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WELL-POSEDNESS OF THE FREE-SURFACE INCOMPRESSIBLE
EULER EQUATIONS WITH OR WITHOUT SURFACE TENSION

DANIEL COUTAND AND STEVE SHKOLLER

1. INTRODUCTION

1.1. The problem statement and background. For ¢ > 0 and for arbitrary
initial data, we prove local existence and uniqueness of solutions in Sobolev spaces
to the free boundary incompressible Euler equations in vacuum:

1.1a) Ou+Vyu+Vp=0 in @,
1.1b) divu =0 in @,
1.1c) p=cH on 0Q,
1.1d) (0 + Vu)log € T(0Q),

1.1e) u = up on Qi=o,
1.1f) Qe=0 = (1,

where Q = Jycpep{t} x Q(t), Q(t) CR", n =2 or 3, 0Q = Uycperpit} x 0Q(t),
Vuu = u/0u'/0x?, and where Einstein’s summation convention is employed. The
vector field u is the Eulerian or spatial velocity field defined on the time-dependent
domain Q(t), p denotes the pressure function, H is twice the mean curvature of the
boundary of the fluid 9Q(t), and o is the surface tension. Equation ([Ial) is the
conservation of momentum, (L1D) is the conservation of mass, (LId) is the well-
known Laplace-Young boundary condition for the pressure function, (LId) states
that the free boundary moves with the velocity of the fluid, (I.I€) specifies the
initial velocity, and (L.II) fixes the initial domain .

Almost all prior well-posedness results were focused on irrotational fluids (po-
tential flow), wherein the additional constraint curlu = 0 is imposed; with the
irrotationality constraint, the Euler equations ((LI]) reduce to the well-known water-
waves equations, wherein the motion of the interface is decoupled from the rest of
the fluid and is governed by singular boundary integrals that arise from the use
of complex variables and the equivalence of incompressibility and irrotationality
with the Cauchy-Riemann equations. For 2D fluids (and hence 1D interfaces), the
earliest local existence results were obtained by Nalimov [14], Yosihara [22], and
Craig [5] for initial data near equilibrium. Beale, Hou, and Lowengrub [4] proved
that the linearization of the 2D water-wave problem is well-posed if a Taylor sign
condition is added to the problem formulation, thus preventing Rayleigh-Taylor
instabilities. Using the Taylor sign condition, Wu [20] proved local existence for
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the 2D water-wave problem for arbitrary (sufficiently smooth) initial data. Later
Ambrose [2] and Ambrose and Masmoudi [3] proved local well-posedness of the 2D
water-wave problem with surface tension on the boundary replacing the Taylor sign
condition.

In 3D, Wu [21I] used Clifford analysis to prove local existence of the full water-
wave problem with infinite depth, showing that the Taylor sign condition is always
satisfied in the irrotational case by virtue of the maximum principle holding for the
potential flow. Lannes [I1] provided a proof for the finite depth case with varying
bottom by implementing a Nash-Moser iteration. The first well-posedness result for
the full Euler equations with zero surface tension, o = 0, is due to Lindblad [13]
with the additional “physical condition” that

(1.2) Vp-n <0 on 0Q,

where n denotes the exterior unit normal to 99(¢). The condition ([2)) is equiva-
lent to the Taylor sign condition and provided Christodoulou and Lindblad [6] with
enough boundary regularity to establish a priori estimates for smooth solutions
to () together with (I2) and ¢ = 0. (Ebin [10] provided a counterexample to
well-posedness when (L2)) is not satisfied.) Nevertheless, local existence did not
follow in [6], as finding approximations of the Euler equations for which existence
and uniqueness is known and which retain the transport-type structure of the Eu-
ler equations is highly nontrivial, and this geometric transport-type structure is
crucial for the a priori estimates. In [12], Lindblad proved well-posedness of the
linearized Euler equations, but the estimates were not sufficient for well-posedness
of the nonlinear problem. The estimates were improved in [I3], wherein Lindblad
implemented a Nash-Moser iteration to deal with the manifest loss of regularity in
his linearized model and thus established the well-posedness result in the case that
(T2) holds and o = 0.

Local existence for the case of positive surface tension, ¢ > 0, remained open.
Although the Laplace-Young condition (IId) provides improved regularity for the
boundary, the required nonlinear estimates are more difficult to close due to the
complexity of the mean curvature operator and the need to study time-differentiated
problems which do not arise in the o = 0 case. It appears that the use of the time-
differentiated problem in Lindblad’s paper [13] is due to the use of certain tangential
projection operators, but this is not necessary. We note that our energy function is
different from that in [13] and provides better control of the Lagrangian coordinate.

After completing this work, we were informed of the paper of Schweizer [16]
who studies the Euler equations for ¢ > 0 in the case that the free-surface is
a graph over the two-torus. In that paper, he obtains a priori estimates under
a smallness assumption for the initial surface; well-posedness follows under the
additional assumption that there is no vorticity on the boundary. We also learned
of the paper by Shatah and Zeng [15] who establish a priori estimates for both the
o =0 and o > 0 cases without any restrictions on the initial data.

1.2. Main results. We prove two main theorems concerning the well-posedness of
(CI). The first theorem, for the case of positive surface tension o > 0, is new; for
our second theorem, corresponding to the zero surface tension case, we present a
new proof that does not require a Nash-Moser procedure and has optimal regularity.

Theorem 1.1 (Well-posedness with surface tension). Suppose that ¢ > 0, T
is of class H>®, and uy € H*3(Q). Then, there evists T > 0 and a solution
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(u(t).p(t),Q(t)) of TI) with u € L=(0,T5 H**(Q(t))), p € L>(0,T; H* (1)),
and O0(t) € H>S. The solution is unique if ug € H>>(Q)) and 0Q € HSS.

Theorem 1.2 (Well-posedness with Taylor sign condition). Suppose o = 0, I is
of class H3, and ug € H3(Q) and condition ([L2)) holds att = 0. Then, there exists
T > 0 and a unique solution (u(t),p(t),2(t)) of (L) with u € L>=(0,T; H3((t))),
p € L>(0,T; H>*(Q(t))), and 0Q(t) € H3.
1.3. Lagrangian representation of the Euler equations. The Eulerian prob-
lem ([CTI), set on the moving domain §(¢), is converted to a PDE on the fixed domain
2, by the use of Lagrangian variables. Let n(-,t) : @ — () be the solution of
On(x,t) = u(n(z,t),t), n(x,0)=1d

and set

v(@,t) =uln(@,0),t), q(@.t):=pn(z,t),t), and a(z,t) = [Vy(z,0)]7".
The variables v, ¢ and a are functions of the fixed domain §2 and denote the material

velocity, pressure, and inverse Jacobian, respectively. Thus, on the fixed domain,
(TI) transforms to

t
(1.3a) n:Id+/ v in Qx (0,77,

0
(1.3b) Ov+aVqg=0 in Q x (0,77,
(1.3¢) Tr(aVv) =0 in Q x (0,77,
(1.3d) qa’N/|a"N| = o0 A,(n) onT x (0,T],
(1.3¢) (n,v) = (Id, up) on Q x {t =0},

where IV denotes the unit normal to I' and A, is the surface Laplacian with respect
to the induced metric g on I', written in local coordinates as
(1.4)

Ay =9 0al/99%%05], 9% = [gapl™ s Gop =N s, and \/g = \/detg.

Theorem 1.3 (o > 0). Suppose that o > 0, S is of class H>®, and uy € H*>(Q)
with divug = 0. Then, there exists T > 0 and a solution (v,q) of [L3) with v €
L>(0,T; H*5(2)), g € L>=(0,T; H*(2)), and T'(t) € H>®. The solution satisfies

3 2
sup <|8Q(t)|§.5 + Z 10F ()13 5-1.5% + Z |an(t)|z211.5k> < My

t€(0,T] k=0 k=0

where My denotes a polynomial function of ||U||s.5 and |jug|lss. The solution is
unique for ug € H>>(Q) and ' € HS5.

Remark 1. Our theorem is stated for a fluid in vacuum, but the analogous theorem
holds for a vortex sheet, i.e., for the motion of the interface separating two invis-
cid immiscible incompressible fluids; the boundary condition (IZId) is replaced by
[p]l+ = oH, where [p]+ denotes the jump in pressure across the interface.

For the zero surface tension case, we have

Theorem 1.4 (o = 0 and condition (L2))). Suppose that o = 0, T is of class H?,
up € H3(Q), and condition [L2) holds at t = 0. Then, there exists T > 0 and a
unique solution (v,q) of ([L3) withv € L>(0,T; H3(Q)), ¢ € L>(0,T; H3(Q)), and
['(t) € H3.
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Because of the regularity of the solutions, Theorems [[.3] and [[.4] imply Theorems
[L1l and 2] respectively.

Remark 2. Note that in 3D, we require less regularity on the initial data than [13].

Remark 3. Since the vorticity satisfies the equation 0; curl u+ £, curlu = 0, where
£,, denotes the Lie derivative in the direction u, it follows that if curl ug = 0, then
curlu(t) = 0. Thus our result also covers the simplified case of irrotational flow. In
particular, Theorem shows that the 3D irrotational water-wave problem with
surface tension is well-posed. In the zero surface tension case, our result improves
the regularity of the data required by Wu [21].

1.4. General methodology and outline of the paper.

1.4.1. Artificial viscosity and the smoothed r-problem. Our methodology begins
with the introduction of a smoothed or approzimate problem ([@II), wherein two
basic ideas are implemented: first, we smooth the transport velocity using a new
tool which we call horizontal convolution by layers; second, we introduce an artificial
viscosity term in the Laplace-Young boundary condition (o > 0) which simultane-
ously preserves the transport-type structure of the Euler equations, provides a PDE
for which we can prove the existence of unique smooth solutions, and for which there
exist a priori estimates which are independent of the artificial viscosity parameter k.
With the addition of the artificial viscosity term, the dispersive boundary condition
is converted into a parabolic-type boundary condition, and thus finding solutions of
the smoothed problem becomes an easier matter. On the other hand, the a priori
estimates for the k problem are more difficult than the formal estimates for the
Euler equations.

