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Abstract. We show that a certain class of vortex blob approximations for ideal hydro-
dynamics in two dimensions can be rigorously understood as solutions to the equations
of second-grade non-Newtonian fluids with zero viscosity, and initial data in the space

of Radon measures M(R2). The solutions of this regularized PDE, also known as the
averaged Euler or Euler-α equations, are geodesics on the volume preserving diffeo-
morphism group with respect to a new weak right invariant metric. We prove global
existence of unique weak solutions (geodesics) for initial vorticity in M(R2) such as

point-vortex data, and show that the associated coadjoint orbit is preserved by the
flow. Moreover, solutions of this particular vortex blob method converge to solutions
of the Euler equations with bounded initial vorticity, provided that the initial data is
approximated weakly in measure, and the total variation of the approximation also

converges. In particular, this includes grid-based approximation schemes of the type
that are usually used for vortex methods.
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1. Introduction

The starting point of our investigation is the somewhat surprising fact
that the equations of motion for an inviscid non-Newtonian fluid of second
grade, and Chorin’s vortex blob algorithm with a particular choice of cut-
off or blob function are, at least formally, equivalent.

The velocity field u = u(x, t) of a second grade fluid, under the assump-
tions of observer objectivity and material frame-indifference, satisfies the
unique equation

(1− α2∆)∂tu+ u · ∇(1− α2∆)u− α2 (∇u)t ·∆u = − grad p , (1.1a)

div u = 0 , (1.1b)

u(0) = u0 , (1.1c)

where p = p(x, t) is the pressure function which is determined (modulo
constants) by the velocity field. See [11] and references therein for a
discussion of the constitutive theory of second grade fluids, and [9, 8] for
well-posedness of the viscous second-grade fluid equations. In this context,
the constant α > 0 is a material parameter which represents the elastic
response of the fluid.

In two dimensions, taking the curl of equation (1.1a) and setting q =
(1− α2∆) curl2D u yields the vorticity form

∂tq + u · grad q = 0 , (1.2a)

u = Kα ∗ q , (1.2b)

q(0) = q0 , (1.2c)

where q = q(x, t) is called the potential vorticity, and Kα is the integral
kernel of the inverse of (1 − α2∆) curl2D, defined so that the divergence
condition (1.1b) is satisfied.

When α is interpreted as a length scale, (1.1) or (1.2) are known as
the averaged Euler or Euler-α equations [16] which model the large scale
flow (spatial scales larger than α) of an ideal incompressible fluid. Their
analysis and rich geometry has recently received much attention [21, 23,
24]. In particular, solutions of (1.1) on an n-dimensional Riemannian
manifolds (M, g) arise as geodesic flow on the group of Hs-class volume
preserving diffeomorphisms Dsµ provided s > (n/2) + 1 with respect to a
new weak right invariant metric, given at the identity element e ∈ Dsµ by

〈u, v〉e = (u, v)L2 + 2α2(Def u,Def v)L2 (1.3)
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where Def u = (∇u+∇ut)/2. Thus, following the program of Arnold [2]
and Ebin and Marsden [13], local-in-time well-posedness for classical so-
lutions is a direct consequence of the existence of C∞ geodesics of 〈 · , · 〉
on Dsµ.

The vortex blob method was introduced by Chorin [6] as a regulariza-
tion of the point vortex algorithm for ideal hydrodynamics, and can be
understood as follows. Consider the vorticity form of the Euler equations
on R2,

∂tω + u · gradω = 0 , (1.4a)

u = K ∗ ω, (1.4b)

ω(0) = ω0 . (1.4c)

Here K(x, y) = −1/(2π)∇⊥ log |x− y| and ω = ω(x, t) is the physical
vorticity of the flow. When the velocity field is sufficiently regular—u
is at least continuous in t and quasi-Lipschitz in x, uniformly over finite
intervals of time—we may define the Lagrangian flow map ηt = η( · , t) by

∂tη(x, t) = u(η(x, t), t) , (1.5)

or equivalently by

∂tηt = ut ◦ ηt . (1.6)

For each t, the map η( · , t) is in G, the group of all homeomorphisms φ of
R

2 which preserve the Lebesgue measure. The pointwise conservation of
vorticity under the Euler flow is thus expressed by ωt ◦ηt = ω0; combining
(1.5), (1.4b), and the initial condition η( · , 0) = e, we obtain the ODE

∂tη(x, t) =
∫
R2
K(η(x, t), η(y, t))ω0(y) dy . (1.7)

Letting δ denote the Dirac measure and substituting the point vortex
ansatz

ω(x, t) =
N∑
i=1

Γi δ(x− xi(t)) , (1.8)

into (1.7), we obtain a finite dimensional system of ordinary differential
equations for the vortex centers x1, . . . , xN . However, the induced velocity
field has 1/|x|-type singularities at the vortex centers. Hence, the point
vortex system is neither numerically well-behaved (the exact solution of
the point vortex system may even collapse in a finite time for small sets
of initial data [20]), nor does it approximate physically relevant velocity
fields very well.
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The idea of the vortex blob method is to smooth the Dirac measure
by a cut-off or blob function χ that decays at infinity and whose mass
is mostly supported in a disc of diameter α. This leads to the following
equation for the Lagrangian flow:

∂tη
α(x, t) =

∫
R2
Kα(ηα(x, t), ηα(y, t))ω0(y) dy , (1.9a)

where

Kα = ∇⊥Gα , (1.9b)

−∆Gα(x, y) = χα(|x− y|) ≡ 1
α2
χ

(
|x− y|
α

)
. (1.9c)

Many researchers have investigated the convergence properties of this
scheme [3, 4, 7, 14, 19]. In particular, for certain smooth cut-off func-
tions, such as Bessel functions, the order of accuracy with respect to the
regularization parameter α depends only on the smoothness of the Euler
flow (“infinite order accuracy”).

