �

for s sufficiently large, we have j�1 � �1j . �, where we recall that �1 stands for
the first eigenvalue of the Dirichlet-Laplacian. Together, the two previous estimates
imply the analogous conclusion of Corollary 2.14, namely

�.t/ & c1e
��1�z�1.t/t ; z�1 D O.�/:

Let x@i denote the tangential component of @i restricted to S2. To each multi-
index Ę D .˛1; ˛2; ˛3/ we associate the tangential operator x@ Ę D x@˛1x@˛2x@˛3 .
With d D 3, we define

E3D.t/ D E3D.q; h/.t/

WD
1

2

X
j˛jC2b�6



�1=2x@ Ę@bt v

2L2x
C
1

2

X
j ĘjC2b�7

ˇ̌
.�@N q/

1=2RJx@
Ę@bt h

ˇ̌2
L2x

C
1

2

X
j ĘjC2b�7



�1=2�x@ Ę@bt q C x@ Ę@bt‰ � v�

2L2x
C

X
j ĘjC2b�6



.1 � �/1=2@ Ę@bt v

2L2x
C
1

2

X
j ĘjC2b�7



.1 � �/1=2�@ Ę@bt q C @ Ę@bt‰ � v�

2L2x
and

D3D.t/ D D3D.q; h/.t/

WD

X
j ĘjC2b�7



�1=2x@ Ę@bt v

2L2x C X
j ĘjC2b�6

ˇ̌
.�@N q/

1=2RJx@
Ę@bt ht

ˇ̌2
L2x

C

X
j ĘjC2b�6



�1=2�x@ Ę@bt qt C x@ Ę@bt‰t � v�

2L2x C
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C

X
j ĘjC2b�7



.1 � �/1=2@ Ę@bt v

2L2x
C

X
j ĘjC2b�6



.1 � �/1=2�@ Ę@bt qt C @ Ę@bt‰t � v�

2L2x :
The lemmas of Section 2 carry through analogously, as do the energy estimates
of Section 3. By the continuity argument of Section 4, we arrive at the three-
dimensional version of our main theorem:

THEOREM 5.1 (The Three-Dimensional Case). Let .q0; h0/ satisfy the Taylor sign
condition (1.18), the strict positivity assumption (1.17), and the corresponding
compatibility conditions. Let kq0k4=kq0k0 � K. Then there exists an �0 D
�0.K/ > 0 and ı0 > 0 such that if E .q0; h0/ < �20 , then there exists a unique
global solution to problem (1.9) satisfying

sup
0�t�1

E3D.q.t/; h.t// < Cı
2
0

for some universal constant C > 0, and kqk2
H5.B1.0//

� Ce�ˇt ; where ˇ D

2�1�C�0 and �1 is the smallest eigenvalue of the Dirichlet-Laplacian on the unit
ball B.0; 1/ � R3. The moving boundary �.t/ settles asymptotically to some
nearby steady surface x� , and we have the uniform-in-time estimate

sup
0�t<1

jh � h0j5:5 .
p
ı0:

Appendix A Proof of Proposition 3.1
To prove the energy identity of Proposition 3.1, we start by applying the differ-

ential operator of the form x@6�2j @jt to the equation (1.9b). For j D 0; 1; 2; 3 we
multiply it then by x@6�2j @jt and integrate by parts. Additionally, if j D 1; 2; 3 we
apply the operator x@7�2j @jt to (1.9b), multiply by x@7�2j @j�1t vi , and again inte-
grate by parts.

Based on these two cases we distinguish between the two different types of
identities.

