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We introduce a new methodology for adding localized, space–time smooth, artificial vis-
cosity to nonlinear systems of conservation laws which propagate shock waves, rarefac-
tions, and contact discontinuities, which we call the C-method. We shall focus our
attention on the compressible Euler equations in one space dimension. The novel feature
of our approach involves the coupling of a linear scalar reaction–diffusion equation to
our system of conservation laws, whose solution Cðx; tÞ is the coefficient to an additional
(and artificial) term added to the flux, which determines the location, localization, and
strength of the artificial viscosity. Near shock discontinuities, Cðx; tÞ is large and localized,
and transitions smoothly in space–time to zero away from discontinuities. Our approach is
a provably convergent, spacetime-regularized variant of the original idea of Richtmeyer
and Von Neumann, and is provided at the level of the PDE, thus allowing a host of numer-
ical discretization schemes to be employed.

We demonstrate the effectiveness of the C-method with three different numerical imple-
mentations and apply these to a collection of classical problems: the Sod shock-tube, the
Osher–Shu shock-tube, the Woodward–Colella blast wave and the Leblanc shock-tube.
First, we use a classical continuous finite-element implementation using second-order dis-
cretization in both space and time, FEM-C. Second, we use a simplified WENO scheme
within our C-method framework, WENO-C. Third, we use WENO with the Lax–Friedrichs
flux together with the C-equation, and call this WENO-LF-C. All three schemes yield
higher-order discretization strategies, which provide sharp shock resolution with minimal
overshoot and noise, and compare well with higher-order WENO schemes that employ
approximate Riemann solvers, outperforming them for the difficult Leblanc shock tube
experiment.

Published by Elsevier Inc.
1. Introduction

1.1. Smoothing conservation laws

The initial-value problem for a general nonlinear system of conservation laws can be written as an evolution equation,
@tUðx; tÞ þ div FðUðx; tÞÞ ¼ 0 with Ujt¼0 ¼ U0; ð1Þ
for an m-vector U defined on (D + 1)-dimensional space–time. Such partial differential equations (PDE) are both ubiquitous
and fundamental in science and engineering, and include the compressible Euler equations of gas dynamics, the
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magneto-hydrodynamic (MHD) equations modeling ionized plasma, the elasticity equations of solid mechanics, and
numerous related physical systems which possess complicated nonlinear wave interactions.

It is well known that solutions of (1) can develop finite-time shocks, even when the initial data is smooth, in which case,
discontinuities of U are propagated according to the so-called Rankine-Hugoniot conditions (see Section 2.1). It is important
to develop stable and robust numerical algorithms which can approximate shock-wave solutions. Even in one-space dimen-
sion, nonlinear wave interaction such as two shock waves colliding, is a difficult problem when considering accuracy, sta-
bility and monotonicity. The challenge is maintaining higher-order accuracy away from the shock while approximating
the discontinuity in an order-Dx smooth transition region where Dx denotes the spatial grid size.

As we describe below, a variety of clever discretization schemes have been developed and employed, particularly in one-
space dimension, to approximate discontinuous solution profiles in an essentially non-oscillatory (ENO) fashion. These in-
clude, but are not limited to, total variation diminishing (TVD) schemes, flux-corrected transport (FCT) schemes, weighted
essentially non-oscillatory (WENO) schemes, discontinuous Galerkin methods, artificial diffusion methods, exact and
approximate Riemann solvers, and a host of variants and combinations of these techniques.

We develop a robust parabolic-type regularization of (1), which we refer to as the C-method, which couples a modified set
of m equations for U with an additional linear scalar reaction–diffusion equation for a new scalar field Cðx; tÞ. Thus, instead of
(1) we consider a system of m + 1 equations, which use the solution Cðx; tÞ as a coefficient in a carefully chosen modification
of the flux. As we describe in detail below, the solution Cðx; tÞ is highly localized in regions of discontinuity, and transitions
smoothly (in both x and t) to zero in regions wherein the solution is smooth. Further, as Dx! 0, we recover the original
hyperbolic nonlinear system of conservation laws (1).
1.2. Numerical discretization

In the case of 1-D gas dynamics, the construction of non-oscillatory, higher-order, numerical algorithms such as ENO by
Harten et al. [1] and Shu and Osher [2,3]; WENO by Liu et al. [4] and Jiang and Shu [5]; MUSCL by Van Leer [6], Colella [7], and
Huynh [8]; or PPM by Colella and Woodward [9] requires carefully chosen reconstruction and numerical flux.

Such numerical methods evolve cell-averaged quantities; to calculate an accurate approximation of the flux at cell-
interfaces, these schemes reconstruct kth-order (k P 2) polynomial approximations of the solution (and hence the flux) from
the computed cell-averages, and thus provide kth-order accuracy away from discontinuities. See, for example, the conver-
gence plots of Greenough and Rider [10] and Liska and Wendroff [11]. Given a polynomial representation of the solution,
a strategy is chosen to compute the most accurate cell-interface flux, and this is achieved by a variety of algorithms. Centered
numerical fluxes, such as Lax–Friedrichs, add dissipation as a mechanism to preserve stability and monotonicity. On the
other hand, characteristic-type upwinding based upon exact (Godunov) or approximate (Roe, Osher, HLL, HLLC) Riemann
solvers, which preserve monotonicity without adding too much dissipation, tend to be rather complex and PDE-specific;
moreover, for strong shocks, other techniques may be required to dampen post-shock oscillations or to yield entropy-
satisfying approximations (see Quirk [12]). Again, we refer the reader to the papers [10,11] or Colella and Woodward [13]
for a thorough overview, as well as a comparison of the effectiveness of a variety of competitive schemes.

Majda and Osher [14] have shown that any numerical scheme is at best, first-order accurate in the presence of shocks or
discontinuities. The use of higher-order numerical schemes is, nevertheless, imperative for the elimination of error-terms in
the Taylor expansion (in mesh-size) and the subsequent limiting of truncation error. Moreover, higher-order schemes tend to
be less dissipative than there lower-order counterparts, as discussed by Greenough and Rider [10]; therein, a comparison
between a 2nd-order PLMDE scheme and a 5th-order WENO scheme demonstrates the improved resolution of intricate fine
structure afforded by 5th-order WENO, while simultaneously providing far less clipping of local extrema than PLMDE.

In multi-D, similar tools are required to obtain non-oscillatory numerical schemes, but the multi-dimensional analogues
to those described above are generally limited by mesh considerations. For structured grids (such as products of uniform 1-D
grids), dimensional splitting is commonly used, decomposing the problem into a sequence of 1-D problems. This technique is
quite successful, but stringent mesh requirements prohibits its use on complex domains. Moreover, applications to PDE out-
side of variants of the Euler equations may be somewhat limited. For further discussion of the limitations of dimensional
splitting, we refer the reader to Crandall and Majda [15], and Jiang and Tadmor [16]. For unstructured grids, dimensional
splitting is not available and alternative approaches must be employed, necessitated by the lack of multi-D Riemann solvers.
WENO schemes on unstructured triangular grids have been developed in Hu and Shu [17], but using simplified methods,
which employ reduced characteristic decompositions, can lead to a loss of monotonicity and stability.

Algorithms that explicitly introduce diffusion provide a simple way to stabilize higher-order numerical schemes and sub-
sequently remove non-physical oscillations near shocks. In the mathematical analysis of conservation laws (and in the trun-
cation error of certain discretization schemes), the simplest parabolic-regularization is by the addition of a uniform linear
viscosity. Choosing a constant b > 0, which depends upon mesh-size Dx and sometimes velocity or wave-speed, and adding
bðDxÞ@2
x Uðx; tÞ ð2Þ
to the right hand side of (1) provides a uniformly parabolic regularization of the hyperbolic conservation laws, and its dis-
crete implementation smears sharp discontinuities across OðDxÞ-regions and thus adds stabilization, but unfortunately, at the
cost of accuracy. With the addition of uniform linear viscosity, shocks and discontinuities are captured in a non-oscillatory
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fashion, but the transition region from left to right state, which approximates the discontinuity, tends to grow over time.
Moreover, since viscosity is applied uniformly over the entire domain I , the benefits of a higher-order scheme (away from
the discontinuity) may be lost, and the accuracy may reduce to merely first-order (at best). In numerical schemes, the use of
viscosity should be localized in regions of shock (so as to stabilize the scheme), limited at contact discontinuities (to avoid
over-smearing the sharp transition), and very small in smooth regions away from discontinuities. Achieving these require-
ments allows higher-order approximation of smooth flow and sharp, non-oscillatory, resolution of shocks and discontinu-
ities. Naturally, this necessitates that the amount of added viscosity be a function of the solution.