It is now easy to see that the equation of a second grade fluid (1.2) and
the vortex blob method coincide when χ(x) = −1/(2π)K0(x), where K0

is the modified Bessel function of the second kind which is the Green’s
kernel for the operator (1−∆). Thus far, this relationship has only been
formally established, as it remains to be proven that the point-vortex
ansatz (1.8) makes sense as data for the PDE (1.2); moreover, it is not a
priori clear if solutions to the vortex blob method converge to true Euler
solutions (in the sense of PDE). Our results are the following.

We show that the Lagrangian flow formulation of the blob method
(1.9) with K0 cut-off function is well-posed for initial potential vorticities
q0 in M(R2), the space of Radon measures on R2. In particular, this
includes point-vortex initial data. Such a result does not hold for the
Euler equations, where the flow map of the point vortex system (1.7) is
not known to be well-defined.

This result allows us to rigorously classify the co-adjoint orbits char-
acterized by point-vortex initial data. Let us explain what we mean by
this. The configuration space for ideal incompressible hydrodynamics is
the volume-preserving diffeomorphism group, and for s > (n/2) + 1, Dsµ
is a C∞ Hilbert manifold and a smooth topological group. While Dsµ
is not a Lie group (left composition and inversion are only C0 and the
group exponential map does not cover a neighborhood of the identity), it
behaves similar to a Lie group, because of the smooth properties of the
Riemannian exponential map (see [13] and [23, 24]). The Eulerian phase
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space for the fluid motion is the single fiber TeDsµ consisting of Hs-class
divergence free vector fields on the fluid container, and this vector space
can be formally thought of as the “Lie algebra” of Dsµ. The cotangent s-
pace at the identity is given by Hs(Λ1)/dHs(Λ0), the Hs-class differential
1-forms modulo exact 0-forms. Using the fact that the exterior derivative
d : T ∗eDsµ → Hs−1(Λ2) is an isomorphism, and the fact that we may iden-
tify Hs−1(Λ2) with Hs−1(Λ0), the role of the dual of the “Lie algebra” for
2D hydrodynamics is played by the Hs−1-class vorticity functions. The
representation of Dsµ on this “Lie algebra” is provided by the co-Adjoint
action, so that for η ∈ Dsµ and ω ∈ Hs−1(Λ0), Ad∗η(ω) = ω ◦ η, and the
invariance of the co-Adjoint orbit is merely the pointwise conservation of
vorticity which is fundamental to 2D hydrodynamics. If one temporarily
ignores the topology and works formally, then it is possible to classify
certain interesting and important co-Adjoint orbits. Specifically, it is a
result of Marsden and Weinstein [22] that point-vortex initial data (1.8)
define the co-Adjoint orbit on which point-vortex dynamics evolve. This
is clearly a formal result as Dirac measures are not elements of Hs−1

for s > 2; consequently, the problem is to supply a candidate topology
for the “Lie algebra” which is general enough to contain the Dirac mea-
sures, and weaken the regularity of the configuration space so that its
“representation” is well-defined. In doing so, one can establish a rigorous
classification of the orbit. By using G for the configuration space and
M(R2) for the “Lie algebra,” and by defining a new notion of weak co-
adjoint action which coincides with the notion of a weak solution, we are
able to establish the orbit classification for point-vortex initial data, and
prove that our particular vortex blob method leaves such weak co-adjoint
orbits invariant.

Finally, we consider the matter of greatest practical importance: the
convergence of solutions of the vortex blob method to solutions of the
Euler equations as the blob diameter α → 0. We prove this convergence
result under the rather mild assumption that the initial Euler vorticity
field ω0 is continuous with compact support and is approximated on its
support by a sequence of weakly converging measures inM(R2) that have
uniformly bounded total variation. (The restriction to compact support
will be replaced by weaker assumptions on the decay at infinity.)

The precise statements of our results are as follows.
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Theorem 1. For initial data q0 ∈ M(R2), there exists a unique global
weak solution to (1.2) with

ηα ∈ C1(R;G) , uα ∈ C0(R;C0
div(R2,R2)) , and q ∈ C0(R;M(R2)) ,

(1.10)

where the subscript div denotes divergence-free. As a consequence, the
co-Adjoint action Ad∗η(q) and the weak co-adjoint action w-ad∗u(q) are
conserved.