A.1 Identities of the First Type
Recall that � W x�! R is a C1 cutoff function with the property

�.x/ � 0 if jxj �
1

2
; �.x/ � 1 if

3

4
� jxj � 1:

Applying the tangential differential operator �x@6 to the equation (1.9b), multiply-
ing it by x@6vi , and integrating over �, we obtain�
�x@6vi C �x@6Aki q;k C �A

k
i
x@6q;k; x@

6vi
�
L2
D

5X
lD1

cl
�
�x@lAki

x@6�lq;k; x@
6vi
�
L2
;
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where cl D
�
6
l

�
. Recalling (2.19), we write

x@6Aki D �A
s
i
x@6‰r;sA

k
r C

˚
x@6; Aki

	
;

where fx@6; Aki g denotes the lower-order commutator defined in (2.19b). With this
identity, we obtain�

�x@6Aki q;k;
x@6vi

�
L2.�/

D �
�
�Asi
x@6‰r;sA

k
r q;k;

x@6vi
�
L2.�/

C
�
�
˚
x@6; Aki

	
q;k; x@

6vi
�
L2.�/

D �

Z
�

q;kA
s
i
x@6‰rAkr

x@6viN s
C

Z
�

�Asi
x@6‰rAkr q;k

x@6vi;s C

Z
�

T1

D �

Z
�

q;kA
s
i
x@6‰rAkr

x@6viN s
�

Z
�

�Asi
x@6‰rvrx@6vi;s C

Z
�

T1;(A.1)

where we have integrated by parts with respect to xs for the second equality and
used the identity vr D �Akr q;k for the last equality; the error term T1 is given by

T1 D
�
�q;kA

s
iA
k
r

�
;s x@

6‰r�
x@6vi C �

˚
x@6; Aki

	
q;k; x@

6vi

C �Asi
x@6‰rAkr q;k f

x@6; @sgv
i :

Furthermore, integration by parts with respect to xk yields�
�Aki
x@6q;k; x@

6vi
�
L2
D

Z
�

�Aki @k
x@6qx@6vi C

Z
�

�Aki f
x@6; @kgqx@

6vi

D �

Z
�

�Aki
x@6qx@6vi;k �

Z
�

.�Aki /;k
x@6qx@6vi

C

Z
�

�Aki f
x@6; @kgqx@

6vi ;

(A.2)

where we have used x@6q D 0 on � , and where fx@6; @kg denotes the lower-order
commutator. Summing (A.1) and (A.2), we find that�

�x@6Aki q;k C �A
k
i
x@6q;k; x@

6vi
�
L2.�/

D �

Z
�

q;kA
s
i
x@6‰rAkr

x@6viN s
�

Z
�

�Aki
x@6vi;k.

x@6q C x@6‰ � v/

C

Z
�

�
T1 �

�
�Aki

�
;k x@

6qx@6vi C �Aki f
x@6; @kgqx@

6vi
�
:

(A.3)
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The first two terms on the right-hand side of (A.3) will be the source of positive
definite quadratic contributions to the energy. To extract the quadratic coercive
contribution from the first integral on the right-hand side of (A.3), note that q;kD
N k@N q on � , and also recall from (1.8) the normal vector zn D ATN . Thus

�

Z
�

q;kA
s
i
x@6‰rAkr

x@6viN s
D

Z
�

.�@N q/x@
6‰r znrx@6vi zni

D

Z
�

.�@N q/x@
6‰ � znx@6v � zn:

(A.4)

Using the boundary condition (1.10), we reexpress x@6v � zn as

x@6v � zn D x@6w � znC x@6.v � w/ � zn

D x@6w � znC x@6..v � w/ � zn„ ƒ‚ …
D0

/ �

6X
lD1

alx@
6�l.v � w/ � x@l zn

D x@6‰t � zn �

6X
lD1

alx@
6�l.v � w/ � x@l zn:

Due to the above identity and (A.4), we obtain that

Z
�

.�@N q/x@
6‰ � znx@6v � zn

D

Z
�

.�@N q/x@
6‰ � znx@6‰t � zn

�

6X
lD1

al

Z
�

.�@N q/x@
6‰ � znx@6�l.v � w/ � x@l zn

D

Z
�

.�@N q/
1

2

d

dt
jx@6‰ � znj2 dx0 C

Z
�

@N qx@
6‰ � zn x@6‰ � znt(A.5)

�

6X
lD1

al

Z
�

.�@N q/x@
6‰ � znx@6�l.v � w/ � x@l zn:
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Recall that zn D J�1.RN � R��/ D J�1.N C hN � h��/. Thus, using
‰.t; �/ D N C h.t; �/N , we obtain via the Leibniz rule

x@6‰ � zn D Œx@6N C x@6.hN /� � Œ.1C h/N � h���J
�1

D

�
�RCRx@6hC

5X
aD0

cax@
ahx@6�aN � .hN � h��/

�
J�1

D

�
�RJ CRJx@

6hC

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�
;

where we have used the relations x@2N D �N and N � � D 0 and also denoted
cJa D caJ