The horizontal convolution is defined in Section 2l The domain {2 is partitioned
into coordinate charts, each the image of the unit cube in R?. A double convolution
is performed in the horizontal direction only (this is equivalent to the tangential
direction in coordinate patches near the boundary). While there is no smoothing in
the vertical direction, our horizontal convolution commutes with the trace operator
and avoids the need to introduce an extension operator, the latter destroying the
natural transport structure. The development of the horizontal convolution by
layers is absolutely crucial in proving the regularity of the weak solutions that we
discuss below. Furthermore, it is precisely this tool which enables us to prove
Theorem without the use of Nash-Moser iteration. To reiterate, this horizontal
smoothing operator preserves the essential transport-type structure of the Euler
equations.

1.4.2. Weak solutions in a variational framework and a fixed point, o > 0. The
solution to the smoothed k-problem () is obtained via a topological fixed-point
procedure, founded upon the analysis of the linear problem ([2]). To solve the lin-
ear problem, we introduce a few new ideas. First, we penalize the pressure function;
in particular, with € > 0 the penalization parameter, we introduce the penalized
pressure function g. = 1Tr(a Vw). Second, we find a new class of [H 2 (Q)])/-weak
solutions of the penalized and linearized smoothed k-problem in a variational formu-
lation. The penalization allows us to perform difference quotient analysis in order
to prove regularity of our weak solutions; without penalization, difference quotients
of weak solutions do not satisfy the “divergence-free” constraint and as such cannot
be used as test functions. Furthermore, the penalization of the pressure function
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avoids the need to analyze the highest-order time derivative of the pressure, which
would otherwise be highly problematic. In the setting of the penalized problem,
we crucially rely on the horizontal convolution by layers to establish regularity of
our weak penalized solution. Third, we introduce the Lagrange multiplier lemmas,
which associate a pressure function to the weak solution of a variational problem
for which the test functions satisfy the incompressibility constraint. These lem-
mas allow us to pass to the limit as the penalization parameter tends to zero, and
thus, together with the Tychonoff fixed-point theorem, establish solutions to the
smoothed problem ([Tl). At this stage, however, the time interval of existence and
the bounds for the solution depend on the parameter k.

1.4.3. Solutions of the k-problem for o = 0 via transport. For the ¢ = 0 problem,
we use horizontal convolution to smooth the transport velocity as well as the moving
domain. Existence and uniqueness of this smoothed x problem (7)) is found using
simple transport-type arguments that rely on the pressure gaining regularity just
as in the fixed-domain case. Once again, the time interval of existence and the
bounds for the solution a priori depend on x.

1.4.4. A priori estimates and k-asymptotics. We develop a priori estimates which
show that the energy function E,(t) in Definition [[0.] associated to our smoothed
problem (41]) is bounded by a constant depending only on the initial data and not
on k. The estimates rely on the Hodge decomposition elliptic estimate (&.1I).

In Section [I0, we obtain estimates for the divergence and curl of 7, v and their
space and time derivatives. The main novelty lies in the curl estimate for n. The
remaining portion of the energy is obtained by studying boundary regularity via
energy estimates.

These nonlinear boundary estimates for the surface tension case ¢ > 0 are more
complicated than the ones for the o = 0 case with the Taylor sign condition (L2))
since it is necessary to analyze the time-differentiated Euler equations, which is not
essential in the o = 0 case (unless optimal regularity is sought).

We note that the use of the smoothing operator in Definition 2.1} where a double
convolution is employed, is necessary in order to find exact (or perfect) derivatives
for the highest-order error terms. The idea is that one of the convolution operators
is moved onto a function which is a priori not smoothed, and commutation-type
lemmas are developed for this purpose.

We obtain the a priori estimate

sup FE.(t) < Mo+ TP( sup E.(t)),
te[0,T] te[0,T]
where My depends only on the data and P is a polynomial. The addition of the
artificial viscosity term allows us to prove that E,(t) is continuous; thus, following
the development in [8], there exists a sufficiently small time 7', which is independent
of k, such that sup,c(o 1y E.(t) < M, for My > M.
We then find k-independent nonlinear estimates for the o = 0 case for the energy

function (20.1)).

Outline. Sections 2HIG are devoted to the case of positive surface tension o > 0.
Sections [[6H2T] concern the problem with zero surface tension o = 0 together with
the Taylor sign condition (L2)) imposed.
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1.5. Notation. Throughout the paper, we shall use the Einstein convention with
respect to repeated indices or exponents. We specify here our notation for certain
vector and matrix operations.
We write the Euclidean inner-product between two vectors z and y as = -y,
so that -y = z* y°. _
The transpose of a matrix A will be denoted by AT, i.e., (A7)} = A].
We write the product of a matrix A and a vector bas A b, i.e., (Ab)" = A%b/.
The product of two matrices A and S will be denoted by A-S, i.e., (AS); =
Al Sk,
k=3
The trace of the product of two matrices A and S will be denoted by A : S,
ie., (A:8)h = A} Sk.
For Q, a domain of class H® (s > 2), there exists a well-defined extension operator
that we shall make use of later.

Lemma 1.1. There exists E(QY), a linear and continuous operator from H" () into
H™(R3) (0 <r < s), such that for anyv € H"(Q) (0 <r <s), BE(Q)(v) =v in Q.

We will use the notation H*(2) to denote either H*(2;R) (for a pressure func-
tion, for instance) or H®({;R3) (for a velocity vector field) and we denote the
standard norm of H*(2) (s > 0) by || - ||s. The H*(Q?) inner-product will be de-
noted (-, -)s.

We shall use the following notation for derivatives: 0; or (-); denotes the partial
time derivative, 0 denotes the tangential derivative on I' (or in a small enough
neighborhood of T'), and V denotes the three-dimensional gradient.

Letting (2!, 22) denote a local coordinate system on T', for a = 1,2, we let either
o OF (+),a denote 5%-. We define

0% = g0, |8%¢|> = 8410° - - - 9%y, Dy - - - Oy
for integers k > 0, where gy = gi—¢ is the (induced) metric on I'. In particular,
10°¢| = |p|, [0'¢]? = |06]*> = 0°¢p0,¢ and ¢ will mean any kth tangential
derivative of ¢.

The area element on I" in local coordinates is dSy = \/g_odxl A dx? and the pull-
back of the area element dS on I'(t) = n(T') is given by n*(dS) = \/gdSy. Let

{U;} K| denote an open covering of T, and let {¢;}X | denote the partition of unity
subordinate to this cover. The L?(T") norm is

6l = 9]l oy = ( / ¢2d50>2 ,

and the H*(T") norm for integers k > 1 is

E K ' 2
18k =[]l v (1) = <ZZ |&8’¢|%> :

i=11=1
Similarly, for the Hilbert space inner-products, we use

6, %lo = [6, Y] = /Fqswdso,

k K
6,01k = (6, V] ar(ry = (6,00 + Y Y _[60'¢, Lditlo

1=1 =1
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Fractional-order spaces are defined via interpolation using the trace spaces of Lions
(see, for example, [1]).

The dual of a Banach space X is denoted by X’, and the corresponding norm
in X’ will be denoted || - ||x-. For L € H*(Q)" and v € H*(2), the duality pairing
between L and v is denoted by (L, v)s.

Throughout the paper, we shall use C to denote a generic constant, which may
possibly depend on the coefficient o or on the initial geometry given by Q (such
as a Sobolev constant or an elliptic constant), and we use P(-) to denote a generic
polynomial function of (-). For the sake of notational convenience, we will often
write u(t) for u(t,-).

2. CONVOLUTION BY HORIZONTAL LAYERS
AND THE SMOOTHED TRANSPORT VELOCITY

Let Q C R™ denote an open subset of class HS, and let {U;}X; denote an open
covering of T' := 99, such that for each ¢ € {1,2,..., K},

0; : (0,1)* x (=1,1) — U; is an H® diffeomorphism ,
UiNQ=0;((0,1)3) and U;NT = 6;((0,1)* x {0}),
97;(1‘1, 332,:133) = ($1,$2,’¢Z‘(1‘1, 332) + 1‘3) and detVf; =1 in (O, 1)3 .
Next, for L > K, let {U;}£ 41 denote a family of open sets contained in {2 such
that {U;}£, is an open cover of Q. Let {a;}£, denote the partition of unity
subordinate to this covering.
Thus, each coordinate patch is locally represented by the unit cube (0,1)® and

for the first K patches (near the boundary), the tangential (or horizontal) direction
is represented by (0,1)% x {0}.

Definition 2.1 (Horizontal convolution). Let 0 < p € D((0,1)?) denote an even

Friederich mollifier, normalized so that / p = 1, with corresponding dilated
(0,1)2
function

pi(x) = 6%/) <%) , 0>0.

5

For w € H'((0,1)%) such that supp(w) C [6,1 — 6]* x (0, 1), set

p1xpw(Tp,s) = / pi(xr — yu)w(yn, x3)dyn , yu = (y1,92) -
R2

We then have the tangential integration by parts formula
P1*h Wia (TH, T3) = / pisa (@a —ya)w(yn, x3)dyn , a=1,2,
R2
while

pi(xa —ymr)w.s (Yn v3)dyn -
2

PL *h W,3 (33H,£U3) = /

R
It should be clear that %, smooths w in the horizontal directions, but not in the
vertical direction. Fubini’s theorem ensures that

(2.1) o1 *n w5 0,12 < Csllwlls,(0,1)2 for any s >0,

and we shall often make implicit use of this inequality.
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Remark 4. The horizontal convolution x,w does not smooth w in the vertical
direction; however, it does commute with the trace operator, so that
(p% *h w) ‘(o,l)zX{o} = P3n W10y -

which is essential for our methodology. Also, note that x, smooths without the
introduction of an extension operator, required by standard convolution operators
on bounded domains; the extension to the full space would indeed be problematic
for the transport structure of the divergence and curl of solutions to the Euler-type
PDEs that we introduce.