Remark 1. The solution that we construct may not necessarily have finite
energy, i.e., the velocity field uα may not be in L2. None of our results,
however, relies on energy type estimates. Furthermore, as is the case for
the Euler equations, the initial potential vorticity can be decomposed into
a radially symmetric and a mean-zero part, with a corresponding velocity
field u in the affine space ustationary +L2(R2,R2). For details see DiPerna
and Majda [12].

Remark 2. An immediate consequence of the uniqueness of the solution
and the time-reversibility of the equation is that the vortex blob system
cannot collapse in finite time, i.e., two or more vortex centers cannot
merge into one in finite time. For non-regularized Euler vortex dynamics,
on the other hand, it is known that vortex collaps occurs on small sets of
initial configurations [20].

Remark 3. The kernel Kα which corresponds to a second grade fluid is
the least regular kernel (modulo possible sub-logarithmic corrections) for
which uniqueness of point vortex solutions can be shown. An equivalen-
t uniqueness result based on Sobolev space methods, and for bounded
domains is given in [15].

Theorem 2. Let η be the flow map of the Euler equation (1.7) with initial
vorticity ω0 ∈ L1(R2) ∩ L∞(R2). Suppose that ω0 is approximated by a
sequence of measures qn0 in M(R2) such that qn0 ⇀ ω0 weakly in M(R2)
and ‖qn0 ‖M → ‖ω0‖L1 . Then for every T > 0, there exists a sequence
{αn} converging to zero as n → ∞ such that when ηαn denotes the flow
map of the vortex method with α = αn and initial data qn0 ,

lim
n→∞

sup
t∈[0,T ]

sup
x∈R2

∣∣ηαn(x, t)− η(x, t)
∣∣ = 0 . (1.11)

Remark 4. The idea of analyzing the vortex method as a PDE posed on
some space of distributions was already used by Marchioro-Pulvirenti [19]
and Cottet [7]. Cottet’s result requires stronger assumptions on the cut-off
function and hence smoothing kernel, stronger regularity assumptions on
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the underlying Euler flow, and his approximation of the Euler initial vor-
ticity field required a uniform grid. The trade-off, however, is that these
more stringent constraints give an improved (algebraic) convergence in α.
There is, in general, a trade-off between the order of convergence on the
one hand, and the assumptions placed on Kα, ω0, and the approximation
at time t = 0 on the other. The result which, to our knowledge, comes
closest to Theorem 2 is given in Marchioro and Pulvirenti [19]. The au-
thors, however, assume that Kα is Lipschitz, which again excludes kernels
corresponding to the equations of second grade fluids.

Remark 5. Stronger results can be proved for kernels Kα with a higher
degree of smoothing. For example, by replacing 1−α2∆ with (1−α2∆)s,
one obtains a hierarchy of regularizations of the Euler equations which co-
incide with geodesic flow on the volume-preserving diffeomorphism group
with respect to the Hs metric. Other choices of Kα may introduce non-
local pseudo-differential operators into equation (1.2), but the analysis
can still proceed as before.

Remark 6. In three dimensions, the formal connection between second
grade fluids and particular vortex filament methods still holds and is the
subject of a forthcoming article. In this setting, one looks at the set of
vorticity distributions of the following form. Let γ be a curve in R3 ex-
tending to infinity in both directions, and let δγ be the Dirac distribution
given by integration along γ with respect to arc length. Let ωγ be the
2-form along γ defined by iT dx ∧ dz, where T is the unit tangent vector
to γ. Then if Γ is any constant, Γωγδγ is the vorticity corresponding to γ
with strength Γ. See [22].

Remark 7. As we described above, for s > (n/2)+ 1, local well-posedness
follows form the existence of unique C∞ geodesics η̇(t) on Dsµ with respect
to the right invariant metric 〈·, ·〉 defined in (1.3), with initial conditions
η(0) = e and η̇(0) = u0. In working with the geodesic flow η̇(t), one
obtains C∞ evolution in the tangent bundle TDsµ and C∞ dependence
on initial data, while the projected evolution curve u(t) = η̇(t) ◦ η(t)−1

in the single fiber of the tangent bundle TeDsµ—which plays the role of
the Eulerian phase space—has only C0 smoothness, and C0 dependence
on the initial velocity field. In the case that the manifold has a smooth
boundary, there are three new subgroups of Dsµ which are in one-to-one
correspondence with the classical Dirichlet, Neumann, and mixed elliptic
boundary value problems in the sense that elements of the “Lie algebras”
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of these three subgroups satisfy those boundary conditions. Hence, ge-
odesic flow of 〈·, ·〉 on these three subgroups gives the solutions of (1.1)
with no-slip, free-slip, and mixed boundary conditions.

2. Kernel estimates

The crucial ingredients for the proof of our theorems are quasi-Lipschitz
estimates on the Euler kernelK and the regularized kernelKα. For x ∈ R2

we define the function

ϕ(x) =

{
|x| (1− ln |x|) for |x| < 1 ,
1 for |x| ≥ 1 .

(2.1)

Lemma 3. For ω ∈ L1(R2) ∩ L∞(R2),∫
R2

∣∣K(x, y)−K(x′, y)
∣∣ |ω(y)|dy ≤ c ϕ(x− x′) (‖ω‖

L1 + ‖ω‖
L∞

) . (2.2)

The proof is standard and can be found, for example, in McGrath [18].
Somewhat less standard is the following estimate, still for the Euler kernel,
which is similar to estimates in Benedetto et al. [5].