�1 (recall RJ D RJ�1). From here we obtain

1

2

d

dt

�
jx@6‰ � znj2

�
D
1

2

d

dt

�
R2J j
x@6hj2

�
C
d

dt

h�
�RJ C 2RJx@

6hC

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�

�

�
�RJ C

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�i
:

(A.6)

Thus, going back to (A.5), we obtainZ
�

.�@N q/x@
6‰ � znx@6‰t � zn D

1

2

d

dt

Z
�

.�@N q/R
2
J j
x@6hj2

C
1

2

Z
�

@N qtR
2
J j
x@6hj2 C

Z
�

T2;

where the error term T2 is given by

T2 D .�@N q/
d

dt

h�
�RJ C 2RJx@

6hC

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�

�

�
�RJ C

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�i
:
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As to the second term on the right-hand side of (A.3), note that

Aki
x@6vi;k D

x@6.Aki v
i
;k/ �

6X
lD1

clx@
lAki
x@6�lvi;k

D �x@6.qt C v � w/ �

6X
lD1

clx@
lAki
x@6�lvi;k;

where Aki v
i
;k
D � div‰ v D �.qt C v � w/ by the parabolic equation (1.9a). Thus

�

Z
�

�Aki
x@6vi;k.

x@6q C x@6‰ � v/

D

Z
�

�x@6.qt C‰t � v/.x@
6q C x@6‰ � v/

C

6X
lD1

cl

Z
�

�x@lAki
x@6�lvi;k.

x@6q C x@6‰ � v/

D
1

2

d

dt

Z
�

�.x@6q C x@6‰ � v/2(A.7)

C

Z
�

�
� 6X
lD1

dlx@
6�l‰t � x@

lv � x@6‰ � vt

�
.x@6q C x@6‰ � v

�

C

6X
lD1

cl

Z
�

�x@lAki
x@6�lvi;k.

x@6q C x@6‰ � v/:

Combining (A.3)—(A.7) we obtainZ
�

�jx@6vj2 dx C
1

2

d

dt

Z
�

.�@N q/R
2
J j
x@6hj2 dx0

C
1

2

d

dt

Z
�

�.x@6q C x@6‰ � v/2 dx

D �
1

2

d

dt

Z
�

.�@N q/
ˇ̌̌ 5X
aD0

cax@
aRx@6�aN � zn

ˇ̌̌2
dx0

C

Z
�

R0 C

Z
�

G0

(A.8)
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with the error terms R0 and G0 given by

R0 D �

5X
lD1

clx@
lAki
x@6�lq;kx@

6vi C
�
�q;kA

s
iA

k
r

�
;s x@

6‰rx@6vi

C �
˚
x@6; Aki

	
q;kx@

6vi C �Asi
x@6‰rAkr q;k f

x@6; @sgv
i

�
�
�Aki

�
;k x@

6qx@6vi � �Aki f
x@6; @kgqx@

6vi

� �

6X
lD1

�
clx@

lAki
x@6�lvi;k C dl

x@6�lw � x@lv � x@6‰ � vt
�
.x@6q C x@6‰ � v/

(A.9)

and
G0 D �@N qx@

6‰ � znx@6‰ � znt

C .�@N q/
d

dt

h
RJx@

6h
�
�RJ C

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�i

� @N q
d

dt

h�
�RJ C

5X
aD0

cJa
x@ahx@6�aN � .hN � h��/

�2i

C

6X
lD1

al .�@N q/x@
6‰ � znx@6�l .v � w/ � x@l zn:

(A.10)

Let now ˛ D .˛1; ˛2/ be an arbitrary multi-index of order 6. Applying the
operator .1 � �/@˛ to (1.9b) and multiplying by @˛vi , we obtain�
.1 � �/@˛vi C .1 � �/@˛Aki q;kC.1 � �/A

k
i @
˛q;k ; @

˛vi
�
L2.�/

D

�

X
0<ˇ�˛

cˇ
�
.1 � �/@ˇAki @

˛�ˇq;k; @
˛vi

�
L2
:

In the same way as above we arrive at the following energy identity:

(A.11)
Z
�

.1��/j@˛vj2 dxC
1

2

d

dt

Z
�

.1��/.@˛qtC@
˛‰ �v/2 dx D

Z
�

zR0 dx;

where
zR0 D .1 � �/

X
0<ˇ<˛

cˇ@
ˇAki @

˛�ˇq;k@
˛vi

C .1 � �/
��
q;kA

s
iA

k
r

�
;s @

˛‰r@˛vi C
˚
@˛; Aki

	
q;k@

˛vi
�

� .1 � �/
X

0<ˇ�˛

�
cˇ@

ˇAki @
˛�ˇvi;k C dˇ@

˛�ˇw � @ˇv � @˛‰ � vt
�

�
�
@˛q C @˛‰ � v

�
;

(A.12)
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Summing the identities (A.8) and (A.11), with j D 0 we arrive atZ
�

�
ˇ̌
x@6�2j @

j
t v
ˇ̌2
C

X
j˛jD6�2j

Z
�

.1 � �/
ˇ̌
@˛@

j
t v
ˇ̌2

C
1

2

d

dt

Z
�

.�@N q/R
2
J

ˇ̌
x@6�2j @

j
t h
ˇ̌2

C
1

2

d

dt

Z
�

�
�
x@6�2j @

j
t q C

x@6�2j @
j
t ‰ � v

�2
C
1

2

d

dt

X
j˛jD6�2j

Z
�

.1 � �/.@˛@
j
t q C @

˛@
j
t ‰ � v/

2

D �

Z
�

.�@N qt /R
2
J

ˇ̌
x@6�2j @

j
t h
ˇ̌2
C

Z
�

.Rj C zRj /C

Z
�

Gj :

(A.13)

By imitating the same calculation as above we obtain the remaining error terms.
With j D 1; 2; 3 the formulas for Rj , zRj , and Gj in (A.13) read

Rj D
X

0<aCb<6�j

�dabx@
a@btA

k
i
x@6�2j�a@

j�b
t q;kx@

6�2j @
j
t v
i

C
�
�q;kA

s
iA

k
r

�
;s x@

6�2j @
j
t ‰

rx@6�2j @
j
t v
i

C �Asi
x@6�2j @

j
t ‰

rAkr q;k f
x@6�2j ; @sg@

j
t v
i

C �
˚
x@6�2j @

j
t ; A

k
i

	
q;kx@

6�2j @
j
t v
i

�
�
�Aki

�
;k x@

6�2j @
j
t q
x@6�2j @

j
t v
i
� �Aki f

x@6�2j ; @kg@
j
t q
x@6�2j @

j
t v
i

� �
X

0�aCb<6�j

�
dabx@

6�2j�a@
j�b
t Aki

x@a@bt v
i
;k

C dabx@
a@bt‰t �

x@6�2j�a@
j�b
t v � x@6�2j @

j
t ‰ � vt

�
�
�
x@6�2j @

j
t q C

x@6�2j @
j
t ‰ � v

�
;

(A.14)

Gj D �@N qx@
6�2j @

j
t ‰ � zn

x@6�2j @
j
t ‰ � znt

C @N q@t

h
x@6�2j @

j
t hRJ

�
�RJ C

5�2jX
aD0

dJa
x@a@

j
t h
x@6�2j�aN � zn

�i

C
d

dt

h� 5�2jX
aD0

dJa
x@a@

j
t h
x@6�2j�aN � zn

�2i
C

X
0�aCb<6�j

dab.�@N q/x@
6�2j @

j
t ‰ � zn

x@6�2j�a@
j�b
t .v � w/ � x@a@bt zn;

(A.15)
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and
zRj D .1 � �/

X
0<ˇ<˛

cˇ@
ˇAki @

˛�ˇq;k@
˛vi C .1 � �/ zT1

� .1 � �/
X

0<ˇ�˛

�
cˇ@

ˇAki @
˛�ˇvi;k

C .1 � �/dˇ@
˛�ˇw � @ˇv � @˛‰ � vt

�
� .@˛q C @˛‰ � v/:

(A.16)

A.2 Identities of the Second Type
Applying x@5@t to (1.9b) and computing the L2.�/-product with �x@5vi , we ob-

tain�
�x@5vit C �

x@5Aki;tq;k C �A
k
i
x@5q;kt ; x@

5vi
�
L2
DX

0<aCb<6
a�5;b�1

cab
�
�x@a@btA

k
i
x@5�a@1�bt q;k; x@

5vi
�
L2
;

where cab are constants appearing due to the usage of the Leibniz product rule
above. Recalling (2.19), we write

x@5Aki;t D �A
s
i
x@5‰r;stA

k
r C

˚
x@5@t ; A

k
i

	
;

where fx@5@t ; Aki g stands for the lower-order commutator defined in (2.19). With
this identity, we obtain�

�x@5Aki;tq;k;
x@5vi

�
L2.�/

D �
�
�Asi
x@5‰r;stA

k
r q;k;

x@5vi
�
L2.�/

C
�
�
˚
x@5@t ; A

k
i

	
q;k; x@

5vi
�
L2.�/

D �

Z
�

q;kA
s
i
x@5‰rtA

k
r
x@5viN s

C

Z
�

�Asi
x@5‰rtA

k
r q;k
x@5vi;s C

Z
�

U1

D �

Z
�

q;kA
s
i
x@5‰rtA

k
r
x@5viN s

�

Z
�

�Asi
x@5‰rt v

rx@5vi;s C

Z
�

U1;

(A.17)

where we have integrated by parts with respect to xs in the second equality and
have also used the identity vr D �Akr q;k to write the last line more concisely. The
error term U1 is given by

U1 D
�
�q;kA

s
iA
k
r

�
;s x@

5‰rt
x@5vi

C �
˚
x@5@t ; A

k
i

	
q;k; x@

5vi C �Asi
x@5‰rtA

k
r q;k f

x@5; @sgv
i :
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Furthermore, integrating by parts with respect to xk yields�
�Aki
x@5@tq;k; x@

5vi
�
L2

D

Z
�

�Aki @k
x@5@tqx@

5vi C

Z
�

�Aki f
x@5; @kgqtx@

5vi

D �

Z
�

�Aki
x@5qtx@

5vi;k �

Z
�

.�Aki /;k
x@5qtx@

5vi

C

Z
�

�Aki
x@5qtfx@

5; @kgv
i
C

Z
�

�Aki f
x@5; @kgqtx@

5vi ;

(A.18)

where we have used x@5qt D 0 on � . Summing (A.17) and (A.18), we obtain�
�x@5Aki;tq;k C �A

k
i
x@5q;kt ; x@

5vi
�
L2.�/

D �

Z
�

q;kA
s
i
x@5‰rtA

k
r
x@5viN s

�

Z
�

�Aki
x@5vi;k

�
x@5qt C x@

5‰t � v
�

C

Z
�

�
U1 �

�
�Aki

�
;k x@

5qtx@
5vi C �Aki

x@5qtfx@
5; @kgv

i

C �Aki f
x@5; @kgqtx@

5vi
�
:

(A.19)

The first two terms on the right-hand side of (A.19) will be the source of positive
definite quadratic contributions to the energy. To extract the quadratic coercive
contribution from the first integral on the right-hand side of (A.19), note that q;kD
N k@N q on � . Thus

�

Z
�

q;kA
s
i
x@5‰rtA

k
r
x@5viN s

D

Z
�

.�@N q/x@
5‰rt zn

rx@5vi zni

D

Z
�

.�@N q/x@
5‰t � znx@

5v � zn:

As in Section A.1 where the identities lead up to (A.6), we obtain

.�@N q/x@
5‰t � znx@

5v � zn D jx@5ht j
2R2J C

ˇ̌̌ 4X
aD0

cJa
x@ahtx@

5�aN � zn
ˇ̌̌2

C 2x@5htRJ

4X
aD0

cJa
x@ahtx@

5�aN � zn

C

4X
lD1

al .�@N q/x@
5‰ � znx@5v � znx@5�l .v � w/ � x@l zn;