The pioneering papers of Richtmyer [18], Von Neumann and Richtmyer [19], Lax and Wendroff [20], and Lapidus [21]
suggest the introduction of nonlinear artificial viscosity to Eqs. (1) in a form similar to the following expression:
1 We
bðDxÞ2@xðj@xuðx; tÞj@xUðx; tÞÞ: ð3Þ
We refer the reader to the classical papers of Gentry et al. [22] and Harlow and Amsden [23] for an interesting discussion on
artificial viscosity. Specifically, Gentry et al. [22] define the nonlinear viscosity of the type (3) to be artificial viscosity, and
show that the linear viscosity (2), scaled by the magnitude of local velocity, arises as truncation error (in finite-difference
approximations). The latter is responsible for stabilizing the transport of sound waves, while (3) stabilizes the steepening
of sound waves.1

We are primarily concerned with the steepening of sound waves, and shall term artificial viscosity of the type (3) as
classical artificial viscosity. Formally, the use of (3) produces the required amount of viscosity near shocks but allows for
second-order accuracy in smooth regions. On the other hand, the diffusion coefficient j@xuðx; tÞj is precisely the quantity
which loses regularity (or smoothness) near shock discontinuities. Also, the constant b must be larger than one to control
numerical oscillations behind the shock wave, which in turn overly diffuses the waves and produces incorrect wave speeds.

Alternative procedures have been proposed. For streamline upwind Petrov–Galerkin schemes (SUPG), Hughes and Mallet
[24] and Shakib et al. [25] use residual-based artificial viscosity. Guermond and Pasquetti [26] present a similar, entropy-
residual-based scheme for use in spectral methods. Persson and Peraire [27] develop a method based upon decay of local
interpolating polynomials for discontinuous Galerkin schemes. Later, Barter and Darmofal [28] use a reaction–diffusion
equation to provide a regularized variant of this approach.

Our approach is similar to [28] in that it uses a reaction–diffusion equation to calculate a smooth distribution of artificial
viscosity. Instead of regularizing a DG-based noise-indicator that allows for the growth of viscosity near shocks, we regular-
ize the classical artificial viscosity of [21], using a gradient based approach for this source term. This approach yields both a
discretization- independent and PDE-independent methodology which can be generalized to multiple dimensions by regu-
larizing a similar viscosity to that in Löhner et al. [29].

In 1-D, our approach proves to be a simple way of circumventing the need for characteristic or other a priori information
of the exact solution to remove oscillations in higher-order schemes. Due to the simple and discretization-independent nat-
ure of our method, we expect our methodology to be useful for a wide range of applications.
1.3. Outline of the paper

In Section 2, we introduce the C-method for the compressible Euler equations in one space dimension. We show that the
C-method is Galilean invariant and that solutions of the C-method converge to the entropy solutions of the Euler equations in
the limit of zero mesh size. We also show the relative smoothness of our new viscosity coefficient with respect to the clas-
sical artificial viscosity of Richtmyer and Von Neumann, and we demonstrate the ability of the C-method to remove down-
stream oscillation in slowly moving shocks.

In Section 3, we give a brief outline of the numerical schemes whose solutions are used in this paper. First, we outline a
second-order, continuous Galerkin finite-element method. Second, we outline a simple WENO-based finite-volume scheme
which performs upwinding using only the sign of the velocity (no Riemann-solvers or characteristic decompositions in prim-
itive variables). The resulting schemes applied to the C-method are referred to as FEM-C and WENO-C, respectively. Third, we
outline the central-finite-difference scheme of Nessyahu and Tadmor (NT), a simple scheme, easily generalizable to multi-D
[30]. Like our FEM-C scheme, the NT-scheme is at best, second-order, and does not require specialized techniques for
upwinding. Fourth, we outline a Godunov-type characteristic decomposition-based WENO scheme (WENO-G) developed
by Rider et al. [31] which utilizes a variant of a Godunov/Riemann-solver as upwinding, providing a very competitive scheme
for modeling the collision of very strong shocks.

In Section 4, we consider the classical shock-tube problem of Sod. With the Sod shock problem, we apply our FEM-C
scheme and compare with the classical viscosity approach. We then compare the FEM-C scheme with the two standalone
methods, NT and WENO-G.

In Section 5, we consider the moderately difficult problem of Osher–Shu, modeling the interaction of a mild shock with an
entropy wave. We compare FEM-C to NT and WENO-G in which the differences are more significant than in the Sod-shock
comparisons. We show that WENO-C compares well with WENO-G; on the other hand, the simple WENO scheme without
the C-method and without the Gudonov-based characteristic solver also does well in modeling the Osher–Shu test case.
are indebted to the anonymous referee for clarifying this point for us.
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In Section 6, we consider the numerically challenging Woodward–Colella blast wave simulation, which models the col-
lision of two strong interacting shock fronts. Though the FEM-C scheme performs better than NT, both second-order schemes
are somewhat out-performed by the higher-order WENO-G method (with characteristic solver). On the other hand, WENO-C
compares well with WENO-G, having slightly less damped amplitudes with the same shock resolution.

Finally, in Section 7, we consider the Leblanc shock-tube, an extremely difficult test case consisting of a very strong shock.
For this problem, we devise two strategies to demonstrate the use of the C-method. In the first strategy, we use our simpli-
fied WENO-C scheme with a right-hand side term for the energy equation that relies on a second C-equation which smooths
gradients of E=q. We obtain an excellent approximation of the notoriously difficult contact discontinuity for internal energy,
while maintaining an accurate shock speed; simultaneously, we avoid generating large overshoots at the contact disconti-
nuity, which would indeed occur without the use of the C-method. For our second strategy, we show that WENO with the
Lax–Friedrichs flux can be significantly improved with the addition of the C-method. We call this algorithm WENO-LF-C, and
show that by using just one C-equation (as we have for all of the other test cases), we can sharply resolve the contact dis-
continuity for the internal energy, with accurate wave speed, and without overshoots.

2. The C-method

We begin with a description of the 1-D compressible Euler equations, written as a 3 � 3 system of conservation laws. We
then explain our parabolic regularization, which we call the C-method.

2.1. Compressible Euler equations

The compressible Euler equations set on a 1-D space domain I � R, and a time interval ½0; T� are written in vector-form as
the following coupled system of nonlinear conservation laws:
@tuðx; tÞ þ @xFðuðx; tÞÞ ¼ 0; x 2 I ; t > 0; ð4aÞ
uðx;0Þ ¼ u0ðxÞ; x 2 I ; t ¼ 0; ð4bÞ
where the 3-vector uðx; tÞ and flux function Fðuðx; tÞÞ are defined, respectively, as
u ¼
q
m

E

0B@
1CA and FðuÞ ¼

m
m2

q þ p
m
q ðEþ pÞ

0B@
1CA;
and
u0ðxÞ ¼
q0ðxÞ
m0ðxÞ
E0ðxÞ

0B@
1CA
denotes the initial data for the problem. The variables q, m, and E denote the density, momentum, and energy density of a com-
pressible gas, while p ¼ Pðq;m; EÞ denotes the pressure function. It is necessary to choose an equation-of-state Pðq;m; EÞ, and
we use the ideal gas law, for which
p ¼ ðc� 1Þ E�m2

2q

� �
; ð5Þ
where c denotes the adiabatic constant. Eq. (4) are indeed conservation laws, as they represent the conservation of mass,
momentum, and energy in the evolution of a compressible gas. The velocity field uðx; tÞ is obtained from momentum and
density via the identity
u ¼ m
q
:

Inverting the relation (5), we see that the energy density E is a sum of kinetic and potential energy density functions:
E ¼ qu2

2|ffl{zffl}
kinetic

þ p
c� 1|fflffl{zfflffl}

potential

:

The gradient (or Jacobian) of the flux vector FðuÞ is given by
DFðuÞ ¼

0 1 0
ðc�3Þm2

2q2
ð3�cÞm

q c� 1

�c Em
q2 þ ðc� 1Þm3

q3
cE
q þ ð1� cÞ 3m2

2q2
cm
q

2664
3775
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with eigenvalues
k1 ¼ uþ c; k2 ¼ u; k3 ¼ u� c; ð6aÞ
where c denotes the sound speed (see, for example, Toro [32]). These eigenvalues determine the wave speeds.
The behavior of the various wave patterns is greatly influenced by the speed of propagation; as such, we define the max-

imum wave speed to be
½SðuÞ�ðtÞ ¼ max
i¼1;2;3

max
x2I

jkiðx; tÞjf g: ð6bÞ
We are interested in solutions with shock waves and contact discontinuities. The Rankine–Hugoniot (R–H) conditions
determine the speed s of the moving shock discontinuity, as well as the speed of a contact discontinuity. For a shock wave
discontinuity, the R–H condition can be stated
FðulÞ � FðurÞ ¼ sðul � urÞ
where the subscript l denotes the state to the left of the discontinuity, and the subscript r denotes the state to the right of the
discontinuity. In general, the following three jump conditions must hold:
ml �mr ¼ sðql � qrÞ
ð3� cÞm2

l

2q2
l

þ ðc� 1ÞEl

� �
� ð3� cÞm2

r

2q2
r

þ ðc� 1ÞEr

� �
¼ sðml �mrÞ

c
Elml

ql
� c� 1

2
m3

l

q2
l

� �
� c

Ermr

qr
� c� 1

2
m3

r

q2
r

� �
¼ sðEl � ErÞ:
There can be non-uniqueness for weak solutions that have jump discontinuities, unless entropy conditions are satisfied (see
the discussion in Section 2.9.4). So-called viscosity solutions uvis are known to satisfy the entropy condition (and are hence
unique) and are defined as the limit as �! 0 of a sequence of solutions u� to the following parabolic equation:
@tu� þ @xFðu�Þ ¼ �@xxu�; t > 0; ð7aÞ
u� ¼ u0; t ¼ 0: ð7bÞ
In the isentropic setting, for bounded initial data u0 with bounded variation, solutions u� converge to the entropy solution
uvis of as �! 0 (see DiPerna [33] and Lions et al. [34]). For non-isentropic dynamics, the same result holds if the initial data
has small total variation (see Bianchini and Bressan [35]). Moreover, if the initial data u0 is regularized, then solutions to (7)
are smooth in both space and time, and the discontinuity is approximated by a smooth function, transitioning from the left-
state to the right-state over an interval whose length is Oð�Þ.