Lemma 4. Let ω ∈ L1(R2) ∩ L∞(R2) and let φ be an area preserving
measurable transformation on R2. Then∣∣∣∣∫

R2

(
K(x, y)−K(x, φ(y))

)
ω(y) dy

∣∣∣∣
≤ c sup

x∈R2
ϕ
(
x− φ(x)

) (
‖ω‖

L1 + ‖ω‖
L∞

)
. (2.3)

Proof. Set r = supx|x−φ(x)|; as in the proof of Lemma 3, the interesting
case is when r < 1. We split the integral in (2.3) into two parts. First,
consider∫

|x−y|≤2r

∣∣K(x, y)−K(x, φ(y))
∣∣ |ω(y)|dy

≤ 1
2π

∫
|x−y|≤2r

|ω(y)|
|x− y|

dy +
∫
|x−y|≤2r

|ω(y)|
|x− φ(y)|

dy

≤ 1
2π

∫
|x−y|≤2r

(
1

|x− y|
+

1
|x− φ(y)|

)
dy ‖ω‖

L∞

≤ 1
π

∫
|x−y|≤2r

1
|x− y|

dy ‖ω‖
L∞
≡ c r ‖ω‖

L∞
. (2.4)
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The last inequality above holds because φ is area preserving, and among
all such transformations, the symmetric map φ = e maximizes the integral
over |x− φ(y)|−1.

Next, we consider the case when |x− y| ≥ 2r. Observe that

|x− φ(y)| ≥ |x− y| − |y − φ(y)| ≥ |x− y| − r ≥ 1
2 |x− y| , (2.5)

so that∫
|x−y|≥2r

∣∣K(x, y)−K(x, φ(y))
∣∣ |ω(y)|dy

≤ 1
2π

∫
|x−y|≥2r

|y − φ(y)|
|x− y| |x− φ(y)|

|ω(y)|dy

≤ 1
π

∫
|x−y|≥2r

r

|x− y|2
|ω(y)|dy

=
r

π

(∫
2r≤|x−y|≤2

|ω(y)|
|x− y|2

dy +
∫
|x−y|≥2

|ω(y)|
|x− y|2

dy

)

≤ r

π

(∫ 2

2r

dρ
ρ
‖ω‖

L∞
+

1
4
‖ω‖

L1

)
≤ c ϕ(r)

(
‖ω‖

L1 + ‖ω‖
L∞

)
. (2.6)

By combining the two estimates we complete the proof.

Finally, we give the corresponding result for the vortex method kernel.

Lemma 5. There exists a constant c2 which is independent of α, such
that

sup
y∈R2

∣∣Kα(x, y)−Kα(x′, y)
∣∣ ≤ c2

α
ϕ
(x− x′

α

)
. (2.7)

Proof. Note that on R2, Kα(x, y) = Kα(|x− y|) = ∇⊥Gα(|x− y|), where

Gα(r) = − 1
2π

K0

( r
α

)
− 1

2π
ln r (2.8)

and K0 denotes the zero order modified Bessel function of the second kind
[1]. For simplicity, we take α = 1 and compute

dGα

dr
(r) =

1
2π

(
K1(r)− 1

r

)
=

1
4π

r ln r +O(r) , (2.9)

d2Gα

dr2
(r) =

1
2π

(
1
r2
−K0(r)− 1

r
K1(r)

)
=

1
4π

ln r +O(1) , (2.10)
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as r → 0. Set r ≡ |x − x′| and assume, without loss of generality as Kα

is bounded, that r < 1.
If |x− y| < 2r, then |x′ − y| ≤ |x′ − x|+ |x− y| < 3r, so that∣∣Kα(x, y)−Kα(x′, y)

∣∣ ≤ ∣∣∇⊥Gα(|x− y|)
∣∣+
∣∣∇⊥Gα(|x− y|)

∣∣
≤
∣∣∣∣dGαdr

(|x− y|)
∣∣∣∣+
∣∣∣∣dGαdr

(|x− y|)
∣∣∣∣

≤ 2
π
r |ln r|+O(r) . (2.11)

Since dGα/dr is continuous and decays at infinity, this implies a bound
of the form ∣∣Kα(x, y)−Kα(x′, y)

∣∣ ≤ c ϕ(|x− x′|) . (2.12)

If, on the other hand, |x− y| ≥ 2r, we use the mean value theorem to
estimate ∣∣Kα(x, y)−Kα(x′, y)

∣∣ ≤ sup
x′′∈B(x,r)

|∇Kα(x′′, y)| |x− x′|

≤ sup
x′′∈B(x,r)

∣∣∣∣d2Gα

dr2
(|x′′ − y|)

∣∣∣∣ r
≤ 1

4π
r ln r +O(r) , (2.13)

which again implies a bound of the form (2.12). In the last step we have
used (2.10) in conjunction with |x′′ − y| > r.

To recover the scaling of the estimate in α, divide (2.12) by α, rescale
x, x′, and y by α−1, and note that Kα(r) = Kα=1(r/α)/α.