(A.20)
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where cJa D caJ
�1 and ca are some universal constants. As to the second term on

the right-hand side of (A.19), note that

Aki
x@5vi;k D

x@5.Aki v
i
;k/ �

5X
lD1

clx@
lAki
x@5�lvi;k

D �x@5.qt C v � w/ �

5X
lD1

clx@
lAki
x@5�lvi;k;

where Aki v
i
;k
D � div‰ v D �.qt C v � w/ by the parabolic equation (1.9a). Thus

�

Z
�

�Aki
x@5vi;k.

x@5qt C x@
5‰t � v/

D

Z
�

�x@5.qt C‰t � v/.x@
5qt C x@

5‰t � v/

C

5X
lD1

cl

Z
�

�x@lAki
x@5�lvi;k.

x@5qt C x@
5‰t � v/

D

Z
�

�.x@5qt C x@
5‰t � v/

2

C

5X
lD1

dl

Z
�

�x@5�l‰t � x@
lv.x@5qt C x@

5‰t � v/

C

5X
lD1

cl

Z
�

�x@lAki
x@5�lvi;k.

x@5qt C x@
5‰t � v/:

(A.21)

Combining (A.19)—(A.21) we obtain

1

2

d

dt

Z
�

�jx@5vj2 dx C

Z
�

.�@N q/jx@
5‰t � znj

2 dx0

C

Z
�

�.x@5qt C x@
5‰t � v/

2 dx

D

Z
�

@N q
ˇ̌̌ 4X
aD0

cJa
x@ahtx@

5�a� � zn
ˇ̌̌2

C

Z
�

S1 C

Z
�

H1

(A.22)
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with the error terms Sj and Hj given by

(A.23)

Sj D

X
0<aCb<6�j
a�7�2j;b�j

dab�x@
a@btA

k
i
x@7�2j�a@

j�b
t q;kx@

7�2j @
j�1
t vi

C
�
�q;kA

s
iA

k
r

�
;s x@

7�2j @
j
t ‰

rx@7�2j @
j�1
t vi

C �fx@7�2j @
j
t ; A

k
i gq;k ;

x@7�2j @
j�1
t vi

C �Asi
x@7�2j @

j
t ‰

rAkr q;k f
x@7�2j ; @sg@

j�1
t vi

� .�Aki /;k
x@7�2j @

j
t q
x@7�2j @

j�1
t vi C �Aki

x@7�2j @
j
t qf
x@7�2j ; @kg@

j�1
t vi

C �Aki f
x@7�2j ; @kg@

j
t q
x@7�2j @

j�1
t vi �

�
x@7�2j @

j
t q C

x@7�2j @
j
t ‰ � v

�
�

X
0�aCb<6�j

dab
�
�x@a@bt‰t �

x@7�2j�a@
j�1�b
t v

C �x@7�2j�a@
j�1�b
t Aki

x@a@bt v
i
;k

�
and

(A.24)

Hj D 2@N qx@
7�2j @

j
t hRJ

X
0�aCb<7�j

cJab
x@a@bt h

x@7�2j�a@
j�b
t N � zn

C .�@N q/x@
7�2j @

j
t ‰ � zn

�

X
0�aCb<6�j

dabx@
7�2j�a@

j�1�b
t .v � w/ � x@a@bt zn:

Note that the first line of (A.24) appears as an expanded difference between two
positive definite expressions .�@N q/jx@7�2j @

j
t ‰�znj

2 and .�@N q/jx@7�2j @
j
t hj

2. We
do this just as we did after (A.5) using the formula zn D J�1.N C hN � h��/ and
the parametrization ‰.t; �/ D .1C h.t; �//N .