Definition 2.2 (Smoothing the velocity field). For v € L?(Q2) and any & € (0, 0y
with
K
Ko = mi? dist (supp(c; © 6;), [(0, 1)? x {0}]° N a0, 1]3) ,
=
set
K L
ve =3V [ lpr o (Vaw) 0 6)]] 067+ 3 onw
i=1 =K +1

It follows from (2.1) that there exists a constant C' > 0 which is independent of
 such that for any v € H*(Q) for s > 0,

(2.2) [vells < Cllvlls and |vgls—1/2 < Clofs—1/2-

The smoothed particle displacement field is given by

t
(2.3) N = 1d + / Vs -
0

For each = € Uy, let & = 0; ' (). The difference of the velocity field and its smoothed
counterpart along the boundary I" then takes the form

(2.4)
ve(z) — v(z)

K
-3 /] o, G B GOOG — (5+2) ~ G )] a2

where (;(z) = v/a;(0;(2)). Combining (LTal), [Z3)), and (24,
(2.5)
Mk () = n(z)
K
=3[ o 6@ @0y NGOG G+ 2) ~ G 0] .
i1 "
For any u € H"5(T') and for y € B(z, k), where B(z, x) denotes the disk of radius
K centered at x, the mean value theorem shows that
lu(y) — w(@)| < Clr ™ pa(Bam) |0 Lo (Brw)» r = radial coordinate,
so that in particular, with p =4 and ¢ = %,

lu(y) — u(z)| < CVElOu|Ls < CVElul1s
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the last inequality following from the Sobolev embedding theorem. Hence, for
Ue HY (),
(2.6) Us(2) = U(@)|p= < CVE|U]15.-
Note that the constant C' depends on max;ec 1. k3 0ils5.5-
Letting ¢; = \/a; and R = (0,1)?, we also have that for any ¢ € L*(T),

/vub Z/Pl *n p1*n Gu(x) Gio( Z/Pl *n Giv(x) pr*p Gio(x)

(2.7) -/ S s 0 (G0 0] 0071 o %1 (G 0] 0671
=1

Finally, we need the following

Lemma 2.1 (Commutation-type lemma). Let g € L?(T) satisfy dist(supp(g),OR)
< ko and let f € H*(T") for s > 1. Then independently of k € (0, ko), there exists
a constant C > 0 such that

pranlfgl = Foywng| < CHIflosnn

We also have
o2 =0 119 = o 0 gHOW < Cllfllsr2,001° N9llo oy
whenever g € L2(Q), f € H*(Q) and
g < min(dist(supp fg,{1} x [0,1]%), dist(supp fg,{0} x [0,1]%)).

Proof. Let A = p1 *p [fg] — fpr *xn g. Then

|A(z)] =

K

/ pr(z —y)[f(y) — f(z)]g(y)dy
B(z,k)

<Colflesrn [ pre-wlalldy,

B(z,k)
so that

[Blo.r < CHlflusr |ps #lol| < Crlflarinlglo.

The inequality on [0, 1] follows the identical argument with an additional inte-
gration over the vertical coordinate. The hypothesis on the support of fg makes
the integral well-defined. O

Remark 5. Higher-order commutation-type lemmas will be developed for the case
of zero surface tension in Section 211

3. CLOSED CONVEX SET USED FOR THE FIXED POINT FOR o > 0

In order to construct solutions for our approximate model (41]), we use a topo-
logical fixed-point argument which necessitates the use of high-regularity Sobolev
spaces. In particular, we shall assume that the initial velocity ug is in H3-5(Q)
and that € is of class C'°°; after establishing our result for the smoothed initial do-
main and velocity, we will show that both 2 and uy can be taken with the optimal
regularity stated in Theorem
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For T > 0, we define the following closed convex set of the Hilbert space
L2(0,T; H35(Q)):

Cr = {v e L*(0,T; H3>(Q))| SUTP lvll1s.5 < 2|Juoll13.5 + 1}
It is clear that C'r is nonempty, since it contains the constant (in time) function
ug, and is a convex, bounded and closed subset of the separable Hilbert space
L2(0,T; H35(Q)).

Let v € Cr be given, and define n by ([3al), the Bochner integral being taken
in the separable Hilbert space H3-%(1).

Henceforth, we assume that 7" > 0 is given such that independently of the choice
of v € Cr, we have the injectivity of n(¢) on Q, the existence of a normal vector to
n(Q,t) at any point of n(I',t), and the invertibility of V(t) for any point of Q and
for any ¢ € [0,T]. Such a condition can be achieved by selecting T" small enough so
that

(3.1) [V —1d|[ Lo 0,1;m13-5(2)) < €0
for ¢g > 0 taken sufficiently small. Condition [BII) holds if T'||Vugl| gz < €. Thus,
(3.2) a=[Vn™!

is well-defined.

Then choosing T' > 0 even smaller, if necessary, there exists kg > 0 such that for
any & € (0, %), we have the injectivity of 7, (t) on Q for any ¢ € [0, TT; furthermore,
Vi, satisfies the condition (B with 7, replacing 7. We let n.(n.(z)) denote the
exterior unit normal to 7,(Q2) at n.(z) with « € T.

Our notational convention will be as follows: if we choose v € C, then 7 is the
flow map coming from ([3al), and @ is the associated pull-back, @ = [V#]~!. Thus,
a bar over the velocity field will imply a bar over the Lagrangian variable and the
associated pull-back.

For a given v,;, our notation is as follows:

t
nn(t) = Id+/ v, and nn(o) =1d,
0
as, = Cof V., Jo=det V., Guas = Oalk - Opns -

We take T' (which a priori depends on k) even smaller if necessary to ensure that
for t € 0,77,

-1 _
(3.3a) 9(t)  <2yg0 ",
-1

(3.3b) ge(t) < 2g0 ",

1 3

. < T <2,

(3.3¢) 2_J(t)_2
Lemma 3.1. Forv € Cr and for any s > 0, we have independently of the choice

of v e Cr that

sup |vgls < Cr,s P(|luol13.5) -
[0,T]

Proof. By the standard properties of the convolution a.e. in [0, T:

C c
(3.4) [vkls < [ﬁ + 1|v)13 < [ﬁ + 1][2([uo[l13.5 + 1],
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where we have used the definition of C'r for the second inequality. O

_ Recall that {6;}/X, is our open cover of I'. Given o € Cr, we define the matrix
bl, = [V(7jx06;)] ! and assume that T' > 0 is sufficiently small so that independently
of ¥ € Cr, we have the following determinant-type condition for b :

Sblgz z’a 01)

i=1

(3.5)

N =

Such a condition is indeed possible since at time ¢ = 0 we have (b,)3 Zf NCAHEES
14,7 +03 .

4. THE SMOOTHED K-PROBLEM AND ITS LINEAR FIXED POINT FORMULATION

Unlike the case of zero surface tension, for ¢ > 0 there does not appear to be
a simple sequence of approximate problems for the Euler equations (LI} which
can be solved only with simple transport-type arguments. For the surface tension
case, the problem is crucially variational in nature, and the addition of an artificial
viscosity term on the boundary I' seems unavoidable in order to be able to construct
a sequence of approximate or smoothed solutions.

As we shall make precise below, our construction of the approximating sequence
of problems is based on smoothing the transport velocity by use of the horizontal
convolution by layers (see Definition [Z2]), and hence smoothing the Lagrangian
flow map and associated pull-back. Simultaneously, we introduce a new type of
parabolic-type artificial viscosity boundary operator on I' (of the same order in
space as the surface tension operator). Note that unlike the case of interface motion
in the fluid-structure interaction problem that we studied in [§], there is not a
unique choice of the artificial viscosity term; in particular, other choices of artificial
viscosity are possible for the asymptotic limit as the artificial viscosity is taken to
Z€ro.

We can now define our sequence of smoothed x-problems. For our artificial
viscosity parameter s € (0, %), let (v, ¢) be the solution of

t
(4.1a) n:Id—i—/ v in Qx (0,77,
0
(4.1 o+ J 1 a,Vg=0 in Q x (0,77,
(4. Tr(a, Vo) =0 in Q x (0,77,

Ag(n) - (M) e (ni) — KA [V - e ()]s (M) = qni(ne) — on I' x (0,77,
(4.1e) (n,v) = (Id,up) on Qx{t =0},

where n,(nx) = \Egi;i;%l and Ag = \/g_,fl@a[\/g_ogg"gﬁg}. Note that on I', /g, =
‘a£N| and that (gn)aﬁ = Nksa " NksB-

In order to obtain solutions to the sequence of approximate k-problems (@),
we study a linear problem whose fixed point will provide the desired solutions. If
we denote by ¥ an arbitrary element of Cr and if 7, a,, and .J,. are the associated
smoothed Lagrangian variables given by Definition 2.2] then we define w to be the
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solution of

(4.2a) oww + J ta, Vg=0 in Q x (0,77,
(4.2b) Tr(a, Vw) =0 in Q x (0,7],
(4.2¢)

-0 \( [Ag(ﬁ) ﬁn(ﬁn)] ﬁﬁ(ﬁﬁ) - HAO[U) : ﬁﬁ(ﬁn)] ﬁn(ﬁ,@) = qﬁﬁ(ﬁn) on I' x (O,T] s

g
) (n,w) = (Id,up) on Qx{t =0},

Q

=

(4.2d

_ _ __ 1
where Jog = .0 7,8 and Ag = /G Oaly/g095" Og]-

For a solution w to (&2, a fixed point of the map ¥ — w provides a solution of
our smoothed problem (@I).

In the following sections, we assume that v € Cr is given and & is in (0, %).
Until Section [0} wherein we study the asymptotic behavior of the problem (4.1])

as k — 0, the parameter & is fixed.

5. HODGE DECOMPOSITION ELLIPTIC ESTIMATES

Our estimates are based on the following standard elliptic estimate:

Proposition 5.1. For an H" domain 2, r > 3, if v € L*(Q) with curlv € HS~1(Q),
divo € H*71(Q), and v- N|p € H*=2(T) for 1 < s <r, then there exists a constant
C > 0 depending only on 2 such that

lells < € (ollo + | cwrlvlls—y + || divells—y + o N,y ) ,

lwlls < € (lvllo + llcurlvls—s + | divello— + o~ Tal, -y ) -

where T, o = 1,2, are the tangent vectors to T'.

The first estimate with V- N is standard (see, for example, [19]), while the second
with V - T, follows from the fact that T, - N = 0.

6. WEAK SOLUTIONS FOR THE PENALIZED PROBLEM AND THEIR REGULARITY

The aim of this section is to establish the existence of the solution w. to the
penalized version (of the divergence-free condition) of the linearized and smoothed
k-problem ([{2). In particular, we study the weak form of this problem with the
pressure function ¢, approximated by the penalized pressure

1
¢ =—-"Tr(a,Vw) for0<e<<l1.
€

In this section, as well as in Sections 8 and @ we let

(6.1) N(uo,z,y) = P(|luoll13.5, 2, y)

denote a generic polynomial function of ||ugl|13.5, =, and y, where x and y will
typically denote norms of various quantities.
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6.1. Step 1. Galerkin sequence. By introducing a basis (¢,){2; of H'(Q) and
L?(Q) and taking the approximation at rank [ > 2 under the form wy(t,r) =
!