Corollary 6. For q ∈M(R2),∫
R2

∣∣Kα(x, y)−Kα(x′, y)
∣∣ |q(y)|dy ≤ c2

α
ϕ
(x− x′

α

)
‖q‖M . (2.14)

3. Well-posedness

We can now prove the existence of unique, global, weak solutions to
the Lagrangian flow equation (1.9).

Proof of Theorem 1. Due to the quasi-Lipschitz condition for Kα, we can
adopt the method that Kato developed for the Euler equations in [17], by
simply replacing the kernel estimates in L1 by the corresponding estimates
in L∞. Our presentation follows to some extent that of Marchioro and
Pulvirenti [20].
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For simplicity, we assume α = 1 throughout this proof. We introduce
a sequence of approximate solutions

∂tη
n(x, t) = un(ηn(x, t), t) , (3.1a)

ηn(x, 0) = x , (3.1b)

η0(x, t) = x , (3.1c)

qn(ηn(x, t), t) = q0(x) , (3.1d)

un(x, t) =
∫
R2
Kα(x, y) qn−1(y, t) dy , (3.1e)

for n ∈ N. The proof now proceeds in several steps.

Step 1. Prove that ηn ∈ C1([0,∞);G) for every n ∈ N.

We proceed inductively. Notice that for every n the vector field un is
quasi-Lipschitz in space and continuous in time. This is a consequence of
Lemma 5 as∣∣un(x, t)− un(x′, t)

∣∣
=
∣∣∣∣∫
R2

[
Kα(x, ηn−1(y, t))−Kα(x′, ηn−1(y, t))

]
q0(y) dy

∣∣∣∣
≤ c ϕ(x− x′) ‖q0‖M , (3.2)

and ∣∣un(x, t)− un(x, t′)
∣∣

=
∣∣∣∣∫
R2

[
Kα(x, ηn−1(y, t))−Kα(x, ηn−1(y, t′))

]
q0(y) dy

∣∣∣∣
≤ sup
y∈R2

∣∣Kα(x, ηn−1(y, t))−Kα(x, ηn−1(y, t′))
∣∣ ‖q0‖M

≤ c sup
y∈R2

ϕ
(
ηn−1(y, t)− ηn−1(y, t′)

)
‖q0‖M

≤ c sup
y∈R2

sup
x∈[t,t′]

ϕ
(
|η̇n−1(y, s)| |t− t′|

)
‖q0‖M

= c sup
y∈R2

sup
x∈[t,t′]

ϕ
(
|un−1(y, s)| |t− t′|

)
‖q0‖M . (3.3)

This implies uniform continuity in time, as un is bounded for every n:

|un(x, t)| =
∣∣∣∣∫
R2
Kα(x, ηn−1(y, t)) q0(y) dy

∣∣∣∣
≤ sup
y∈R2

∣∣K(x, y)
∣∣ ‖q0‖M ≡ c ‖q0‖M . (3.4)
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Since un is continuous in time and quasi-Lipschitz in space, the vector
field generates a local flow ηn ∈ C1([0, T );C(R2)) for some T > 0—see,
e.g., Chapter 2, Lemma 3.2 in Marchioro and Pulvirenti [20]. Because of
the global bound (3.4), the right side of (3.1a) is bounded and the flow
exists globally in time.

Step 2. Show that there exists a limiting flow map η ∈ C([0,∞);G).

We first prove that the sequence ηn is Cauchy in C([0, T ];G) for some
T > 0. To simplify notation, we shall drop the explicit time dependence
of u and η, and estimate∣∣ηn(x, t)− ηn−1(x, t)

∣∣
≤
∫ t

0

∣∣un(ηn)− un−1(ηn−1)
∣∣ds

≤
∫ t

0

∣∣∣∣∫
R2

[
Kα(ηn(x), ηn−1(y))−Kα(ηn−1(x), ηn−1(y))

]
q0(y) dy

∣∣∣∣ds
+
∫ t

0

∣∣∣∣∫
R2

[
Kα(ηn−1(x), ηn−1(y))−Kα(ηn−1(x), ηn−2(y))

]
q0(y) dy

∣∣∣∣ds
≤ c

∫ t

0

ϕ
(
ηn(x)− ηn−1(x)

)
ds ‖q0‖M

+ c

∫ t

0

ϕ
(
ηn−1(x)− ηn−2(x)

)
ds ‖q0‖M . (3.5)

By taking the supremum over x on both sides, we obtain

sup
x∈R2

∣∣ηn(x, t)− ηn−1(x, t)
∣∣

≤ c ‖q0‖M
∫ t

0

[
ϕ

(
sup
x∈R2

∣∣ηn(x)− ηn−1(x)
∣∣)+

ϕ

(
sup
x∈R2

∣∣ηn−1(x)− ηn−2(x)
∣∣)]ds . (3.6)

Defining

ρN (t) ≡ sup
n≥N

sup
x∈R2

∣∣ηn(x, t)− ηn−1(x, t)
∣∣ , (3.7)

we can simplify the previous estimate, and obtain

ρN (t) ≤ c
∫ t

0

ϕ
(
ρN−1(s)

)
ds . (3.8)
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It is well known that this implies

lim
N→∞

ρN (t)→ 0 , (3.9)

uniformly on [0, T ] for T sufficiently small. Since T depends only on α
and the M-norm of q0, this result can be extended to arbitrarily large
times. Thus, the contraction mapping theorem implies the assertion of
Step 2.