Let now ˛ D .˛1; ˛2/ be an arbitrary multi-index of order 5. Applying the
operator .1 � �/@˛@t to (1.9b) and multiplying by @˛vi , we obtain

�
.1 � �/@˛vit C .1 � �/@

˛Aki;tq;kC.1 � �/A
k
i @
˛q;kt ; @

˛vi
�
L2.�/

D

�

X
0<jˇjCb<5
ˇ�˛Ib�1

cˇb
�
.1 � �/@ˇ@btA

k
i @
˛�ˇ@1�bt q;k; @

˛vi
�
L2
:

In the same way as above we arrive at the energy identity

(A.25)
1

2

d

dt

Z
�

.1��/j@˛vj2 dxC

Z
�

.1��/.@˛qtC@
˛‰t �v/

2 dx D

Z
�

zS1 dx;
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where

zS1 D

X
0<jˇjCb<5
ˇ�˛Ib�1

cˇb.1 � �/@
ˇ@btA

k
i @
˛�ˇ@1�bt q;k@

˛vi

C .1 � �/
��
q;kA

s
iA
k
r

�
;s @

˛‰rt @
˛vi C

˚
@˛@t ; A

k
i

	
q;k@

˛vi
�

� .1 � �/
X

0<ˇ�˛

cˇ�@
˛�ˇ‰t � x@

lv
�
x@˛qt C x@

˛‰t � v
�

� .1 � �/
X
ˇ�˛

cl�@
ˇAki
x@˛�ˇvi;k

�
x@˛qt C x@

˛‰t � v
�
:

(A.26)

For a general j 2 f1; 2; 3g we have

zSj D

X
0<jˇjCb<7�2j
ˇ�˛Ib�j

dˇb.1 � �/@
ˇ@btA

k
i @
˛�ˇ@

j�b
t q;k@

˛vi C .1 � �/ zU1

� .1 � �/
X

0�jˇ jCb<j˛j

dˇb�@
ˇ@bt‰t

� @˛�ˇ@
j�1�b
t v

�
x@˛@

j
t q C

x@˛@
j
t ‰ � v

�
� .1 � �/

X
0�jˇ jCb<j˛j

dˇb�@
˛�ˇ

� @
j�1�b
t Aki

x@ˇ@bt v
i
;k

�
x@˛@

j
t q C

x@˛@
j
t ‰ � v

�
:

(A.27)

Summing the identities (A.22) and (A.25) we arrive at

1

2

d

dt

�Z
�

�
ˇ̌
x@7�2j @

j
t v
ˇ̌2
C

X
j˛jD7�2j

Z
�

.1 � �/
ˇ̌
@˛@

j
t v
ˇ̌2�

C

Z
�

.�@N q/R
2
J

ˇ̌
x@7�2j @

j
t h
ˇ̌2
C

Z
�

�
�
x@7�2j @

j
t q C

x@7�2j @
j
t ‰ � v

�2
C

X
j˛jD7�2j

Z
�

.1 � �/.@˛@
j
t q C @

˛@
j
t ‰ � v/

2

D

Z
�

.Sj C zSj /C

Z
�

Hj ; j D 1; 2; 3:

(A.28)

Summing the identities (A.13) for j D 0; 1; 2; 3 and (A.28) for j D 1; 2; 3, we
conclude the proof of Proposition 3.1.
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Appendix B Proof of the Inequality (3.5)
We use the comparison function P defined in (4.18) with the same �2 and �1.

Note that �1 D C��c1 is defined as a multiple of c1 for some constant C� > 0.
Using (4.20) and upon possibly enlarging C�, we infer .@t �aij �bi /.�qtCP / �
0. Theorem 1 from [40] guarantees

(B.1) � qt C P � C0c1�e
.��1CC�/t ;

where �.r/ D 1 � r stands for the distance function to the boundary � . Note that
the constant �1 in the definition (4.18) is chosen right after (4.22). It is in particu-
lar proportional to Eˇ .0/1=2 � kq0k4. By definition of K we have that kq0k4 �
Kkq0k0. Since however kq0k0 � Kc1, we obtain P=� � CK2c1e�3�1t=2: Sim-
ilarly, the constant C0 is proportional to the L1-norm of the initial datum for
�qt CP , wherefrom we again obtain C0 � K2c1 by the same argument as above.
Dividing by � in (B.1), from the above inequality we infer that

j@N qt j1 � CK
2c1e

.��1CC�/t :

This proves the inequality (3.5).
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