Z yi(t) er(x) , satisfying on [0, 7] the system of ordinary differential equations
k=1

(i> (jﬁ Wi, ¢)0 + H[wl : ﬁN(ﬁH)v o - ﬁm(ﬁn)]l - U[Ls?ﬁ : ﬁﬁ(ﬁn)v ox ﬁﬁ(ﬁn)]o
— ((dﬁ)fql, #',5 )0 =0, Vo € span(ey, ...,e;),
(i) w(0) = (ug);, in Q

_ 1 o
where Ly = YLA;, ¢ = —Z(Ezn)fu)l’,j, and (ug); denotes the L?(2) projection of

g
V90
ug on span(ey, ..., e;), we see that the Cauchy-Lipschitz theorem gives us the local
well-posedness for w; on some [0, Trnq.]. The use of the test function w; in this
system of ODEs (which is allowed as it belongs to span(es, ...,e;)) gives us in turn

the energy law for any t € (0, Tinax),

1 -1 t ~ ~ ~ ~ t
17ROl + 5 [ e nam o amoh +e [ lal?
0 0

f%/o ((J)ewr, wy)o = %H(uo)lH?)Jrg/o (L7« Tine (), w1 - 7o (7 )]s

which, with the control of i provided by the definition of C'r gives the bound
1 t t
62 gl +0n [ o)t +e [ lalf < OV,

6.2. Step 2. Weak solution w, of the penalized problem. We then infer from
(62) that w; is defined on [0, T] and that there is a subsequence (still denoted with
the subscript ) satisfying

(6.3a) w; — we in L*(0,T;L3(Q)),

(6.3b) @ — g in L*(0,T; L*(2)),

where

(6.4) o=~ (@

We can also rewrite (6.3) as

(6.5a) w; — we in L2(0,T; L*(Q)),

(6.5b) div(wy 0 77 1) () = div(we 07 1)(7) in L*(0, T3 L*(2)) ,
which with the bound (6.2)) and the definition of the normal 71,, provides
(6.6) Wy - A (M) = We - (M) in L2(0,T; HY(T)).

It follows from standard arguments and the ODE defining w; that w., €
L2(0,T; H?(Q)), we € CO([0,T); H?(Q)') with w.(0) = ug, and that for ¢ €
L2(0,T; H?(Q)),

T T
| Gty 5 [ 00 mn0:)),006 - nu )y

T o T
(6.7) —/0 <qe,(an)£¢z,j>%=o/o [Lg7 - 1 (M), &+ Mc (7)o -
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Since by definition a, = CofV1,, this implies that in €,

(68) Wey + vPe('F]r;) = 0,

where p, o 7], = qc in Q. Since Vp.(7,) € L*(0,T; H=1()), this equality is true in
L2(0,T; H-1(Q)) as well.

6.3. Step 3. w, is bounded in L?(0,7; H'(Q)) independently of ¢. Denoting
ue = we o 7,1, by integrating ([6.8) in time from 0 to ¢, we obtain the important
formula

t
(6.9)  curluc(fin) = curlug + / Bl u)(f)  in L2(0,T; H-1(Q)) |
0
with
B(am Ue) :7(7-_5272 Ue3yi 71_1',2’3 Ue i 5 aiaS Ue1 i *ai,l Ue3yi ﬂfml Ue2yi 77-_5272 Ueyi )

Remark 6. Note well that our approximated and penalized k-problem preserves the
structure of the original Euler equations as can be seen by (6.8)). As a result, (6.9)
contains only first-order derivatives of the velocity.

Our next task is to prove that w, is in L2(0,7; H*(Q)). For suppose that this
were the case; then, (69) together with bounds on the divergence of w, and w, - N
on I' provide bounds for w, in L?(0,T; H'(Q2)) (by the Hodge elliptic estimate (5.1]))
which are independent of ¢ > 0.

We proceed by showing that appropriately convolved velocity fields are bounded
independently of the parameter of convolution in L2(0,7; H*(€)). This is the first
instance that our horizontal convolution by layers is crucially required.

6.3.1. For any subdomain w CC Q, w. € L*(0,T; H'(w)). We analyze the third
component of (G.9]), the other components being treated similarly. This leads us to
the following equality in L?(0,T; H~1(2)):

jn_l[(aﬁ)éwevgl‘ —(&H){we,?]
t
= — curled + / T2 =0 (@e)iwed (@n)! + 0 (@ejwe? (@)l
0

Our goal is to prove that w, € H(£2). To proceed, we let op denote a standard
sequence of Friederich’s mollifier in R® with support B(0,1/p), and we establish
that o, * w, is bounded in H!(w) for any w CC Q. For this purpose, we choose
1 € D(Q) and find that

(6'10) jﬁ_l[(aﬂﬁ);(wwé)’; _(@n)]ll (¢we)a§]

=— curlug + jgl(&,@)gw,j we! — j,gl(é,g)]i¢,j we?
t . . .
+/O T2 =0, (@)3(dwe),f (@); + 0,5 (@6)] (we) f (ax)i]
t
- / Jn_z[ —T),; (@N>;w7l wel(drﬁ)é + 17;;' (a’ﬁ)]lwvl wGQ(d,{)ﬂ.
0

In order to proceed, we shall need to identify curl-type structures (in Lagrangian

variables) for o, * w,; this requires the following: for — < dist(suppy, Q2¢) and
p
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f € C>=(9Q), we have the equality in H1(Q)
*[f(hwe),5 ] = fop x [(Ywe),;] = /R3 (0p)j (@ —y)(f(y) — [(@)Yw(y)dy

- /Rs op( —y)fry (y)Pwe(y)dy

showing that o, * [f(Ywe),;] — f op * [(Ywe),; ] € L*(£2), with

(6.11)

[lon* [f(¥we)j ] = f op* [(Ywe) ]l < Clllos llogs + o lore ]IV F 1l o () lwello-
We thus infer from (GI0) and (GIT)) that the vorticity structure satisfies

j 1[(an)20P (que) (aﬂ)lo—p (wws)a]} / j;Z[ *@aé‘ ([_]‘H)égp * (wwe)all ([_]‘H)’li
0

(6.12) +0,5 (@x)]op * (Ywe),7 (@x)}] + R,

with [|R1||z2(0,7;22(0)) < N(uo), where N(up) is defined in (@.I]). Next, we infer
from ([GH) and (GIT)) that the divergence structure satisfies

(6.13) (a)]op * (Ywe),s = Ra,
with [[Ra|z2(0,7:22(0)) < N(uo). Since we also have 1w, = 0 on I', so that with

1)), we have a.e. in (0,7)
lop * (Ywe) @)1 < [|R1(B)llo + [|R2(H)]]o + N(uo)/0 llop * (Ywe)llr

and thus

T
(6.14) / lop * (w)l? < N(uo).

Since this inequality does not depend on p, this implies that yw. € L?(0,T; H*(Q)),
and therefore w, € L2(0,T; H*(w)), with an estimate depending a priori on w CC
Q.

6.3.2. The horizontal convolved-by-layers velocity fields are in L*(0,T; H*(£2)). Fix
le{l,..,K}, and set

W(l) = weob and B, = [V(i. 0 6)] "

Hence, in (0,1)? x (%, 1) for p > 1, the Lagrangian “divergence-free” constraint is
given by

(6.15) B (W (1),i = —OL) e,y W) — areqe(6))

where the crucial observation is that the right-hand side of equation (6I%) is in
L0, T3 L*([0, 1)%)).

Now for p” < dist(suppay, d(0,1) x (0,1)?) and f smooth in [0, 1]3, we have by
LemmaBETthat for 5 = 1,2, prosa [f (a (1), ]~ f o (W (1)) 5] € L2((0,1)?),

1
with the estimate a.e. in (=, 1):
p

|pm *h [f(alW(l))v,B} - f pm*h[(alW(D)aﬂ”O’(O,l)2x{y}
< ColV Lo (0,)2x 151 W Dlo,0,1)2x {y}-
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This leads to
||Pm *h [f(alW(l))vﬁ] - f Pm *h [(alW(l))vﬁH|o,(071)s
(6.16) < Cp IV il (0,05 W (D) llo, 0,13 -

Now, for the case of the vertical derivative, we will need to express W(l),3 in terms
of W(l),1, W(l),2, curls, o, W(I) and divg,_ o, W (I), where

divz, 00, W (1) = (BL)IW (1)},

curly, o, W(I) = (b)5W (1),] —(bL)W ()7,
curl? o, W(I) = (b)5W (1),; —(bL)1W (1).7
curly oo, W(I) = (b)i W (1),7 —(bL)sW (1), -

Notice that the first three lines above can be written as the following vector field:

3
1007 (l)> = ZMfW(l)vlv

where the M} are smooth matrix fields depending on b'.. From condition (B.3),
since

(divy,op, W(1),curll _, W(I), curl?