Step 3. Show that the Lagrangian flow equation (1.9) is satisfied in the
limit, and that η ∈ C1(R;G).

We define the limiting potential vorticity q and the limiting velocity u
in the obvious way, and check by direct estimation that

qn ⇀ q ≡ q0 ◦ η−1 (3.10)

weakly in M(R2), and

un → u ≡ Kα ∗ q (3.11)

in C(R2); both limits are uniform over finite intervals of time.
To prove that η, u, and q solve the limit problem (1.9), we consider its

integrated version

η(x, t)−
∫ t

0

u(η(x, s), s) ds

= η(x, t)−
∫ t

0

u(η(x, s), s) ds− ηn(x, t) +
∫ t

0

un(ηn(x, s), s) ds

≤
∣∣η(x, t)− ηn(x, t)

∣∣+
∫ t

0

∣∣un(ηn(x, s), s)− u(ηn(x, s), s)
∣∣ ds

+
∫ t

0

∣∣u(ηn(x, s), s)− u(η(x, s), s)
∣∣ ds

→ 0 uniformly in x as n→∞ . (3.12)

Thus, the left side must be zero. Since u(η(x, s), s) is continuous in x, we
can differentiate with respect to t, and find that η satisfies (1.9) and that
η̇ is in fact continuous. Due to the time-reversibility of the equation, the
result extends to negative times as well.

Moreover, one can show—first by formal calculation for smooth func-
tion, and then extending by the usual density argument—that the weak
solution q defined through (3.10) satisfies∫

R

∫
R2

(
∂tφ+ u · gradφ

)
q dx dt = 0 (3.13)
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for every φ ∈ C∞0 (R×R2). This shows that solutions of the vortex method,
and hence the equations of second-grade non-Newtonian fluids, preserve
the (weak) co-adjoint action.

Step 4. Prove that the solution is unique.

Uniqueness is shown by a direct estimate on the difference of two flow
maps. This leads to another log-Gronwall inequality, which can be treated
in the same way as the previous ones; we omit all details.

Remark 8. The homeomorphisms that we consider have the vector space
R

2 as the range; we may thus subtract two elements of this class. For
homeomorphisms of a compact domain Ω of R2, one can isometrically
embed the set of measure-preserving homeomorphisms of Ω into the vector
space L2(Ω,R2), and take differences in this large space. Similarly, the
difference uα ◦ ηα−u ◦ η is not an intrinsic operation, but rather relies on
the trivial identification of vector spaces induced by the trivial geometry
of R2. On the other hand, when the configuration space is Dsµ(M), s > 2
and M is a compact Riemannian manifold, the map uα ◦ ηα is an element
of the fiber TηαDsµ while u◦η is in TηDsµ; thus, in order to compare the two
maps, we must parallel transport u ◦ η into TηαDsµ along the Riemannian
connection.

4. Weak co-adjoint action and reduction

As we described, classical solutions of the two-dimensional averaged
Euler equations are geodesics on the Hilbert-class volume-preserving dif-
feomorphism group Dsµ, s > 2. We identify the space of classical vorticity
solutions Hs−1(M) with the reduced space TeDsµ = TDsµ/Dsµ (symmetry
reduction by the massive particle relabeling symmetry group Dsµ of hy-
drodynamics), and note that this space is the union of the Dsµ-co-adjoint
orbits.

In the case thatM = R
2, and for the purpose of studying weak solutions

to (1.2) we shall substantially relax the regularity requirements on the
configuration space, and use G in place of Dsµ; correspondingly, we shall
use the vector space of Radon measure on R2, which we denote byM(R2),
for the reduced space of vorticity functions, in place of the space of Hs−1

functions.
Recall that the co-Adjoint action of Dsµ on Hs−1(R2) is given by

Ad∗η(q) = q ◦ η . (4.1)

We shall need to define the notion of weak co-adjoint action of G on
M(R2). First, note that the operation Ad∗ : G ×M(R2)→M(R2) given
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by Ad∗η(q) = q ◦ η is well-defined. Next, define the weak co-Adjoint action
w-Ad∗ : G ×M(R2)→M(R2) by∫

R

∫
R2

w-Ad∗η(q) · φdxdt =
∫
R

∫
R2
q · (φ ◦ η) dx dt (4.2)

for all φ ∈ C∞0 (R× R2).
It follows that if ηt is a C1 curve in G such that e = η0 and u =

(d/dt)|t=0ηt, then we may—computing the time derivative of w-Ad∗ηt(q)
at t = 0—define the weak analogue of the algebra co-adjoint action by∫

R

∫
R2

w-ad∗u(q) · φ dx dt =
∫
R

∫
R2
q ·
(
∂tφ+ u · gradφ

)
dx dt (4.3)

for every φ ∈ C∞0 (R × R2). Recall that the classical co-adjoint action
is defined by ad∗ut(qt) = (d/dt)|t=0(η∗t qt) where (d/dt)|t=0(η∗t qt) = ∂tqt +
Lutqt. In two dimensions, the Lie derivative term Lutqt reduces to ut ·
grad qt.