Some of the classical finite-differencing schemes, such as the Lax–Friedrichs discretization, is dissipative to second-order
and effectively behaves as a discrete version of (7). The uniform nature of such diffusion does not distinguish between
discontinuous and smooth flow regimes, and thus adds unnecessary dissipation in regions of the wave profile which do
not require any numerical stabilization. Such uniform dissipation contributes to a non-physical damping of entropy waves
as well as over-diffusion and smearing of contact discontinuities, and may lead to errors in wave speeds. Ultimately, uniform
artificial viscosity is not ideal; rather, artificial viscosity should be added in a localized and smooth manner.

2.2. Classical artificial viscosity

The idea of adding localized artificial viscosity to capture discontinuous solution profiles in numerical simulations dates
back to Richtmyer [18], Von Neumann and Richtmyer [19], Lax and Wendroff [20], Lapidus [21] and a host of other reseach-
ers. The idea behind classical artificial viscosity is to refine the uniform viscosity on the right-hand side of Eq. (7a) with
@tu� þ @xFðu�Þ ¼ b�2@xðj@xu�j@xu�Þ; t > 0; ð8Þ
for a suitably chosen constant b > 0, which may depend upon the numerical discretization scheme.
When the velocity u exhibits a jump discontinuity (i.e., at a shock), the quantity j@xu�j is Oð1�Þ; however, away from shocks,

where the velocity is smooth, j@xu�j remains uniformly bounded in �, and in such smooth regions, (8) adds significantly less
viscosity than (7a). On the other hand, as we shall demonstrate in Fig. 1, the use of j@xu�j as a coefficient in the smoothing
operator, can lead to spurious oscillations in the solution, caused by the lack of regularity in the quantity j@xu�j.

Formally, the use of the localizing coefficient j@xu�j corrects for the over-dissipation of the uniform viscosity in (7), and a
variety of numerical methods have employed some variant of this idea, achieving methods that are nominally non-oscilla-
tory near shocks while maintaining second-order accuracy away from shocks. However, as we have already noted, the quan-
tity j@xu�jmay become highly irregular near shock discontinuities, and may thus require setting the constant b� 1 in order
to stabilize incipient numerical oscillations (see Section 4 for evidence to this observation). While this increase in b does not
effect the asymptotic accuracy of the scheme, it is clearly beneficial to take b as small as possible to preserve the correct wave
amplitude and wave speed.



Fig. 1. A comparison of the artificial viscosity profile produced by the C-method and the classical Richtmyer-type approach for the Sod shock tube at t ¼ 0:2.
Figures (a) and (b) are with the compression switch off and on, respectively. The smooth solid line is the C-method solution, while the oscillatory dashed
line is the juxj-Richtmyer-type viscosity.
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The loss of regularity of the coefficient j@xu�j suggests that a smoothed version of j@xu�j would greatly benefit the
dynamics. Smoothing j@xu�j in space is not sufficient, as we must ensure smoothness in time as well. Hence, we propose
our C-method, which indeed provides a regularized version of (8) and allows for the use of much smaller values of b (less
localized artificial dissipation), higher accuracy, and practical viability.

2.3. C-method for compressible Euler

Analogous to (8), we control the amount of viscosity in (7a) by the use of a function C�ðx; tÞ of space and time, and para-
meterized by � :¼ Dx > 0. This function C�ðx; tÞ is the solution to a reaction–diffusion equation which is forced by normalized
modules of the gradient of u�; the diffusion mechanism smooths the rough diffusion coefficient, while the reaction mecha-
nism tries to minimize the support of spatial supoort of C�.

For fixed u0 we choose b > 0 to be 0(1). Then, for each � > 0, we let
u�ðx; tÞ ¼
q�ðx; tÞ
m�ðx; tÞ
E�ðx; tÞ

0B@
1CA and C�ðx; tÞ
denote the solutions of the following parabolic system of (viscous) conservation laws:
@tu� þ @xFðu�Þ ¼ @x
~b�2C�;d@xu�
� �

; t > 0; ð9aÞ

@tC
� � �Sðu�Þ@2

x C� þ Sðu�Þ
�

C� ¼ Sðu�ÞGð@xu�Þ; t > 0; ð9bÞ

u�;C�
� �

¼ ðu�0;Gð@xu�0ÞÞ; t ¼ 0; ð9cÞ
where C�;d ¼ C� þ d for a fixed positive constant 0 < d < Dx, and ~b ¼ b
max
I
j@xu� j

max
I

C�
. The forcing to Eq. (9b) is defined as
Gð@xu�Þ ¼ j@xu�j
max

I
j@xu�j ; ð10Þ
Sðu�Þ is defined by (6), and u�0 denotes a regularization of the initial data which we discuss below. We also note that the scal-

ing factor in ~b, given by
max
I
j@xu� j

max
I

C� , is included only to make comparisons with the classical artificial viscosity approach, but is in

no way necessary.

2.4. Regularization of initial data for use with FEM-C

Unlike numerical algorithms which advance cell-averaged quantities, the finite-element method relies upon polynomial
interpolation of nodal values, and requires solutions to be continuous across element boundaries in order for the interpola-
tion to converge. As such, the use of discontinuous initial data produces Gibbs-type oscillations, at least on very short time
intervals. To avoid this spurious behavior, it is advantageous to smooth discontinuous initial profiles when using finite-
elements.
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More specifically, we provide a hyperbolic-tangent smoothing for initial data u�0 for our FEM-C scheme. Since pointwise
evaluation is well-defined for smooth functions, the finite-element discretization scheme can interpolate the regularized
data and generate appropriate initial states.

For an interval ½a; b�, we denote the indicator function
1½a;b�ðxÞ ¼
1; x 2 ½a; b�;
0; x R ½a; b�;

	
ð11Þ
and consider initial conditions with components of the form
u0ðxÞð Þi ¼
XLi

j¼1

1½ai
j
;bi

j �
ðxÞf i

j ðxÞ;
where the collection ½ai
j; b

i
j�

n oLi

j¼1
is pairwise disjoint,
[Li

j¼1

½ai
j; b

i
j� ¼ ½a; b�; for all i ¼ 1;2; . . . m;
and each of the f i
j ’s are smooth. The i-th component of u0 is subsequently smooth over each of the Li intervals, but may con-

tain jump discontinuities at the boundaries of the regions ½ai
j; b

i
j�.

we then define the regularized initial conditions
ðu�oðxÞÞ
i ¼

XLi

j¼1

1�½ai
j
;bi

j �
ðxÞf i

j ðxÞ;
where
1�lij ðxÞ ¼
1
2

tanh
x� ai

j

�

 !
� tanh

x� bi
j

�

 !" #

This regularization procedure achieves approximations of exponential-order away from discontinuities; near discontinuities,
it is a first-order approximation, when measured in the L1-norm. Specifically, if ðu0Þi is smooth in x � I , then the L1ðxÞ-
norm of the error
k u0ð Þi � u�0
� �ikL1ðxÞ ¼

Z
x

u0ðxÞð Þi � u�0ðxÞ
� �i




 


dx ¼ Oð�pÞ ð12Þ
for any positive integer p. Alternatively, if ui
0 is discontinuous somewhere in X � I , the L1ðXÞ-norm of the error
kðui
0Þ � ðu�0Þ

ikL1ðXÞ ¼ Oð�Þ: ð13Þ
These observations assert that our regularization of the initial data allows for higher-order approximation of the initial data
and is analogous to the averaging procedure required by Majda and Osher [14].

2.5. A compressive modification of the forcing G in the C-equation

The function G in (10) is chosen in such a manner so that C� is large where there are sharp transitions in the velocity field
u�ðx; tÞ. In compressive regions (i.e., where @xu� < 0), sharp transitions over lengths of Oð�Þ correspond to shocks and artificial
viscosity is required so that u� remains smooth. In expansive regions, corresponding to rarefactions, artificial viscosity is not
generally necessary.

These observations motivate the following alternative forcing function:
Gcompð@xu�Þ ¼ j@xu�j
max

I
j@xu�j1ð�1;0Þ @xu�ð Þ ð14Þ
where the indicator function 1ð�1;0Þ introduces viscosity only in regions of compression.
The ability to use such a switch is heavily dependent on the use of a space–time smoothing. Since the velocity in many

numerical schemes may become oscillatory near shocks, such a switch can become discontinuous between adjacent cells/
elements. However, the space–time nature of the C-equation resolves this issue, providing a smooth artificial viscosity
profile.

This modified function Gcomp typically increases accuracy in Euler simulations, but can lead to a loss of stabilization. For
our FEM-C approach, where the stabilizing effects of artificial viscosity are necessary to dampen noise, the use of Gcomp is
restricted to the problems of Sod and Osher–Shu, which contain only moderately strong shocks.
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2.6. Moving to the discrete level

The use of the C-equation yields smooth solutions u� and thus we expect that a variety of higher-order discretization
techniques, with sufficiently small Dt and Dx, could provide accurate, non-oscillatory approximations. In our implementa-
tion, artificial viscosity spreads discontinuities over regions of size Oðb�Þ. Thus, given a particular initial condition, final time,
discretization scheme, etc., we choose b > 0 such that the scaling � ¼ Dx produces non-oscillatory profiles.