Mk 091

3
det Mg = (0})3 Y _[(B)I° =

i=1
we see that M¥ is invertible on [0, T'] (regardless of the choice of & € Cr). Therefore,

N =

2
(6.17) W(1),3= divg,op, W(I) V" + M* curly op, W(I) + > AFW (D).,

where M* and the Af are smooth matrix fields depending on b, and V* is a vector
field depending on b'.. From (6.I0), we have that

3 t
curly op, W (1) = curlug(6)) + / NEW (1)
. 0

where the N are smooth matrix fields depending on ... By using (617) and the
fact that divy_op, W(I) € L*(0,T; L*(2)) from (G.5), we obtain after time differen-
tiating that
2
[curls, o0, W ()]s — N5 M" curly, o, W (1) = > PEW(1),5, +N5 V" divg, op, W(1)

where Pj, 3 = 1,2, are smooth matrix fields depending on bl.. Therefore,

t
(6.18)  curly, o0 W(I) = A curlug(6)) + A /0 (BEW (1) 5, + divg, o5, W(1))

where A® and Bjj, # = 1,2, are smooth matrix fields depending on bl. With (6.16)
and ([6.I8), we infer in a similar way as for ([6.13)) that on (0,1)% x (1—1)7 1) we have

2 t
(619) Curlmogl Pm *h [OélW(l)] = A" Z/ ngm *p [Ozl o HZW(Z)],ﬁ +R3,
_ 0



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 845

with [|R3||z20,7522((0,1)2)) < N(ug). Therefore, with (G.I7) and (GI8), we have
that
(6.20)

2 t 2
@)W o =2"2" Y [ BHla@W Do+ 3 A5l (@OW D) + B
p=1"0 p=1
with ||Ral|22(0,7:12((0,1)2)) < N(uo). Thus, for any test function ¢ € H((0,1)3),

/‘ ()W (1) - ¢
(0,1)2x

:/’ mmmwmﬂm+/ a(B)W (D) - o3
(0.1)?x(1.0)

(0,1)2x(3,0)
Now, since for 8 = 1,2, we have
[ W Olae== [ ()W) e,
(0,1)2x(£,0) (0,1)2x(%,0)

using (6.20), we infer that

()W (1) - 80’ < C (WD llo,0,1)s + I Rallo,0,103) 1€l 1,00,1)3

| (0,1)2x &

implying (independently of p > 1) the following trace estimate for W (l) (not just
its normal component):

T
(6.21) /O i (0r) W(l)‘3%7(0,1)2><

Similarly as (6:19), we also have the divergence relation

1
P

2 t
(6:22)  divyo0 pm xn W ()] = C5 3 / D5 ppn 1 o1 0 O, (1)],5+Rs,
p=1"0

where || Rs|22(0,7;22((0,1)3)) < N(uo) and C* and Dj, B = 1,2, are smooth matrix
fields in terms of bl,. ;From (6.I9) and (6.22), we then infer, just as in (6I4)), that

T
| lows W le 0

T
< N(uo) +/ |om *1 [aW ()] 0 (7 0 0) 7" - e ;agz ,
O P

where Qf = 6;((0,1)? x (%, 1)). Thus,

T T
/ lpm *h laa (@)W (D13 (0,1)2 (2 1y < N (uo) +/ [P [on (O)W (DI 0,122
0 P 0 2 P

Now, from the properties of the convolution,

1
— |pm *n [ar (6)W (D)] |%,(0,1)2X% < Clpm *n [ (0)W (1)] ‘—%,(0,1)2><% )
which, with (621]), leads us (independently of p > 1) to

1

T
5 | o s [0 @OW IR 121y < Vo)
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1

for any 0 < — < dist(suppay(6;),9(0,1)% x (0,1)). Since this estimate holds for
m

any p > 1, we then infer that

1

(6.23) —

T
/0 1m 55 [ @)W D2 015 < N(uo),

1
for any 0 < p” < dist(suppay (6;),9(0,1)? x (0, 1)). Therefore, p,, xp, [ar(0;)W (1)] €

H'((0,1)3) (which was not a priori known since our convolution smooths only in
the horizontal directions), with a bound depending a priori on m.

6.3.3. Control of the horizontal convolved-by-layers velocity fields independently of

m. From ([@I9) and (622]), we infer that

T
/0 om 1 (W (D)] © (7 0 6) "

|2
1,7 ()

T
< N(u0)+/ |om 1 [ea (@)W (D] 0 (7l 0 01) ™" - el 5 ()
0

and thus,

(6.24) / 1 [a (O)W D2, 0.115

T
< NG+ [ o [ @OW O] 7 0013 o0
Next, we have for any z € (0,1)? x {0}:

pm xn [ (0)W ()] - 1 (1 0 00) (@) = pim *n [ar ()W (1) - 1 (1 0 00)](2) + f(2),
with

£0) = [ omlon — ym)as6)W (0,2

(7 (7 © 01) (21, 3) — T (7 © 1) (Y11, 3) | dy -
Therefore, with ([6.24]), we obtain
(6.25)

T
/0 1w 5 [ W (D]IZ, 0.1y
T 2
< N(UO) + |f‘%’(0’1)2><{0} + /0 |Pm *h [al(al)W(l) : ’ﬁ‘ﬁ(ﬁi{ o 91)”%,(0,1)2><{0}
T
< N(uo) + [f11,0,1)2 x {0} +/o |w(0)W (1) - 7 (75 © 9l)|2%,(0,1)2x{0}

T
1.,(0,1)2x{0} +/0 loqwe - 7y ()|

< N(uo) + [f11,0,1)2 x {0}

where we have used the trace control (G.6]) for the last inequality in (628). We now
turn our attention to |f|1 (g1)2xf0y- We first have that

< N(up) + |f

[N

T

c. _ c
(6:26)  [Iflloo,n2 = — N7 (Te) | 3 ()l om *1 (@)W Dlllo, 0,178 < —N(uo),
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where we have used the definition of Cr to bound |7 (7x)| 3 (). Next, we have

for 6 = 1,2 that

£ @) = [ oo 0 = ym)on @)W @) )
. [ﬁn(ﬁn o (91)($H,$3> - ﬁﬁ(ﬁﬁ o 9l>(yH7x3>]dyH

+ / ol = ym)an @)W () (wir, 2)dy - i © 01) 5 (2),

showing that

(6.27)
C 3 ,
15 llo.0.03 < 17w () |l 113 2 > Hpmos | *n cr(6)IW (D) llo,0,1)2
=1
3 .
17w () 722 (20 D Ilom #0100 W (1) [lo,0,1)2
1=1
3 .
< CHﬁN(ﬁN)”HS(Q) Z |||(Pvﬁ >m| *h Oél(el)|W(l)z‘ |o,(0’1)3
=1
3 .
17w () 722 (20 D lom #0100 W (1) [lo,0,1)2
1=1
3 .
< C> oy Yol +n (@)W (1) []l0, 0,12
=1
3 .
+C " lpm *n 01 (0) W (1) [[o,0,1)2
1=1

< Cllaa(@)W (Do, (0,12 < N(uo)-

Next, for the vertical derivative,

YH T3

fia () = /R2 pm(xE — yu) [ ()W (D)3 (Y, 23) - [0 (7 © 9!)]2”’%))07%1

(ym,z3

* /RQ pm(@r — yu) [ (0)W (D] (ya, ©3) - [ (M 0 01,3 ](IH’M))dyH ,

where []Ezgzz)) = [)(zm,x3) — [](ym, z3). Notice that for a smooth matrix field A
3

in (0,1)® and for 8= 1,2,

YH ,T3)

Gla) = [ puCont = yi) Al 22) s COW (D () - e o 001332
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satisfies
G(z) =

N m/]R (s )m (11 — yir) Alyn, 23)[0a (0)W (D) (yrr, w5) - [ (s © O] 22 dy
- /]Rz pm(xr —ym) A, (Yn, ©3) [ ()W (D] (ya, 23) - [ (7 © 91)]8?5;))@}1

= [ pen = ) Al fonOOW )i ) - e o 00157

YH,T3)

showing, just as for (6.27), that ||G|o 0,12 < N(ug). Therefore, with ([6.20)), we
see that the first integral term appearing in the expression of f,3 is bounded in a
similar way, implying that

(6.28) £, llo,0,1)8 < N(uo)-
Consequently, with (620), (627), (628), we obtain that
(6.29) I1f111,0,18 < N(uo)-

Therefore, ([6.25) implies that

T
(6.30) / 1m 5 [ @DW D2 015 < N(uto)-

6.3.4. Control of w. in L*(0,T;H'(Q2)). Since (630) holds independently of m
sufficiently large, this implies that

T
/0 (@)W (D)2 0.1y5 < N(uo).

Since we proved in subsection [£.3.1] that w, is bounded in L?(0, T; H'(w)) indepen-
dently of € for each domain w CC €, this provides us with the estimate

T
(6.31) / e |2 < N(uo),

independently of € > 0.

Remark 7. In the two-dimensional case, a simpler proof of Step 3 is possible,
founded upon a scalar potential function for the velocity field. For conciseness, we
consider a simply connected domain, the nonsimply connected case being treated
similarly by local charts. Once again, we let u. = w, o7, 1. From (6.50) and (6.6),
let we € L%(0,T; H'(2)) such that

div(wi (7, 1)) (1) = div(we (7, 1)) (1) in L*(0,T; L*()),
wE - Ny (7)) = we - 1 (7) in L2(0,T; HY(T)) .

We infer the existence of ¢ € L?(0,T; H}(7.(Q))) such that u. = we(7;1) +
(—¢%2,1%1). Now, from (6.I0), we see that in L?(0,T; H-1(Q)), we have for
Y = P© oy,

(6.32) (@) E (@) ) = fE — / A0

where f¢ is bounded in L2(0,T;L2?(f2)). It is readily seen that ¢¢ is the unique
solution of this equation in L*(0,T’; Hg(£2)). We now establish that this uniqueness
provides extra regularity for 1)¢. By defining the mapping © from L2(0,T; H?(Q)N
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HL(9Q)) into itself by associating to any £ in this space the solution ©¢ (for almost
all t € [0,T]) of
t
(@) (@0 )= 1o = [ A5,
we see that for ¢; small enough (depending on Sobolev constants and on
il Lo (0,712 (2))) © is contractive from L*(0,t1; H*(2) N Hg()) into itself, which
provides a fixed point for © in this space. It is thus a solution of (6.32) on [0,#;].
By uniqueness of such a solution, we have that ¥¢ € L2(0,¢;; H?(Q2)) and thus that
we € L2(0,t1; HY(2)). By defining a mapping similar to ©, but this time starting
t

from ty € [El,tﬂ such that w.(t2) € H'(Q) instead of uy (which ensures that the
new f, is still in L%(0, t2; L2(£2))), we obtain the same conclusion on [ta, ta+;], lead-

ing us to w. € L?(0, gtl; H'(Q)). By induction, we then find w. € L?(0,T; H'(f2)).

Remark 8. Whereas Hodge decompositions with vector potentials ¢ are possible in
higher dimension, it turns out that a Dirichlet condition ¥ = 0 for the associated
elliptic problem is not possible. This in turn is problematic for any uniqueness
argument in L2(0,T; H*(£2)) for ¢, since it does not seem possible to find a bound-
ary condition that would be naturally associated to the second-order operators
appearing on both sides of the three-dimensional analogous of ([6.32]).

7. PRESSURE AS A LAGRANGE MULTIPLIER

We will need two Lagrange multiplier lemmas for our pressure function in our
analysis as the penalization parameter ¢ — 0. We begin with a lemma that is
necessary for a new Hodge-type decomposition of the velocity field.

Lemma 7.1. For all |l € H%(Q), t € [0,T], there exists a constant C' > 0 and
o(l) € H?(Q) such that (@) (t)¢',; =1 in Q and

(7.1) lo(I5 < Cllu.
Proof. Let ¢(1) be the solution of

(7.22) (@) (@) 60,k ) = L in O,
(7.2b) P(l)=0onT.