Theorem 7. For any q0 ∈ M(R2), let Oq0 denote the co-Adjoint orbit
{q : q = q0 ◦ η, η ∈ G}. The weak co-adjoint action of C0

div(R2) on M(R2)
is well-defined, and solutions of the second-grade fluids equations or of
Chorin’s vortex blob method with initial data q0 leave Oq0 invariant.

Proof. The result immediately follows from the fact that the vanishing of
the weak co-adjoint action is equivalent to the weak formulation of (1.2).
Theorem 1, giving global well-posedness of weak solutions, then concludes
the argument.

5. Convergence

We can now prove convergence of the flow of the vortex blob method to
the flow of the Euler equations. This is done in two steps. First we show
that the averaged Euler equation, or vortex method PDE, approximates
the Euler equation as α → 0 for bounded vorticity fields. In the second
step, we prove that bounded solutions of the averaged Euler equation
can be approximated by measure-valued ones. These two results together
imply Theorem 2.

Lemma 8. Let q0 ≡ ω0 ∈ L1(R2)∩L∞(R2). Then for every T > 0 there
exists a positive constant C(T ) such that

sup
t∈[0,T ]

sup
x∈R2

∣∣ηα(x, t)− η(x, t)
∣∣ ≤ C(T )αe−T . (5.1)
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Proof. We estimate the difference of the Euler and Euler-α flow maps:∣∣ηα(x, t)− η(x, t)
∣∣ ≤ ∫ t

0

∣∣uα ◦ ηα − u ◦ η∣∣ ds
≤
∫ t

0

∫
R2

∣∣Kα(ηα(x), ηα(y))−K(ηα(x), ηα(y))
∣∣ |ω0(y)|dy ds

+
∫ t

0

∫
R2

∣∣K(ηα(x), ηα(y))−K(η(x), ηα(y))
∣∣ |ω0(y)|dy ds

+
∫ t

0

∫
R2

∣∣K(η(x), ηα(y))−K(η(x), η(y))
∣∣ |ω0(y)|dy ds

≡
∫ t

0

(I1 + I2 + I3) ds (5.2)

To estimate I1, we note that on R2 the difference of the kernels is explicitly
given by |Kα(r)−K(r)| = 1/(2π)K1(r/α)/α, so that

I1 =
1

2π

∫
R2

1
α
K1

( |x− y|
α

)
|ωα(y, s)|dy

≤
∫ ∞

0

1
α
K1

( r
α

)
r dr ‖ωα(s)‖

L∞

≤ c α ‖ω0‖L∞ (5.3)

The other two integrals can be estimated by using the quasi-Lipschitz
conditions, Lemma 3 and Lemma 4, respectively. One finds that

I2 ≤ c ϕ
(
ηα(x, s)− η(x, s)

) (
‖ω0‖L1 + ‖ω0‖L∞

)
, (5.4)

and

I3 =
∫
R2

∣∣K(η(x, s), y)−K(η(x, s), ηα ◦ η−1(y, s))
∣∣ |ω(y, s)|dy

≤ c sup
x∈R2

ϕ
(
x− ηα ◦ η−1(x, s)

) (
‖ω(s)‖

L1 + ‖ω(s)‖
L∞

)
= c sup

x∈R2
ϕ
(
η(x, s)− ηα(x, s)

) (
‖ω0‖L1 + ‖ω0‖L∞

)
. (5.5)

By inserting the bounds for I1 to I3 back into (5.2) and taking the supre-
mum on both sides, we obtain the log-Gronwall inequality

sup
x∈R2

∣∣ηα(x, t)− η(x, t)
∣∣ ≤ ∫ t

0

[
αK1 +K2 sup

x∈R2
ϕ
(
ηα(x, s)− η(x, s)

)]
ds .

(5.6)



THE VORTEX BLOB METHOD AS A SECOND-GRADE FLUID 17

To obtain explicit bounds that are valid on any finite interval of time
[0, T ], we set

ρ(t) = sup
x∈R2

∣∣ηα(x, t)− η(x, t)
∣∣ , (5.7)

and use the tangent approximation of the concave function ϕ; namely, for
any ε ∈ (0, 1),

ϕ(r) ≤ ϕ(ε) + ϕ′(ε) r = (− ln ε) r + ε . (5.8)

This makes the right-hand-side of (5.8) linear in r. For notational sim-
plicity, we also rescale α and t such that K1 = K2 = 1. We substitute
(5.8) into (5.6) and obtain the usual Gronwall inequality; it follows that
ρ must satisfy the differential inequality

ρ̇ ≤ (− ln ε) ρ+ ε+ α , ρ(0) = 0 . (5.9)

Setting ε = e−1αexp(−t) and integrating (5.9) with this choice of ε(α), we
find that

ρ(t) ≤ et − 1
e

αe−t + et
αe−t − α
− lnα

. (5.10)

Thus, ρ = O(αexp(−T )) uniformly on [0, T ].