We also note that the initial condition for C�, given in (9c) is chosen so to guarantee the coefficients of diffusion in (9a) are
smooth up to t ¼ 0. Moreover, choosing such initial conditions for C� allows one to recover the classical artificial viscosity as
�! 0. As stated, these initial conditions may require a smaller time-step (by a factor of 10) for the first few time-steps. In
practice, taking C� � 0 is an effective simplification to eliminate the need for smaller initial time-steps. Alternatively, we can
solve an elliptic PDE for C� at the initial time and similarly eliminate that concern.

2.7. The C-method under a Galilean-transformation

We begin our discussion for the case of constant entropy. The Galilean invariance of the isentropic Euler equations results
from the advective nature of the PDE. Since we solve a modified equation (coupled with the additional C-equation) it is of
interest to know to what extent Galilean invariance is preserved. For simplicity, we assume that
pðx; tÞ ¼ qðx; tÞ2:
(The choice c ¼ 2 corresponds to the shallow water equations, but any other choice of c > 1 works in the same fashion.)
Given a fixed v 2 R we define the change in independent variables
~x ¼ x� vt; ~t ¼ t;
denoting /ð~x;~tÞ ¼ ðx; tÞ and the analogous change in the dependent variables
~qð~x;~tÞ ¼ qð~xþ v~t;~tÞ; ~uð~x;~tÞ ¼ uð~xþ v~t;~tÞ � v : ð15Þ
A simple calculation yields
@~t ~qþ @~xð~q~uÞ ¼ @tqþ @xðquÞ½ � � /; ð16aÞ
@~tð~q~uÞ þ @~xð~q~u2 þ ~pÞ ¼ @tðquÞ þ @xðqu2Þ

� �
� /þ @~x~p� v @tqþ @xðquÞ½ � � /: ð16bÞ
We further have that
~pð~x;~tÞ ¼ pð~xþ v~t;~tÞ; ð17Þ
so that the mass and momentum equations are, in fact, Galilean invariant in the absence of artificial viscosity.
With the C-method employed, Eq. (16) transforms to
@~t ~qþ @~xð~q~uÞ ¼ @xðC@xqÞ½ � � /; ð18aÞ
@~tð~q~uÞ þ @~xð~q~u2 þ ~pÞ ¼ @xfC@x½qðu� vÞ�gð Þ � /; ð18bÞ
where we let C ¼ �2~bC, and drop the � superscript for notational convenience.
Examining (9b), we see that the equation for C is not Galilean invariant, but this is not a physical quantity, but can rather

be viewed as a parameter to the modified system of conservation laws. As such we define the behavior of C under Galilean
transformations as follows:
~Cð~x;~tÞ ¼ Cð~xþ v~t;~tÞ:
With this definition of eC , we find that
@~t ~qþ @~xð~q~uÞ ¼ @~xð~C@~x ~qÞ
� �

; ð19aÞ
@~tð~q~uÞ þ @~xð~q~u2 þ ~pÞ ¼ @~x½~C@~xð~q~uÞ�

 �
; ð19bÞ
and hence the C-method for isentropic Euler retains the Galilean invariance.
We remark that in the absence of artificial viscosity on the right-hand side of the mass equation, the artificial flux term in

the momentum equation is modified according to (34) below. This modification ensures Galilean invariance when the mass
equation is left unchanged, which is the strategy employed for our WENO-C scheme.

Next, since the Galilean symmetry is for smooth solutions (for which classical derivatives are well-defined), and since
smooth velocity fields simply transport the entropy function, it is thus a consequence of the transport of entropy, that
Galilean invariance holds for the non-isentropic case as well. The importance of a numerical approximation to capture the
Galilean invariant solution is fundamental to the initiation of the Kelvin–Helmholtz instability and other basic instabilities
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Fig. 2. Application of FEM-C to a very slowly moving shock.
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present in the Euler equation; see Robertson et al. [36] for a thorough discussion. In this connection, we next examine long
wavelength instabilities which can arise for very slowly moving shock waves.

2.8. Regularization through the C-equation

It is of interest to examine the relative smoothness of G to its rough counterpart juxj, and determine the effect of this
smoothing relative to the classical artificial viscosity approach. In Fig. 1 we provide two plots demonstrating the effect of
the C-method. In Fig. 1(a) we see that the C-equation provides a smoothened viscosity profile compared to the classical
approach. Alternatively, in Fig. 1(b) we plot C using the compression-switch modification Gcomp versus using purely the quan-
tity Gcomp (not smoothed by the C-equation) as a viscosity. In both cases we see how the C-method provides a far smoother
profile with roughly the same magnitude as the non-smoothened approach.

A useful feature of the C-method is the ability to tune parameters in the C-equation to generate non-oscillatory behavior.
Though we are quite explicit on the form of the C-equation in (9b), a simple modification allows for the diffusion coefficient
to be problem dependent, i.e., allowing for a choice of positive constant j > 0 and replacing the diffusion term with
2 We
�j�Sðu�Þ@2
x C�:
In most of the forthcoming experiments, we fix j ¼ 1, but we note that choosing larger j can yield smoother solution pro-
files as the profile of C will be less localized. The parameter j is a time-relaxation parameter, and can be viewed in an anal-
ogous fashion to the time-relaxation parameter present in Cahn–Hilliard and Ginzburg–Landau theories. For very slow
moving shocks, the time-relaxation can be adjusted to scale with the shock speed.2

We find this to be an effective approach for the flattening procedure discussed in [9] for removing oscillations that form to
the left of a slowly right-moving shock. Moreover, Roberts [37] concludes that a differentiable form of the numerical flux
construction appears necessary to remove downstream long-wavelength oscillations caused by slow shock motion. We
use the C-method to analyze this.

Using the slow-shock initial conditions outlined in Quirk [12], in Fig. 2 we show the success of the FEM-C (outlined below
in Section 3.2) in removing these oscillations when choosing j ¼ 1 (Fig. 2(a)) and j ¼ 100 (Fig. 2(b)).

2.9. Convergence of the C-method in the limit of zero mesh size

2.9.1. The isentropic case
We sketch the proof for the isentropic Euler equations given by
ðquÞt þ ðqu2 þ pÞx ¼ 0; ð20aÞ
qt þ ðquÞx ¼ 0; ð20bÞ
pðqÞ ¼ qc; ð20cÞ
where c > 1.
To simplify the notation, we set �2~b ¼ �, and set the momentum m� ¼ q�u�. Following (9), we write the C-method version

of (20) as
note that j is inversely proportional to the Mach number and its precise functional relation shall be examined in future work.
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m�
t þ ½ðm�Þ2=q� þ p��x ¼ �½C

�;dm�
x�x; ð21aÞ

q�t þm�
x ¼ �ðC

�;dq�xÞx; ð21bÞ
p�ðq�Þ ¼ ðq�Þc; ð21cÞ

C�t �� Sðu�ÞC�xx þ
Sðu�Þ
�

C� ¼ Sðu�ÞGðu�xÞ; ð21dÞ
or (21a,b) can equivalently written in terms of the vector u� ¼ ðm�;q�Þ and flux fðu�Þ ¼ ððm�Þ2=q� þ ðq�Þc; m�Þ as
u�t þ fðu�Þx ¼ � Cu�x
� �

x; ð210Þ
where C denotes a diagonal 2 � 2 matrix with entries C�;d which is strictly positive-definite. Recall that Gðu�Þ ¼ ju�xj=max ju�xj,
satisfies G P 0, and that Sðu�Þ ¼maxðju� þ cj; ju� � cjÞ, with c denoting the sound speed. On any time interval ½0; T�, the max-
imum wave speed Sðu�Þ is uniformly strictly positive; thus, as the initial data for C�t¼0 P 0, the maximum principle shows that
C�ðx; tÞ must be non-negative. We remark that while the use of C�;d ¼ C� þ d as the coefficient is not required for the num-
erics, as d is taken much smaller than the mesh size Dx, strict positivity of C simplifies the proof of regularity of solutions to
(21) as well as the convergence argument.

To avoid issues with spatial boundaries, we shall assume periodic boundary conditions for our spatial domain. Note that
in this case, the fundamental theorem of calculus shows that d

dt

R
qðx; tÞdx ¼ 0 and that mass is conserved.

2.9.2. The basic energy law
In order to prove that solutions to (21) converge to solutions of (20), we must establish �-independent estimates for solu-

tions of (21). To do so, we multiply Eq. (21a) by u�, integrate over our spatial domain, and make use of the Eq. (21b) to find
that any weak solution to (21) must verify the basic energy law
d
dt

Z
1
2
q�ðu�Þ2 dxþ 1

c� 1

Z
p� dx

� �
6 ��

Z
C�;dq� ðu�xÞ

2 dx� �c
Z

C�;dðq�Þc�2ðq�xÞ
2 dx: ð22Þ
(The inequality in (22) is due to the lower semi-continuity of weak convergence and is replaced with equality for solutions
which are sufficiently regular.) Thus, the total energy of isentropic gas dynamics is dissipated according to the right-hand
side of (22), and for each � > 0, we see that u�x and q�x are square-integrable (in L2) for almost every instant of time, if the
density q� P k > 0, that is, if q� avoids vacuum. We shall explain below that this is indeed the case.