We then see that ¢*(l) = (a,)+(l),; satisfies the statement of the lemma. The

i
inequality (7)) is a simple consequence of the properties of [ and of the condition
v e Crp. O

We can now follow [18]. For p € H2 (), define the linear functional on H 2 (£2)
by (p, (ax)! (t)¢",; )1, where ¢ € H3(Q). By the Riesz representation theorem,
there is a bounded linear operator Q(t) : (H=()) — H2(f) such that

3 _ j i
Vo e H2(Q), (p, (an)] ()¢ )1 = (Q()p, ¥)sz.
Letting ¢ = Q(t)p shows that

(73) IQ()pl < Cliell, 3.,

for some constant C' > 0. Using Lemma [.1] we see that

vie HA(Q), (o 1)) = QM. 6(0);,

1
2
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and thus

(7.4) 191,13 g < IR,

which shows that R(Q(t)) is closed in H? (). Let
Vo(t) = {v € L*(Q) | (@x)] ()v'; (¢) = 0}.

Since V;(t) N H=(Q) = R(Q(t))*, it follows that

(7.5) HE () = RQ(1) © 3 g Vo(t) N HE(9).

We can now introduce our first Lagrange multiplier.

Lemma 7.2. Let £(t) € H2 () be such that £(t)p = 0 for any ¢ € V5(t)NH?2 ().
Then there exists a unique q(t) € Hz (), which is termed the pressure function,
satisfying

Vo e H2(Q), £(t)(¢) = (q(t), (@n)l¢';) ;.
Moreover, there is a C' > 0 (which does not depend on t € [0,T] and on the choice
of v € Cr) such that

1913 0 < C IEON 13

Proof. By the decomposition ([Z3)), for ¢ € H%(Q,R3), we let ¢ = v1 + vg, where
vy € Vy(t) N H2(Q) and vy € R(Q(t)). From our assumption, it follows that

2(0)(0) = £(0)(2) = (1), 02) 43 ) = W(0:9) 13

for a unique ¥ (t) € R(Q(1)).
From the definition of Q(t) we then get the existence of a unique ¢(t) € Hz (Q)’
such that

3 _ i g
Vo€ H> (Q)a E(t)(sﬁ) = <Q(t)v (%)390 )j >%
The estimate stated in the lemma is then a simple consequence of (T.4)). O

We also need the case where the pressure function is in Hz (€2). We start, as
above, with a simple elliptic result:

Lemma 7.3. For all ]l € H%(Q)’, t € [0,T], there exists a constant C > 0 and
o(l) € H2(Q) such that (@) (t)¢',; =1 in Q and

2 2
(7.6) I6MIF < CIE y

Proof. Let (1) be the solution of (.2)). Since # is linear and continuous from
H'(Q) into H'(Q2) and from L2?(Q) into H?(Q), by interpolation, we have that
¢ is linear and continuous from H2(2) into H?(Q). We then see that ¢'(l) =

(ax)l(l),; satisfies the statement of the lemma. O
For p € Hz(Q), we define the linear functional on X () by ((a,)(t)¢’,; D)1

where ¢ € X(t) = {¢ € Hz(Q)| (@), € H2(Q)'}. By the Riesz representation

theorem, there is a bounded linear operator Q(t) : H= (Q) — X (t) such that

Vo € X(1), (@] ()e',p) 3 = (QM)p, ©)x):
Letting ¢ = Q(¢)p shows that

(7.7) 1Q)pllx) < CHPHH%(Q)

1
2
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for some constant C' > 0. Using Lemma [.3] we see that

Wi H(Q), (I, p)y = (Qt)p, 6(1))x (),
and thus

(7.8) 19,13,y < CIRWPIx.

which shows that R(Q(t)) is closed in X(t). Since Vy(t) N X (t) = R(Q(t))*, it
follows that
(7.9) X(t) = R(Q(t)) ®x(p) Vo(t) N X (2).

Our second Lagrange multiplier lemma can now be stated.

Lemma 7.4. Let £(t) € X(t)’ be such that £(t)p =0 for any ¢ € Vy(t) N Hz(Q).
Then there exists a unique q(t) € H%(Q), which is termed the pressure function,
satisfying _

Vo € X(t), L£(t)(v) = ((@n)i¥",;,a(t)) s
Moreover, there is a C > 0 (which does not depend on t € [0,T] and on the choice
of v € Cr) such that

901309 < € 12Oy
Proof. By the decomposition (T9), for ¢ € X (t), we let ¢ = vy + v, where v; €
Vi(t) N H2 () and vy € R(Q(t)). From our assumption, it follows that

L) () = £(t)(v2) = (b(t),v2) x () = (P(1), ¥) x(1)
for a unique ¥(t) € R(Q(t)).

From the definition of Q(t) we then get the existence of a unique ¢(t) € Hz ()
such that

Vo € X(1), L(t)(p) = {(@)]¢' s, alt))s.
The estimate stated in the lemma is then a simple consequence of (T.8]). O

8. EXISTENCE OF A SOLUTION TO THE LINEARIZED SMOOTHED k-PROBLEM ({.2])

In this section, we prove the existence of a solution w to the linear problem (4.2)),
constructed as the limit € — 0.

The analysis requires establishing the regularity of the weak solution. Note that
the extra regularity on ug is needed in order to ensure the regularity property for
w, ¢, and their time derivatives as stated in the next theorem, without having to
consider the variational limits of the time-differentiated penalized problems.

Theorem 8.1. Suppose that ug € H'35(Q) and Q is of class C>°. Then, there
exists a unique weak solution w to the linear problem ([@2), which is moreover in
L?(0,T; H'3-5(Q)). Furthermore,

dlw € L*(0,T; H3¥573(Q)) N L>(0,T; H*57%(Q)), i=1,2,3,4,
dlqg e L2(0,T; H>=3(Q)) N L>=(0, T; H573(Q)), i=0,1,2,3.

Proof. Step 1. The limit as ¢ — 0.
Let € = L; we first pass to the weak limit as m — oo. The inequality (62)

provides the following bound, independent of e:

T
Loy o -
| 0@ 1+ o ) + el e < N



852 D. COUTAND AND S. SHKOLLER

which provides a subsequence {w__} such that
my

(8.1a) wai —w in L*(0,T;L*Q)),
my

(8.1b) (%)fw% g (@)jw'y  in L2(0,T;LA(9Q)

(8.1¢) w1 (M) = w-ng(fs) in L2(0,T; HY(T)) .

my

The justification for w - 7, (7)) being the third weak limit in (8] comes from the
identity (ax)lw.’,; = div(we o7, ')(7],) and the fact that 7, is the normal to 7, ().
Moreover, since ([6.2) also shows that [|(ax)?w’ .; ||L2(0,m;L2(0)) — 0 as m — oo,

we then have H(&H)gwi,j llL20,1502(0)) = 0, i.e.,

(8.2) (ax)]w',; =0 in L2(0,T; L*(Q)).
Now, let us denote u = w o 7j; !, so that thanks to (82) and (6.9) we have
(8.3a) divu =0 in 7,(92) ,
¢
(8.3b) curl u(7,;) = curlug —l—/ B(Vii,, Vu) in H1(Q).
0

By proceeding as in Step 3 of Section [@ the trace regularity (u - 7i,;)(7,) €
L?(0,T; HY(T)) and the system (83) then yield

[[w] N (uo),

L2(0,T;H 3 () <
where N(ug) is defined in (G1)).

Step 2. The equation for w and the pressure.

Now, for any y € L2(0,T; H?(Q)) and | = (ax)ly’,;, we see that for a solution
¢ almost everywhere on (0,7 of the elliptic problem

(aﬁ)g [jle(an)f@ak]aj =1linQ,
p=0onT,

if we let ! = J-(a.)¥p,x and set v = y — e, we have that e and v are both in

L2(0,T; H? (Q)), with
T T
/ [llells + llvll] SC/ I3
0 0

(aﬁ)g”i j =0

Since (a,)lw',; = 0 in L*(0,T; L*(Q)), we infer that (a,)lwi,;= —[(ax)!]sw’,; €
L2(0,T; H2(Q)) and that

<jn wtae)% = ([(dﬁ)g]twiaj a‘F’)O'

But v also satisfies the variational equation

/OT““ Wery 0)g + ﬁ/OT[we e (7), 0 M (7)1

T
. / L7 A (), v e (7)o
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leading to
T

T T
eli_r% o (Jx wetay>% :/0 ([(dn)g]th7j7¢)0+JA [Lﬁﬁ'ﬁn(ﬁn)vv'ﬁn(ﬁn)b

T
_K/ [ - T (1), 0 - e (7)1
0

We then see that as ¢ — 0,

(8.4) / lwedll? s < Nup).

aé)y =
By standard arguments, we infer that w., — w; in L2(0,T; H? (©)"). This ensures
that w € C°([0,T]; L*(2)), and the condition w.(0) = ug provides w(0) = uo.
Furthermore, we also have for any ¢ € L2(0,T; H2(f2)) such that (@x)!¢',;=0in
(0, T) x  the variational equation

T T o T . o
/0“” wt,¢>g+n/0 [w-nn(n,g),gb-nﬂ(m)h—a/o Lyt 7 (i) & 7o ()] -

Next, since w; € L*(0, T H3 (Q)), the Lagrange multiplier Lemma [Z.2] shows that
there exists ¢ € L2(0,T; Hz (Q)') such that for any ¢ € L2(0,T; H2 (2)),

/OT““ i “/OT“” (1), 6 ()]s

T o T
(8.5) - [ @)y = [ (Lm0l

Now, if we have another solution @ € L2(0,T; H?(2)) such that w(0) = uo and
wy € LQ(O,T;H%(Q)’)7 we then see, by using w — @ as a test function in the
difference between (8 and its counterpart with @, that we get w—@ = 0, ensuring
uniqueness to the weak solution of ([2)).