In the following we will consider α as fixed and approximate bound-
ed data by measure valued data. Let η, q, and u denote quantities
corresponding to a solution of the Euler-α equation with initial data
q0 ∈ L∞(R2), and let ηn, qn, and un denote a sequence of solutions
to the Euler-α equation with initial data qn0 ∈ M(R2) for every n ∈ N.
Then the following is true.

Lemma 9. Let q0 ∈ L1(R2) ∩ L∞(R2), and suppose that q0 is approxi-
mated by a sequence of measures in M(R2) such that qn0 ⇀ q0 weakly in
M(R2), and ‖qn0 ‖M → ‖q0‖L1 . Then, for every T > 0,

lim
n→∞

sup
t∈[0,T ]

sup
x∈R2

∣∣ηn(x, t)− η(x, t)
∣∣ = 0 . (5.11)

Proof. As in the proof of Lemma 8, we estimate∣∣η(x, t)− ηn(x, t)
∣∣

≤
∫ t

0

∣∣∣∣∫
R2

[
Kα(η(x, s), η(y, s)) q0(y)−Kα(ηn(x, s), ηn(y, s)) qn0 (y)

]
dy
∣∣∣∣ ds

≤
∫ t

0

∣∣∣∣∫
R2
Kα(η(x), η(y))

(
q0(y)− qn0 (y)

)
dy
∣∣∣∣ ds
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+
∫ t

0

∫
R2

∣∣Kα(η(x), η(y))−Kα(η(x), ηn(y))
∣∣ |qn0 (y)|dy ds

+
∫ t

0

∫
R2

∣∣Kα(η(x), ηn(y))−Kα(ηn(x), ηn(y))
∣∣ |qn0 (y)|dy ds

≡
∫ t

0

(J1 + J2 + J3) ds (5.12)

We find, after a change of variables, that

sup
x∈R2

J1 = sup
x∈R2

∣∣∣∣∫
R2
Kα(x, y) (q0 − qn0 )(η−1(y)) dy

∣∣∣∣ . (5.13)

By Lemma 10 below with φ(x − y) = Kα(x, y) and qn(y) = (q0 −
qn0 )(η−1(y)), this expression converges to zero as n → ∞. Moreover,
by Lemma 5,

I2 ≤ sup
x∈R2

sup
y∈R2

∣∣Kα(η(x), η(y))−Kα(η(x), ηn(y))
∣∣ ‖qn0 ‖M

≤ sup
y∈R2

c

α
ϕ

(
η(y)− ηn(y)

α

)
‖qn0 ‖M (5.14)

and

I3 ≤
c

α
ϕ

(
η(x)− ηn(x)

α

)
‖qn0 ‖M . (5.15)

By inserting these estimates back into (5.12) and taking the supremum
in x on both sides, we obtain an integral inequality that can be solved
with the log-Gronwall inequality exactly as in the proof of Lemma 8. The
result then follows.

Lemma 10. Let {qn} be a sequence of measures in M(R2) converging
weakly to zero with uniformly bounded total variation and uniform decay
at infinity. Further assume that φ is a continuous test function with φ→ 0
as |x| → ∞. Then

lim
n→∞

sup
x∈R2

∫
R2
φ(x− y) qn(y) dy = 0 . (5.16)

Proof. Set M = supn‖qn‖M and M ′ = supx|φ(x)|. Let ε > 0 be fixed.
By assumption on the {qn}, there exists an R > 0 such that for every
n ∈ N, ∫

|y|>R
|qn(y)|dy < ε

6M ′
. (5.17)
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Moreover, there exists an R′ > 0 such that |φ(x)| < ε/(2M) for |x| > R′.
Since φ is uniformly continuous on compact sets, there exists δ > 0 such
that |φ(x)−φ(x′)| < ε/(3M) for all x, x′ ∈ B(0, 2R+R′) with |x−x′| < δ.
Cover B(0, R + R′) with finitely many balls of radius δ and denote the
centers of these balls by xi, i ∈ I. Choose N large enough such that for
n ≥ N ,

max
i∈I

∣∣∣∣∫
R2
φ(xi − y) qn(y) dy

∣∣∣∣ < ε

3
. (5.18)

Then for |x| < R+R′ there exists an i ∈ I such that |x− xi| < δ, and∣∣∣∣∫
R2
φ(x− y) qn(y) dy

∣∣∣∣
≤
∫
R2

∣∣φ(x− y)− φ(xi − y)
∣∣ |qn(y)|dy +

∣∣∣∣∫
R2
φ(xi − y) qn(y) dy

∣∣∣∣
≤ sup
|y|≤R

∣∣φ(x− y)− φ(xi − y)
∣∣ ‖qn‖M

+ 2 sup
x∈R2
|φ(x)|

∫
|y|>R

|qn(y)|dy +
ε

3

≤ ε

3M
M + 2M ′

ε

6M ′
+
ε

3
= ε . (5.19)

On the other hand, if |x| ≥ R+R′, then∣∣∣∣∫
R2
φ(x− y) qn(y) dy

∣∣∣∣
≤ sup
|x|≥R′

|φ(x)|
∫
|y|<R

|qn(y)|dy + sup
x∈R2
|φ(x)|

∫
|y|<R

|qn(y)|dy

≤ ε

2M
M +M ′

ε

6M ′
< ε . (5.20)

This completes the proof.
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