2.9.3. Regularity of solutions u�

Suppose that for each instant of time, u�ðtÞ and its derivatives u�xðtÞ and u�xxðtÞ are all square-integrable in space. The reac-
tion-diffusion Eq. (21d) is a uniformly parabolic equation. By our assumption, and as a consequence of Sobolev’s theorem,
u�xðtÞ is a bounded function; furthermore, the right-hand side of (21d) is square-integrable in space, for every instant of time.
It is standard, from the regularity theory of uniformly parabolic equations, that for each time t, C�ðtÞ then has two spatial
(weak) derivatives which are square-integrable. This, in turn, shows that for � > 0, solutions u� possess three spatial (weak)
derivative which are square-integrable for almost every instant of time, and we have verified our assumption. This implies
that solutions u� are classically differentiable in both space and time.

Furthermore, by using the symmetrizing matrix
q� 0
0 cðq�Þc�2

� �
we can show that ðu�ð	; tÞ;q�ð	; tÞÞ are, independently of �

and t, uniformly bounded in the Sobolev space H2 (consisting of measurable functions with two weak derivatives in L2), and
thus we may take a pointwise limit of this sequence as �! 0, in the event that the time-interval is sufficiently small as to
ensure that a shock has not yet formed. Of course, we are interested, in convergence to discontinuous profiles, so we address
this next.

2.9.4. Convergence to the entropy solution
We shall now provide a sketch of the limit as �! 0. A function g : R2 ! R is called an entropy for (20) with entropy flux

q : R2 ! R if smooth solutions u satisfy the additional conservation law
gðuÞt þ qðuÞx ¼ 0: ð23Þ
In non-conservative form, Eqs. (20) and (23) are written as
ut þrf ðuÞux ¼ 0; rgðuÞut þrqðuÞux ¼ 0;
from which we obtain the compatibility condition between g and q,
rgðuÞrf ðuÞ ¼ rqðuÞ: ð24Þ
The pair ðg; qÞ satisfy (23) if and only if condition (24) holds. Moreover, a weak solution to (20) is the unique entropy solution
if
gðuÞt þ qðuÞx 6 0: ð25Þ
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For isentropic gas dynamics we can set
gðm;qÞ ¼ m2

2q
þ qc

c� 1
which is the total energy, with corresponding entropy flux
qðm;qÞ ¼ m2

2q
þ c

c� 1
qc

� �
m
q
:

We observe that r2gðm;qÞ is strongly convex as long as q > 0.
For the sequence of solution u� of (21), suppose that as �! 0;u� converges boundedly (almost everywhere) to a weak

solution u of (20). We claim that if ðg; qÞ satisfy (23), then (25) holds in the distributional sense. To see that this is the case,
we take the inner-product of rgðu�Þ with Eq. (210), and find that
gðu�Þt þ qðu�Þx ¼ �rgðu�Þ Cu�x
� �

x ¼ � Cgðu�Þx
� �

x � �½u
�
x�

T
Cr2gðu�Þu�x:
Integrating over the spatial domain and then over the time interval ½0; T� yields
Z
gðu�ðx; TÞÞdx�

Z
gðu�ðx; 0ÞÞdx ¼ ��

Z T

0

Z
½u�x�

T
Cr2gðu�Þu�x dxdt;
from which it follows that
Z T

0

Z
j
ffiffiffi
�
p

u�xj
2 dxdt 6 �c ð26Þ
where the constant �c depends upon d, the minimum value of density, and the entropy in the initial data. For a smooth, non-
negative test function w with compact support in the strip I � ð0; TÞ,
ZZ

gðu�Þ/t þ qðu�Þ/x dxdt ¼
ffiffiffi
�
p ZZ

Cð
ffiffiffi
�
p

u�Þx/x dxdt þ
ZZ

�½u�x�
T
Cr2gðu�Þu�x/dxdt:
Thanks to (26), the first term on the right-hand side goes to zero like �, while the second term is non-negative, sincer2gðu�Þ
is positive-definite (since g is strongly convex) as is C. Thus, as �! 0, we recover the entropy inequality (25).

It remains to discuss the assumptions concerning the bounded convergence of u� to u, as well as the uniform bound from
below q� P m > 0. The argument relies on finding a prioribounds on the amplitudes of solutions to (21). If it is the case that
uniformly in � > 0,
ju�j 6 M and 0 < m 6 q�;
then the compensated-compactness approach for isentropic Euler pioneered by DiPerna [33] and made much more general
by Lions et al. [34] provides a subsequence of u� converging pointwise (almost everywhere) to a solution u of (20).

For isentropic gas dynamics, our approximation (21) preserves the invariant quadrants of the inviscid dynamics (just as in
the case of uniform artificial viscosity) and provides the bound ju�j 6 M as long as 0 < m 6 q� for some m. In particular, the

Riemann invariants w ¼ uþ 2c
c�1 q

ffiffiffiffiffiffi
c�1
p

and z ¼ u� 2c
c�1 q

ffiffiffiffiffiffi
c�1
p

satisfy wðx; tÞ 6 sup wjt¼0 and�zðx; tÞ 6 supð�zt¼0Þ and the inter-

section of these half-planes provides the invariant quadrant (see Chueh et al. [38]), and hence the desired bound ju�j 6 M as
long as vacuum is avoided.

Finally, the fact that we have the lower-bound 0 < m 6 q� is an immediate consequence of the strong maximum principle.

2.10. The C-equation as a gradient flow

Notice that equilibrium solutions to the C-equation are minimizers of the following functional (we drop the superscript �):
EGðCÞ ¼
Z

�
2

C2
x � GðuxÞC þ

1
2�

C2
� �

dx:
In the absence of a forcing function GðuxÞ, this reduces to
E0ðCÞ ¼
1
2

Z
�C2

x þ
1
�

C2
� �

dx: ð27Þ
The first term is commonly referred to as the Dirichlet energy and its minimizers are harmonic functions. The second term
can be viewed as a penalization of the Dirichlet energy. In particular, because the energy functional is bounded by a constant
independent of � > 0, the penalization term constrains C to be Oð

ffiffiffi
�
p
Þ. Thus, minimizers are trying to be harmonic while min-

imizing their support.
The C-equation can be written as a classical gradient flow equation
dC
dt
¼ �SðuÞrEGðCÞ;
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where the gradient is computed relative to the L2 inner-product. Thus the heat operator in the C-equation, @t � �@2
x , smooths

the forcing in space–time, while the reaction term SðuÞ
� C minimizes the support of the smoothed profile. This is very much

related to the theories of Cahn–Hilliard and Ginzburg–Landau gradient flows, and we intend to examine this connection
in subsequent papers.

3. Numerical schemes

We describe two very different numerical algorithms in the context of our C-method. First, we outline a classical contin-
uous finite-element discretization, yielding FEM-C and FEM-juxj (based on classical artificial viscosity). Second, we discuss a
simple WENO-based scheme for compressible Euler that upwinds solely based on the sign of the velocity u. To this scheme,
we apply a slightly modified C-method resulting in our WENO-C algorithm.

For the purpose of comparison, we also implement two additional numerical methods. The first is a second-order central-
differencing scheme of Nessayhu-Tadmor (NT), a nice and simple method which serves as a base-line for our FEM-C com-
parisons. The second scheme is a very competitive WENO scheme that utilizes a Godunov-based upwinding based upon
characteristic decompositions (WENO-G). This will serve as a benchmark for our WENO-C scheme.

3.1. Notation for discrete solutions

To compute approximations to (4), we subdivide space–time into a collection of spatial nodes fxig and temporal nodes
ftng. We denote the computed approximate solution by
3 Wh
un
i 
 uðxi; tnÞ;
noting that for fixed i and n, un
i is a 3-vector of solution components, i.e.,
un
i ¼

qn
i

mn
i

En
i

264
375:
It is important to note that we use the notation un
i for both pointwise approximations to u (acquired via FEM-C) and approx-

imations to the cell-average values of u (acquired via WENO-C).
A subscripted quantity wi denotes the vector itself and the individual components of the vector. We overload this notation

so to not cause any confusion between functions defined over a continuum versus those defined only at a finite number of
points.

In FEM-C and WENO-C, we discretize (9) (or some slight modification) with � ¼ Dx, and use the above notation for the
computed solution. We also denote the approximation to C by Cn

i .

3.2. FEM-C and FEM-juxj: a second-order continuous-Galerkin finite-element scheme

We choose a second-order continuous-Galerkin finite-element scheme to provide a discretization of (9), subsequently
defining our FEM-C scheme.