Step 3. Regularity of w. We can now study the regularity of w via difference
quotient techniques. We will denote R = {z € R?| 23 > 0}, So = B(0,1) N {z €
R?| 23 = 0} and B4 (0,7) = B(0,7) NR3. . We denote by § a C* diffeomorphism
from B(0,1) into a neighborhood V of a point zo € I such that 6(B(0,1) NR3) =

1
V N Q, with det VA = 1. We consider the smooth cut-off function t(z) = e!*1*~2
if z € B(0,%) and ¢(z) = 0 elsewhere, and with the use of the test function

[D_p[pDp(w o 0)]] 0671 € L2(0,T; H3(Q)) in ®H), with h = |hleq(a = 1,2), we
obtain

I+ Kkl + I3 = 0/0 (L s (71), [D - [0 Dy (w 0 8)]] 0 67" - 1o (7)]o

with

0o

)

|

T
I :/O (J we, [D_p[pDp(wo B)]] 0 67 1):
L= / (0w - 7 (7)), AP w0 Dy (w 0 0)]] 0 0~ 7 (7)o,

T . .
I3 = ‘/0 (4, (@)} [D-n[Dp(wo )51 0071 1.
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For I, we simply have
(8.6)

L =|\V¢wo a(t)\|%2(3+(0,1)) — /4 ug o 9||2L2(B+(0,1))
T
+ [ ADAIO)) w00, uDA(wo0)
0

ol

T
Z‘|\/Ewoe(t)“%2(3+(0,1))_N(UO)_/O lwill 1 ) 1PR1Ts(O)] Dn(w o )] 5

>[I/ w0 0(8)]2(5, 017, — CsN (o) f6/ IV Di(wo )3

where we have used ([84) for the last inequality and where the choice of § > 0 will

be made precise later.
For I, we have, if we define in B4 (0,1), W = wo 6 and N* = 7,,(7,:)(6),

I = / /S S 1y N®) [D_p [ DAW] - ¥

O

/ /SO C“BD W - N%),o [DyW - N*], 5

" / [ i "f[W-Nﬂ,a}%[DhW~N“J,a1thW~N%

(8.7) / /S (S - N -+ DA - DN,

where G5 = 0,, 0,3 and ap = det G.

In this section, we will denote by || - ||s;0 and | - |s,pe the standard norms of
H?(©) and H*(00).

For the first term appearing in the right-hand side of the second inequality, we
have

9oaps W K W K oaps 11,74 K W K
D . N « D . N P} —_ D . N PYe's D . N )
—O [ h ]7 [w h } B ,—0 '(/}[ h ] [ h ] 8

9oas K K,(/}7B
+ T2 Y[DRW - N™].o DyW - N =L,
v ao Vi
. %7 .
and thus, since v, v/2) and ﬁ are chosen smooth, we infer that
9oap r
[ e imw N opw Nz 0 [N,
0

The other terms in ([B7) are easily estimated leading to the estimate

T
(8.8) L>C / INBDRW - N*|2.g. — N(up).
0

Concerning I3, we have

T .
I3 = _A (g, (bn)g[D—h[th(W)]z’j 0071]>%’
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with b, = [V(7, 0 8)]~*. Now since (b, )] W?,; =0, we obtain
(be)ID_nDaW*,j = — D_pDy(be)IW',; =Dy [(be)]] (- — h)D_p W',
— D_y[(be)] (- + )| DW*
and thus
T i th}
I3 <C ; gl 75 (L IO DRW 5114 54 01) + || VUDIW i 1 5, 0.1)
+ ||\/1ZDhW||g,B+(0,1)]

T
(8.9 <N +5 [ VDWW g0
0
where § > 0 is arbitrary. Now, let © be a smooth domain included in B4 (0,1) and
containing B (0, ). The inequalities (86), (BJ) and (BJ) yield
T T
(8.10) / EDAW - N o < C N(uo) + 5/ IVEDWE o
0 0

We now define in B4 (0,1)

divi, o9 W = div(W 0 0! o5 1) (7 0 0) = div(u) (7, 0 0),

curly, oo W = curl(u)(7, 0 6).
Thus, (B3] translates in B4 (0,1) to

diVﬁK’og W = 0

[curl;, o9 W](t) = [curl ug) 0 0 + /0 B(Viu, Vu)(i, 0 0)

t
= [curlug] 0 @ —|—/ B(Vii, VW (7, 0 0) "1V (7. 0 0) 1) (7 0 6),
0

and thus
(8.11a)

Ao VEDUIV) = =D, Wy (4 1) + 5L (D,
(8.11b)
ety oo (VEDIVI(E) = ROW) + / B(Vae(: 0 0), VIVEDAW [V (7 0 0)] ),
with

| IRV o < N o).

With the trace estimate (8I0) and the control of W in L2(0,T; H2(©)), we can
then infer as we did in Step 3 of Section [6] that

T T
| IVEDIWI o < € NG+ Cu8 [ IVIDAWIR 6.
0 0

and thus with a choice of § small enough,

T
[ VDU o < 60 N(uo),
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yielding
T
/ |\/JDhW‘%a@ < C,i N(uo).
0

Since this estimate is independent of h, we get the trace estimate

T
/0 WVaWE po < Cu N(uo),

and thus with this trace estimate and the div and curl system (8I]), still with
arguments similar to those in Step 2 of Section [6]

T
/0 VW3 o < Ci N(ug).

By patching together all the estimates obtained on each chart defining €2, we thus
deduce that

T
(8.12) / lwl2 < Cr N(ug).
0 2

Now, for the pressure, we see that for any y € X2 (t) = {¢ € Hz (Q)| (ax)¥(t)¢' x €
H? (©)'}, for ¢ a solution of the elliptic problem

— i/ — i _ i . 1
(@)] (@i ¢k ]y = (@e)i (' in (H2)'(Q),
p=0onT,
we have by interpolation that ¢ € H?(Q). If we once again let e = (a,)¥p,; and
set v := y— e, we have that e € H2(Q), v € V(t) = {¢ € H2(Q)| (ax)*(t)¢',r = 0},
with [[ef1 + [Jv]ls < C’Hy||X%(t). Now, by proceeding in the same fashion as in

Step 2 above, we see that thanks to our decomposition and the regularity (812,
wy € L2(0,T; X2 (t)') with

T
2
< .
ey, < V)

By the Lagrange multiplier Lemma [7.4] we then infer

(8.13) | alf < N o),

Next, by using D_p, Dy[tpD_j, Dpw] as a test function in ([8X]), we infer, similarly to
how we obtained ([812), that the estimates (812]) and [BI3) imply that

T
(5.14) |l < Nwo).

We now explain the additional estimates employed for this higher-order differencing.
We need the fact that independently of any horizontal vector h, there exists a
constant C > 0 such that for Suppy + h C ©, we have that

Vf € H3(O), |[V¢Duflyo <C |Ifls .0,
(8.15) Vi€ HE (), INUDfl 5 o) <C If]130-
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The first inequality easily follows by interpolation. For the second one, if f € L?(0),
we notice that for any ¢ € H'(0), since the difference quotients are in a horizontal
direction,

[ Vous o= [ Vatpas+ [ Doaisel-h)
<Clfloeléle,
which shows that there exists C' > 0 such that
Vf e L*(O), |[V¢Duflm@©y <C |floe-
By interpolating with the obvious inequality (for some C' > 0)
Vf e H'(O), IV ¢Dnflloo < C | flre
we then get (BIH]).

Now, the pressure solves the elliptic equation
(8.16a) Ap = — ()", v’y in 7,(Q),
(8.16b) p=—[0Ag7 - (7)) (i) + £AG (W - (7)) 7 (7)) (7 )

Using the same change of variables that provides the pressure estimate (I84]) and
using the elliptic estimates for coefficients with Sobolev class regularity as in [9],
we find that

t t
[ lal} < Mo suplands, [ 1w,
0 [0,t] 0 2
where the right-hand side is defined in (6I). Therefore with (814,

t
/ lall3 < N (uo,sup [l@x ).
0 2 [0,¢]

Higher-order regularity results follow successively by appropriate higher-order
difference quotients, leading to, for n > 1,

t t
(8.17) [ lwlzy + [ al? -y < ONCuo,sup o)
0 2 0 2 [0,¢]
Now, since w; = f(d“)gq,j in ©, we then infer that for n > 2,
t
(8.18) / w2y < N(uo,sup [ |sa),
0 ,t

and thus in [0, ¢],

lw(t)[l1s.5 < [luoll1s.5 + Vi N(Uo,?ul]) W |17)-
0,t

By Lemma [B] (for the smoothing operation given in Definition on Cr), we
have that

(8.19) [w(t)[13.5 < lluollz.5 + vV No(uo, CY),

where we use C0 to denote a fixed (nongeneric) constant which depends on .
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9. EXISTENCE OF A FIXED-POINT SOLUTION OF THE SMOOTHED K-PROBLEM
WITH SURFACE TENSION

Let A: (w € By) — w, with w a solution of (£2). By the relation (819), we see
that if we take T, € (0,7") such that
VT No(uo, C)) < 1,
then
(9.1) A(Cr,) C Cr,.

We now prove that A is weakly lower semi-continuous in Cr . To this end, let
(w™)22, be a weakly convergent sequence (in L?(0,T,; H'3-5(Q2))) toward a weak
limit w. Necessarily, w € Cr,.

By the usual compactness theorems, we have the successive strong convergent
sequences

7" — 7 in L*(0,Ty; H?5(Q)),
(7™ — T in L2(0,T,; H25(Q)).

the following bounds:

T
/ w205 < CN (o),
0

sup [[wnll13.5 < 2uoll13.5 + 1.

)

We thus have the existence of a weakly convergent subsequence (w?(™) in the space
L2(0,T,; H3*(Q)), to a limit [ € Cr,. By compactness, from our bound on w?,

w™ — 1 in L*(0,T,; H*®(Q)).

n i
j

From the strong convergence of (77"*)", we then infer from the relations (ay!),’

=0 in Q that
(9.2) (@x),51,5="0 in Q.

)

w

Moreover, we see that
p7™ = pin L2(0, T H'5(2)),
with p the solution of
Ap = —(t,)"; U, in 7 (Q),
p=—[08g7 e (7le) + K80 (w 7 (7)) (77 )-

From the relations (83]) for each n, we see from the previous weak and strong
convergence that

| Gatioy v [ 1m0 mulmh
0 0
T o T
(9.3) - [ @@ty = o [ g )0t
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which together with ([@2]) and the fact that I € Cr, implies that [ = A(w). By
uniqueness of the limit, we then infer that

w™ — w in L(0,T,; H3*(Q)).