We subdivide I with N þ 1 (for N even)-uniformly spaced nodes fxig separated by a distance Dx. In the FEM community,
spatial discretization size is more commonly referred to by element-width; to maintain consistency with the literature, we
refer to the inter-nodal regions as cells. Since we use a continuous FEM, the degrees-of-freedom are defined at the cell-edges
(as opposed to cell-centers).3

For use in our FEM implementation, it is useful to consider the variational form of (9). At the continuum level, ðu�;C�Þ
satisfy
Z

I

@tu� 	U� Fðu�Þ 	 @xUþ b�2
max

I
j@xu�j

max
I

C�
C�@xu� 	 @xU

24 35dx ¼ 0; ð28aÞ

Z
I

@tC
�/þ Sðu�Þ �@xC�@x/þ

1
�

C�/
� �� �

dx ¼
Z
I

Sðu�ÞGð@xu�Þ/dx ð28bÞ
for almost every t, for all vector-valued test functions U, and all scalar-valued test functions /.
Using the finite-element spatial discretization based on piecewise second-order Lagrange polynomials, we construct

operators AFEM and BFEM, corresponding to the non-time-differentiated terms in (28a) and (28b), respectively. Using these
discrete operators, we write the semi-discrete form of (28a) and (28b) as
en we compare our FEM-C scheme with other, cell-averaged schemes, we perform an averaging procedure based upon averages between nodes.
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@t
ui

Ci

� �
þ

AFEMðui; CiÞ
BFEMðui;CiÞ

� �
¼ 0; ð29Þ
where ui and Ci represent the nodal values of an approximation to u� and C� for which � ¼ Dx (see Section 2.6). For a standard
reference on the details of this procedure, see Larsson and Thomée [39].

The time-differentiation in (29) is approximated by a diagonally-implict second-order time-stepping procedure; first we
predict unþ1

i to and solve the implicit set of equations for Cnþ1
i and follow by implicitly solving for unþ1

i using Cnþ1
i . Our fully

discrete scheme is given by
~unþ1
i ¼ un

i þAFEMðun
i ; C

n
i Þ; ð30aÞ

Cnþ1
i ¼ Cn

i þ
tnþ1 � tn

2
BFEMð~unþ1

i ;Cnþ1
i Þ þ BFEMðun

i ; C
n
i Þ

h i
; ð30bÞ

unþ1
i ¼ un

i þ
tnþ1 � tn

2
AFEMðunþ1

i ; Cnþ1
i Þ þAFEMðun

i ;C
n
i Þ

h i
: ð30cÞ
For smooth solutions, where artificial viscosity is not necessary, our FEM-C scheme is second-order accurate in both space
and time when the error is measured in the L1-norm. Moreover, the addition the artificial viscosity obtained through the
C-method is formally a second-order perturbation (in Dx) and we have verified this accuracy when b > 0 (again, for smooth
u0). For u0 containing jump discontinuities, the given scheme is no longer second-order accurate on all of I but preserves
second-order accuracy in the smooth regions away from discontinuities.

For the classical artificial viscosity schemes (8), the C-equation is no longer used but we require a similar step to predict
the velocity for use in the diffusion coefficient. This analogous scheme, is referred to as the FEM-juxj scheme.

3.3. WENO-C: a simple WENO scheme using the C-method

Our WENO-based scheme is motivated by Leonard’s finite volume schemes ([40], p. 65). Upwinding is performed solely
based on the sign of the velocity at cell-edges, and the WENO reconstruction procedure is formally fifth-order.

We divide the interval I into N equally sized cells of width Dx, identifying the N degrees-of-freedom as cell-averages over
cells centered at the xi. The cell edges are denoted using the fraction index, i.e.,
xiþ1=2 ¼
xi þ xiþ1

2
:

Subsequently, we denote a cell-averaged quantity by wi and its values at the left and right endpoints by wi�1=2 and wiþ1=2,
respectively.

Given a vector wi, corresponding to cell-average values, and vectors zi�1=2; ziþ1=2 corresponding to left and right cell-edge
values, we define the jth component of vector
WENOðwi; zi�1=2Þ
� �

j ¼
1
Dx

~wjþ1=2zjþ1=2 � ~wj�1=2zj�1=2
� �

;

where the cell-edge values of ~wjþ1=2 are calculated using a fifth-order WENO reconstruction, upwinding based upon the sign
of zjþ1=2.

For the flux in the energy equation, we use
WENOEðEi;ui�1=2Þ
� �

j ¼
1
Dx

eEjþ1=2ujþ1=2

ð1þ pj

Ej
Þ þ ð1þ pjþ1

Ejþ1
Þ

2
� eEj�1=2uj�1=2

ð1þ pj�1
Ej�1
Þ þ ð1þ pj

Ej
Þ

2

 !
: ð31Þ
Using this simplified WENO-based reconstruction, we construct the operators AWENO and BWENO where
AWENO

qi

mi

Ei

2664
3775;Ci

0BB@
1CCA

2664
3775 ¼

WENOðqi;ui�1=2Þ

WENOðmi; ui�1=2Þ þ ~@pi �
~@C uiþ1=2�~@C ui�1=2

Dx

WENOEðEi; ui�1=2Þ

26664
37775 ð32aÞ

BWENO

qi

mi

Ei

264
375;Ci

0B@
1CA ¼ SðuiÞ

Ci

Dx
� Gð ~@uiÞ

� �
þ

~@SCiþ1=2 � ~@SCi�1=2

Dx
: ð32bÞ
where for a general quantity wi, defined at the cell-centers, we denote
wiþ1=2 ¼
wiþ1 þwi

2
; ~@wi :¼ wiþ1 �wi�1

2Dx
; ~@wiþ1=2 ¼

wiþ1 �wi

Dx
:
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We also use the shorthand notation
F

~@Cuiþ1=2 ¼ bDx2max
i

~@uiþ1=2



 

 Ciþ1=2

max
i

Ci
qiþ1=2

~@uiþ1=2;
and
~@SC ¼ DxSðuiÞ ~@Ciþ1=2:
Using the above definitions, we define the semi-discrete form
@t
ui

Ci

� �
þ 1

Dx
AWENOðui; CiÞ
BWENOðui;CiÞ

� �
¼ 0 ð33Þ
and we generate the sequence of iterates un
i and Cn

i with a standard fourth-order Runge–Kutta time-stepper.
The resulting discretization outlined above is a slight variation on that outlined in (9). While the amount of artificial vis-

cosity Cðx; tÞ is controlled by only the velocity, we only add artificial viscosity to the momentum equation. This change is
based upon the fact that WENO already minimizes the production of numerical oscillations and the addition of artificial vis-
cosity is primarily intended on stabilizing the solution near strong shocks, whereas standalone WENO may lose stability.
Without dissipation on the right-hand side of the mass equation, it is necessary to modify the artificial viscosity on the
momentum equation as follows:
�2~b@xðC@xðquÞÞ ! �2~b@xðCq@xuÞ: ð34Þ
This modification allows the C-method to maintain a basic energy law (in fact, it is the energy law (22) with the last term on
the right-hand side), and simultaneously permits higher accuracy for our WENO-based scheme.
3.4. NT: a second-order central-differencing scheme of Nessayhu–Tadmor

The central-differencing scheme of Nessyahu and Tadmor is an extension of the first-order Lax–Fredrichs finite difference
scheme in which linear, MUSCL-based reconstructions are used to yield a second-order accurate scheme. The resulting
scheme is extremely easy to implement (a FORTRAN code for 2-D problems is given in the Appendix of [16]) and does
not require the use of Riemann solvers or characteristic directions for the purpose of upwinding. The NT scheme allows
for various choices of limiters to enforce TVD or ENO but the UNO-limiter (see Harten and Osher [41]) is the most successful
for our range of experiments.

Though NT is easy to implement and is easy generalized to multi-D (yielding the JT-scheme [16]), it merely serves as a
base-line comparison for our FEM-C. Both FEM-C and NT are second-order, but FEM-C turns out to be far less diffusive by
comparison.
3.5. WENO-G: WENO with Godunov-based upwinding

In [31] the authors study a fifth-order, WENO-based discretization, upwinding by virtue of a high-accuracy Godunov-
scheme. Their scheme has the usual trait of WENO, offering minimal diffusion near extrema, and has the added stabilization
and accuracy of higher-order Godunov solvers. For a more in-depth description, see [31].
ig. 3. Comparison of FEM-C and FEM-juxj, for the Sod shock-tube experiment with N ¼ 100, T ¼ 0:2. b ¼ 0:5 for both FEM-C and FEM-juxj.
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4. Sod shock-tube problem

For the classic Sod shock-tube problem, we consider the domain I ¼ ½0;1� along with the initial conditions
Fig
q0ðxÞ
m0ðxÞ
E0ðxÞ

0B@
1CA ¼ 1

0
2:5

0B@
1CA1½0;12ÞðxÞ þ

0:125
0

0:25

0B@
1CA1½12;1�ðxÞ; ð35Þ
imposing natural boundary conditions at x ¼ 0 and x ¼ 1. This standard test problem, first considered in Sod [42], is a pre-
liminary test for the viability of numerical schemes. An exact solution is known for this problem and consists of two non-
linear waves (one shock and one rarefaction) along with a contact discontinuity.

In Fig. 3(b) we compare the results of FEM-C and FEM-juxj at t ¼ 0:2 using N ¼ 100 cells. We note that this comparison
uses the standard choice of G in (9) since we are merely concerned with the C-equation performing as a smooth version of
classical artificial viscosity schemes. Unlike comparisons with the schemes based on cell-averages, we compare the nodal
values of FEM-C and FEM-juxj. In this comparison, we choose b ¼ 0:5 for both schemes and see that the accuracy of both
FEM-C and FEM-juxj are quite comparable and each scheme resolves the shock in 3 cells. However, we notice noise in
FEM-juxj near the shock. In Fig. 3(b) this observation is exemplified and we see that FEM-C is relatively non-oscillatory by
comparison.

To limit these oscillations generated by FEM-juxj, we increase b by a factor of 6 and compare the resulting density in Fig. 4.
In Fig. 4(b) we can see a significant loss in accuracy when increasing to b ¼ 3. Furthermore, in Fig. 4(a) we see FEM-juxj re-
quires 6 cells to capture the shock.

In Fig. 5 we compare the results of the FEM-C scheme versus NT and WENO-G. Each simulation is performed with N ¼ 100
and for the FEM-C scheme we choose b ¼ 0:4 and now use Gcomp (see Section 2.5).

Each scheme produces similar resolution of the shock and contact discontinuity, capturing the shock in 3 cells and the
contact discontinuity in 6 cells. The NT-scheme produces small, smooth, non-physical oscillations as the density transitions
from the rarefaction to the lower states, and performs the worst at the rarefaction. Both FEM-C and WENO-G are essentially
non-oscillatory and despite WENO-C performing slightly better at the rarefaction, the results are virtually indistinguishable
at the shock and contact discontinuity.
5. Osher–Shu shock-tube problem

For the problem of Osher–Shu, we consider the domain I ¼ ½�1;1� along with initial conditions
q0ðxÞ
m0ðxÞ
E0ðxÞ

0B@
1CA ¼ 3:857143

10:14185
39:1666

0B@
1CA1½�1;�0:8ÞðxÞ þ

1þ 0:2 sinð5pxÞ
0

2:5

0B@
1CA1½�0:8;1�ðxÞ; ð36Þ
imposing natural boundary conditions at x ¼ �1 and x ¼ 1.
This moderately difficult test problem, first considered in [3], proves to be more difficult for numerical schemes due to the

evolution a shock-wave which interacts with an entropy-wave; care is required to accurately capture the amplitudes of the
post-shock entropy waves. Since the density is not monotone, standard flux limiters may unnecessarily apply too much dis-
sipation at local-extrema, significantly reducing accuracy. An exact solution for this problem is not available and our ‘Exact’
solution in our plots is generated using the DG-solver furnished in Hesthaven and Warburton [43] with 3200 cells.
. 4. Comparison of FEM-C and FEM-juxj, for the Sod shock-tube experiment with N ¼ 100, T ¼ 0:2. b ¼ 0:5 for FEM-C and b ¼ 3:0 for FEM-juxj.



Fig. 5. Comparisons of FEM-C against NT and WENO-G schemes, for the Sod shock-tube experiment with N ¼ 100 and T ¼ 0:2.

Fig. 6. Comparisons of FEM-C against NT and WENO-G schemes, for the Osher–Shu shock-tube experiment with N ¼ 200 and T ¼ 0:36.
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In Fig. 6 we compare the results of FEM-C (we choose b ¼ 0:5 and use Gcomp), versus NT and WENO-G at t ¼ 0:36. In
Fig. 6(a) we see that NT diffuses the post-shock amplitudes and FEM-C provides far superior results. On the other hand,
in Fig. 6(b) we see that all but one of the post-shock amplitudes are slightly better for the WENO-G scheme. This insufficiency
of the FEM-C scheme is not completely surprising as the FEM-C is only formally second-order versus the fifth-order accuracy
of the WENO-G scheme.

Noting this insufficiency of the FEM-C scheme, we compare the WENO-G scheme with WENO-C in Fig. 7(a) and see the
WENO-C scheme is more accurate in resolving the post-shock amplitudes. This comes at a price however, as we see WENO-G
is more accurate in the N-wave region ½�0:6;0�.

Furthermore, it is interesting to note that in Fig. 7(b) where we choose b ¼ 0 in our simplified WENO-scheme, we see that
the C-equation is not necessary for Osher–Shu. As we see in Section 6 this ceases to be the case as the collision of strong
shock waves require stabilization.
6. Woodward–Colella blast wave

The colliding blast wave problem of Woodward–Collella is posed on the domain I ¼ ½0;1� with initial conditions
q0ðxÞ ¼ 1;

m0ðxÞ ¼ 0;

E0ðxÞ ¼ 250 	 1½0:9;1� þ 0:25 	 1½0:1;0:9Þ þ 2500 	 1½0;0:1Þ;
and reflective boundary conditions at x ¼ 0 and x ¼ 1. This challenging blast wave problem, considered in [13] tests the
ability of a numerical scheme to handle collisions between strong shock waves. Any viable scheme generally requires



Fig. 7. Comparisons of WENO-C with WENO-G and our WENO scheme with artificial viscosity deactivated, for the Osher–Shu shock-tube experiment with
N ¼ 200 and T ¼ 0:36.

Fig. 8. Comparisons of FEM-C against NT and WENO-G schemes, for the Woodward–Colella blast-tube experiment with N ¼ 400 and T ¼ 0:038.
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stabilization at these collisions. For the results of a wide range of schemes applied to this problem, see [9]. An exact solution
for this problem is not available and the ‘Exact’ solution in our plots is generated with a 400-cell PPM solver.

As is standard in our sequence of experiments, we provide a comparison of FEM-C (b ¼ 0:5) with NT and WENO-G in Fig. 8
at t ¼ 0:038. It is interesting to note, the use of Gcomp is far too oscillatory in this difficult test problem; we revert to the stan-
dard choice of G. We again see that while FEM-C is superior to NT in capturing the amplitude of the two peaks in the density,
FEM-C is far too diffusive in comparison to WENO-G.

Despite the relative inefficiency of FEM-C compared to WENO-G, it is interesting to note that our FEM-C results (with
N ¼ 1200) are better than the artificial viscosity schemes use in Colella and Woodward [9]. Our scheme is slightly sharper
at the shocks and contact discontinuities and is just as accurate in the height of the two peaks.

Before moving to a comparison of WENO-G and WENO-C, in Fig. 9(a) we see that our simplified WENO scheme is highly
oscillatory due to the strong shock collision, necessitating the use of stabilization. This requirement contrasts to the obser-
vations made in Section 5. However, in Fig. 9(b), we see that the use of a classical artificial viscosity significantly dampens the
instability but moderate oscillations occur and the C-method provides similar dampening in a smooth way.

Finally, in Fig. 10 we demonstrate the relative success of WENO-C versus WENO-G. At the left peak, WENO-G is more
accurate, but at the right peak the reverse situation occurs. Each scheme provides very good results, and it is clear that
WENO-C is a simple alternative to WENO-G which produces similar results for complicated shock interaction.

7. Leblanc shock-tube problem

We conclude our experiments with the Leblanc shock-tube, posed on the domain I ¼ ½0;9�, with initial conditions



Fig. 9. WENO with and without stabilization applied to the Woodward–Colella blast-tube experiment with N ¼ 400 and T ¼ 0:038.
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Fig. 10. Comparison of WENO-C against WENO-G, for the Woodward–Colella blast-tube experiment with N ¼ 400 and T ¼ 0:038.
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q0ðxÞ
m0ðxÞ
E0ðxÞ

0B@
1CA ¼ 1

0
10�1

0B@
1CA1½0;3ÞðxÞ þ

10�3

0
10�9

0B@
1CA1½3;9�ðxÞ; ð37Þ
with natural boundary conditions at x ¼ 0 and x ¼ 9, and with the adiabatic constant c ¼ 5
3.

Because the initial energy E0 jumps eight orders of magnitude, a very strong shock wave is produced, making the Leblanc
problem an extraordinarily difficult numerical experiment. First, numerical methods tend to over-estimate the correct shock
speed whenever the shock wave in the pressure field is not sharply resolved. Second, numerical approximations tend to pro-
duce large overshoots in the internal energy
e ¼ p
ðc� 1Þq
at the contact discontinuity. We refer the reader to Liu et al. [44] and Loubére and Shashkov [45] for a discussion of the dif-
ficulties in the numerical simulation of the Leblanc problem for a variety of numerical schemes. The second-order finite-ele-
ment basis that we use for our FEM-C algorithm is not sufficiently high-order to accurately capture wave speeds in Leblanc,
but our fifth-order WENO-C scheme is ideally suited for this difficult test case. We shall present two differing strategies for
WENO-C, which both capture the correct shock speed and remove overshoots of the internal energy.
7.1. Strategy one: a C equation for the energy density

As we introduced the C-method in Eq. (9), artificial viscosity is present on the right-hand side of all three conservation
laws for momentum, mass, and energy. For the WENO-C algorithm, only viscosity in the momentum equation has been used
for the Sod, Osher–Shu, and Woodward–Colella test cases. Due to the strength of the shock in Leblanc, we now return to



Fig. 11. Internal energy plots for WENO-C for the Leblanc shock-tube experiment at T ¼ 6.
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using artificial viscosity for the energy equation. In our first strategy for this problem, we solve for one additional linear reac-
tion-difffusion equation for a new C-coefficient to use on the right-hand side of the energy conservation law.

Specifically, to combat the large overshoot in the internal energy e, we solve a second C-equation for the coefficient which
we label CE; the forcing term for the CE equation uses j@xðE=qÞj=max j@xðE=qÞj, replacing j@xuj=max j@xuj which forces the C-
equation for the coefficient Cu, used for the right-hand side of the momentum equation.4 In particular, since Cu is found using
the Gcomp forcing, activated only in compressive regions when ux < 0, for the CE equation, we activate the right-hand side only in
expansive regions when ux P 0. To be precise, this modified WENO-C scheme replaces the semi-discrete form (33) with
4 Gra
@t
ui

Ci

� �
þ 1

Dx

eAWENOðui;CiÞeBWENOðui;CiÞ

" #
¼ 0: ð38Þ
The resulting fully-discrete scheme solves for un
i and
Cn
i ¼

Cn
ui

Cn
Ei

 !

where the modified fluxes eAWENO and eBWENO are given by:
eAWENO

qi

mi

Ei

264
375; Cui

CEi

� �0B@
1CA

264
375 ¼

WENOðqi;ui�1=2Þ

WENOðmi;ui�1=2Þ þ ~@pi �
~@Cu uiþ1=2� ~@Cu ui�1=2

Dx

WENOEðEi; ui�1=2Þ �
~@CE

Eiþ1=2�~@CE
Ei�1=2

Dx

2664
3775 ð39aÞ

eBWENO

qi

mi

Ei

264
375; Cui

CEi

� �0B@
1CA

264
375 ¼

�SðuiÞ
Cui
Dx � Gcompð ~@uiÞ
h i

�
~@SCuiþ1=2

� ~@SCui�1=2
Dx

�SðuiÞ
CEi
Dx � Gexpandð ~@ðE=qÞi; ~@uiÞ
h i

�
~@SCEiþ1=2

� ~@SCEi�1=2

Dx

264
375: ð39bÞ
The expansive-region forcing for CE is given by
Gexpand
~@Ei; ~@ui

� �
¼ j ~@ðE=qÞij

max
i
j ~@ðE=qÞij

1½0;1Þð ~@uiÞ ð40Þ
and we use the shorthand
~@Cu uiþ1=2 ¼ buDx2max
i

~@uiþ1=2



 

 Cuiþ1=2

max
i

Cui

qiþ1=2
~@uiþ1=2;
and
dients of the function E=q are similar to gradients of the internal energy e for regions near the contact discontinuity where large overshoots may occur.
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~@CE Eiþ1=2 ¼ bEDx2max
i

~@uiþ1=2



 

 CEiþ1=2

max
i

CEi

qiþ1=2
~@ðE=qÞiþ1=2:
In Fig. 11(a) we plot the difference between WENO-C with and without the use of this new equation for CE. For WENO-C with
CE activated, we choose bu ¼ 1:0 and bE ¼ 0:15; with the CE-equation deactivated, we use bu ¼ 1:0 and bE ¼ 0. Observe that
activating the CE-equation removes the large overshoot at the contact discontinuity. Furthermore, examining the location of
the shock, we see that the use of the CE-equation produces more accurate approximations of the shock speed.

In Fig. 11(b) we show the results of WENO-C at N ¼ 360, 720, 1440. In this plot, we see very little overshoot at each level
of refinement and this small overshoot does not grow with refinement.
7.2. Strategy two: a new type of viscosity for the energy density

Our second strategy for the Leblanc problem may be viewed as being motivated by the energy dissipation rate of real flu-
ids, and adheres to our framework of only solving one C-equation, forced by the normalized modulus of the gradient of veloc-
ity. The idea is easy to explain, and we begin by writing the equations for momentum and mass (we drop the superscript �):
ðquÞt þ ðqu2 þ pÞx ¼ �2~bðCquxÞx; ð41aÞ
qt þ ðquÞx ¼ 0; ð41bÞ
p ¼ ðc� 1Þqe; ð41cÞ

Ct � S�ðuÞCxx þ
SðuÞ
�

C ¼ SðuÞGðuxÞ: ð41dÞ
By multiplying the momentum equation by the velocity u, integrating over the spatial domain, and using the conservation of
mass equation, we find the basic energy law:
d
dt

Z
1
2
qu2 dxþ 1

c� 1

Z
pdx

� �
¼ ��2~b

Z
Cqu2

x dx: ð42Þ
Note, that when � ¼ 0, the variable E is exactly the energy density; that is, when � ¼ 0, E ¼ 1
2 qu2 þ p

c�1. Thus, we formulate a
right-hand side term for the energy equation to ensure the E continues to represent the energy density for � > 0. To do, we
choose a right-hand side which will provide the same energy law as (42). We introduce the following equation:
Et þ ðuEþ upÞx ¼ ��2~bCqu2
x : ð43Þ
The fundamental theorem of calculus shows that integration of (43) provides the same basic energy law as (42). Hence, our
second strategy employs the Eq. (41) together with (43). The interesting feature of the new right-hand side of the energy
equation is its nonlinear structure, quadratic in velocity gradients. This energy loss compensates for entropy production,
and can become anti-diffusive near contact discontinuities. As such, we shall discretize this set of equations using the very
stable Lax–Friedrichs flux. We remark that the term �2~bCqu2

x is analogous to the viscous dissipation term of the Navier–
Stokes-Fourier system and can be found as a truncation error in [22].

As we noted above, to the best of our knowledge, the most commonly used numerical schemes applied to Leblanc tend to
exhibit a significant overshoot in the internal energy e at the contact discontinuity. Furthermore, on coarse meshes (<2000
cells), the speed of the shock tends to be inaccurate. Indeed, this is the case for arguably the most widely used WENO imple-
Fig. 12. Internal energy plots for the Leblanc shock-tube experiment at T ¼ 6 using WENO-LF with and without the C-equation.
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mentation, designated WENO-LF-5-RK-4 by Jiang and Shu [5]. This scheme, which we call WENO-LF, uses a Lax–Friedrichs
flux-splitting with a 5th-order WENO reconstruction in space and 4th-order Runge–Kutta in time.

If we examine the contact discontinuity at x 
 6:8 in Fig. 12(a), at resolutions N ¼ 360, 720, 1440 we see that WENO-LF
exhibits relative overshoots of 12.8%, 11.8% and 11.4% respectively. This slow decay of the overshoot suggests that WENO-LF
suffers from the Gibbs-phenomenon, despite it’s attempt to quell oscillatory behavior. Examining the shock at x 
 8 we see
that the computed shock speeds are inaccurate.

To address the loss of accuracy exhibited by WENO-LF, we propose the use of the C-equation along with a nonlinear vis-
cosity on the energy equation. Since WENO-LF has an intrinsic artificial viscosity (by virtue of the Lax–Friedrichs splitting) on
the right-hand side of the momentum equation, we find that we do not need to explicitly use our artificial viscosity for the
momentum (even though this mathematically motivated our nonlinear viscosity for the energy equation). As such, we re-
quire a single C-equation which is forced by GcompðuxÞ.

Keeping consistent with the semi-discrete formulation, we write the WENO-LF-C scheme
@t
ui

Ci

� �
þ 1

Dx
AWENO�LFðuiÞ þHðui;CiÞ

BWENOðui; CiÞ

� �
¼ 0; ð44Þ
where BWENO is given by (32b) and AWENO�LF corresponds to the choice of the WENO flux described in [5] (i.e., if H � 0 then
(44) is the same as WENO-LF). The term H is a discrete approximation of ~b�2C�;dq�j@xu�j2. The operator H is defined as
Hðui;CiÞ ¼

0
0

bDx2max
i

~@uiþ1=2
Ci

max
i

Ci
qij ~@uij2

2664
3775:
In Fig. 12(b) we demonstrate the benefit of WENO-LF-C with b ¼ 5:0, again at successive refinements of N ¼ 360, 720, 1440.
The overshoot at the contact discontinuity is relatively non-existent while the shock speeds are far more accurate and appear
to converge to the correct speed at a faster rate.

8. Concluding remarks

We have presented a localized space–time smooth artificial viscosity algorithm, the C-method, and have demonstrated its
efficacy on a variety of classical one-dimensional shock-tube problems. As compared to more established procedures, the
C-method has been shown to be highly competitive with regards to accuracy and stability, while being relatively easy to
implement. Because of its simplicity, the C-method can readily be extended to multiple space-dimensions and/or utilized
in reactive-flow simulations. Of value to reactive flows is the localized smooth diffusion provided by the C-method; specif-
ically, the function C can be used to actively influence various mixing-rate-limited reactions occurring near sharp
boundaries.

In the future, the gradient-based source term used in the current implementation of the C-method may be combined with
a noise-indicator that turns off the current gradient-based source term when it is not needed. Such noise-indicators require a
very high-order scheme compatible with DG or 11th-order WENO to name just two examples. By projecting the solution
onto a suitable basis, the noise-indicator would activate when small-scale coefficients of this basis do not have sufficient
decay; in turn, an indicator function, localized about the region of noise, would activate and force the C equation. This ap-
proach is taken in [28], but without any gradient-based forcing functions like our function G or Gcomp.

For example, with our first strategy, after the rapid initial growth of the internal energy field in the Leblanc shock-tube
problem, this field is essentially representative of the advection of a square-wave. Thus, after initial growth, the gradient-
based source term in the C equation for energy could be deactivated leading to less diffusion in the downstream contact dis-
continuity; simultaneously, the noise-indicator would activate if small-scale instabilities were to set in (This, of course, moti-
vated our second strategy, when the diffusion coefficient ~b used max ux rather than max juxj).

But, for more general problems, the impact of the activation/deactivation of the source term in the C-method on numer-
ical accuracy is not entirely obvious and is left for future research.
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