By the Tychonoff fixed-point theorem, we then conclude the existence of a
fixed point w = w in the closed convex set Cr, of the separable Banach space
L2(0,T.; H'35(€2)). This fixed point satisfies the smoothed system (1), if we de-

note n = Id + / wand u = won* L. Tt is also readily seen that w, ¢ and their

0
time derivatives have the regularity stated in Theorem [B] O

10. ESTIMATES FOR THE DIVERGENCE AND CURL

Definition 10.1 (Energy function for the smoothed x-problem). We set

3 3 t
E2P(t) =Y 110fn®)13 5 + llvee 015 + IVEn(®) 125 + Z/O 10F v ()12 5
k=0

k=0

and

4 4 t
EP(6) =Y 10135k + e (D115 + 1VEn (1) 155 + Z/O 100 ()35 -
k=0

k=0

We use F,(t) to denote the energy function when the dimension is clear.

We use these energy functions to construct solutions for the Euler equations.
The increase in the derivative count from the 2D case to the 3D case is necessitated
by the Sobolev embedding theorem. We will show that solutions of the xk-problem
(4J) have bounded energy E.(t) for t € [0,T] when T is taken sufficiently small
and that the bound is, in fact, independent of x; as such, we will prove that the
limit as k — 0 of the sequence of solutions to the k-problem converges to a solution
of the Euler equations.

Our estimates begin with the following

Lemma 10.1 (Divergence and curl estimates). Let n := dim(Q) = 2 or 3. Let
Ly = curl and Lo = div, and let ny := n(0) and

My := P(|uol2.54n, T la+n, vVE|woll1.5430, VEIT[143n)

denote a polynomial function of its arguments. Then for j = 1,2,

n+1 T
sup IVELEE 500+ D ( sup [|L;0Fn(t) |13 5 n—r +/ Iﬁbjafv|§.5+nk>
telo, k=0 0

te[0,T]

< My+CTP(sup E.(t)).
t€[0,T)

Proof. In Eulerian variables, equation ([IH) is written as u + u’,; (u.)! + p,i = 0,
where the transport velocity is the horizontally smoothed vector u,. Taking the
curl of this equation and using the formula (curlu)? = qjkuk,j with e;5, denoting
the permutation symbol, we see that gijk[atuk,j —|—uk,jl ufﬂ +uk ufm—] = 0. Thus,
defining the bilinear form B*(Vu, Vu,) = €;;,u”,; (u,)',;, we can write the vorticity
equation as 2 curlu = B(Vu, Vu,). (When the transport velocity is divergence-
free, then B is the familiar vortex-stretching term.) Composing this equation with
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Nx, switching to Lagrangian variables via the chain rule, and integrating this from

0 to t, we have
(10.1)

t
Eijk’l)k,T A,ig = curlug + / B, (T)dT, B = Eiijﬁ_ka,r aﬁf(vﬁ)l,m a,%”,
0
where A, = J_'a,. This is the time-integrated Lagrangian form of the vortic-
ity equation. We will need to space-differentiate this equation once more for the
estimate on curln. Hence,
t
(10.2) sijvak,T A, = Vcurl ub + aikjvk,,« VA + / VB,, (T)dr.
0
We begin with the estimates for the case that n = 2; we set E,.(t) = E2P(¢)

and proceed with the estimate for curly. Using that Vo*,, A= 0 (V¥ ... Agj) —
vk, atA,g;, we see that

¢

aijkat(vnk’r A,i;) =V curl ué +5ijkvnk,r (’)tA,i; —i—eikjykw VAN; —I—/ VB,, (T)dr.
0

Integrating once again in time from 0 to ¢ yields

t t ot
ek V", Al =tV curluf + ek / (Vi AL + v*, VAL + / / VB,,,
0 0 Jo

where

VB, = ¢€ijk [J;Q(Vvk,r Vel A0 Vel )] Q"
(10.3) +J,:2vk,r Vilom (Vada,%” + aH}"VaN}”) +(VJ?) oF vt aﬁfaﬁyb}
and

van;‘n - J;;l(anf«an;ﬁ - CLNTCLN;)Vﬁ,{T,S 3
(10.4) Oray]' = J;l(aﬁﬁa,ign — U5, 030" s
VJ, = angvnnras .
Since ||lvglls < C||v|ls (and similarly for 7, ), we will write (I0.3]) and (I04) in
the following way:
VB, ~ J 2a2VoViv+ J a3 (V)2 Vi,
Va, ~ J 'a2V?n,
Ora, ~ J a2V,
VJ. ~a.Vn,
where note that we are not distinguishing between 7, and 7 or between v, and v in
the highest-order terms. The point is that the precise structure of these equations
is not important for our estimates; we need only to be careful with the derivative
count appearing in these expressions. The power on each expression is merely to

indicate the number of times such a term appears.
Next, with the fundamental theorem of calculus,

t
i Vn* e Ay = Veurly' + 5ijkvnkar/ DALY,
0
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so that
(10.5)

¢ ¢
V(curln’ — teurlu) = Eijk {Vnk,,«/ Opay; + / (V... Oray’; + ok, Va,})
0 0

t et
+/ / VB,, .
0 Jo

F:=P(J ' a., Vv) and Fy := P(F,V?n,V?v)

denote polynomial functions of their arguments. We then express (0.5 as

Let

t t t pt’
Vcurl n’ ~ tV curl uf) +V2n/ F+/ FV2n+/ / F(V?n+ V%),
0 0 o Jo
and taking two more spatial derivatives yields

t t t
V3 curln’ ~ tV3 curl uf + V477/ F+ V?’n/ o+ V277/ Py
0 0 0

t ot t
+ (/ / +/) [Fy (VP + VP0) + F V]
0 0 0
t ot
+/ / [Fy V30 + PV .
0 0

Since fot fg/ FViy = — f(f fot/ F, Vi + f(f FViy,
(10.6)

t t
V3 curln’ ~ tV?3 curl uf) + V477/ F+(VPn+V?n) / F
0 0

+ </Ot/0t’+/0t> [Fl(V377+V3U)+(F+Ft)V477]+/Ot/0t,F1vgv'

We use interpolation to compute ||V3curlnl|lgs = || curln||s.5. We begin with the

highest-order term:

t ¢ t
’/(F+Ft)v477 /n /77
0 0 0

t t
] [l + s 19+ Flus)| [ 9
o s tefo,m) 0
t
<C s [F+Filus | [
te[0,T) 0
Since ||F + Fill1.5 < C||F||z> ||ve]l2.5, by the interpolation Theorem 7.17 in [I],

t
| Jr
0 4.5

<CT sup ||F[| [[vell2s [1nlla5-
t€[0,T7]

< sup [|[F + Fi

<C sup ||[F+F, 5
0 t€[o0,T]

4 t€[0,T]

3

4

t
/ (F + F,) V'
0

< sup ||F + Fi||p~
1 t€[0,1]

L4

5

<C sup |F|[|vell2.s
0.5 t€[0,T]

t
0
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The other terms have similar estimates in the H%?(2)-norm, so that

t
(10.7)  sup |leurln|s < Tluollis +t sup || [ wl3s+T sup |lvellzs]nlis-
t€[0,T] t'€[0,t] 0 te[0,T]

By differentiating (I0.6]) once more in space, the same interpolation estimates
show that

T
sup ||ﬁcur1n||i5STII\/Euo\Ié.5+T/ lllds + T sup [vellz.s]lvrnll3 5 -
te[0,T] 0 te[0,T]

Next, we rewrite (I0.1]) as

t t
(10.8) curlv = curlug + aijkvk,,«/ Or A +/ B,, .

0 0
Using the fact that H®(Q2) is a multiplicative algebra for s > 1, it follows from

(I0.3) and ([I0.4) that sup;ejo 7y || curlv(t)2.5 < ||uollas + CT P(supseio 7y Ex(t)).
Differentiating the above expression for curl v yields

t
k T k r
curlv; = EijkV o ata,{j + Ban + Eijkaﬂj 77‘/ 8tAnj s
0

so with the fundamental theorem of calculus and our generic polynomial function
F

t t
(109) Curlvt ~ P(VUO) + V'Ut/ F +/ Ft, Ft ~ FV’ut .
0 0

Again using the properties of the multiplicative algebra, we see that

sup || curlv:(t)||35 < P(||luollas) + CT P( sup E.(t)).
te[0,T] t€[0,T
From the time differentiation of (09I,

t
curl Vet ~ V’UtF + V’Utt/ F
0
¢ ¢
(1010) ~ VUt(O)P(VUO) + vvtt/ F +/ [FVUtt + FVvtht] .
0 0
We must estimate the H%3(Q)-norm of the three terms on the right-hand side of

(I0I0)) by using interpolation. Let L denote the linear form given by L(w) = fg Fw.
Then

t
L)l < Coll [ wlo:  Co=sup [P~
0 [0,]
Letting Fy := P(J !, a,., Vv, V21, V2v), it is easy to check that
t
L)l <Gl [ wlh, C=sup A~
0 (0,t]

By the interpolation Theorem 7.17 in [,

¢ ¢
||/ FVugllos < Cov/Ch ||/ vt ll1s
0 0
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so that by Jensen’s inequality and Sobolev embedding,
t
\|/ FVvyull3 s < CT P( sup E,(t)).
0 te[0,T]

All of the other time-dependent terms in ([0I0) have the same bound by the
same interpolation procedure. For the time ¢ = 0 term, interpolation provides the
estimate

1P (Vo) Ve (0)]lo.s < CP([[uolla.s)llve(0)[l1.5 < CP([luollas)[q(0)]|2.5 < Mo.
The initial pressure ¢(0) solves the Dirichlet problem
Aq(O) = i() = (UQ)i7j (UO)K)jﬂ‘ iIl Q,
Y i aB, i i
q(0) = by := \/\/g;iﬂojgoﬁno a8 N+ kAg(ug - Ng) on T

Since [|g(0)[|2.5 < C([liollo.s + [bol2) < Mo, we see that sup,ec(o 1 || curlvg ()] 5 <
Mo + CT P(supycpo, 1 Ex(t))-

Differentiating (I0.I0) with respect to time, we see that curl vy ~ Vo fot F+
F Vv + F Vo, Vg so that by the fundamental theorem of calculus

FVvtt + FV’Ut VUt = F(O)[V’l}tt (0) + V’Ut (0) V’Ut(O)]

t
+ / [F V'Uttt + FV’Ut V'Utt + FVvt V’Ut Vvt] 5
0

so that
(10.11)

T
/ V7 curl vy |25
0

T T t 2
< / IVAF(0)[Vurt (0) + T (0) Ver (0)]||2., / H\/Evum / F
0 0 0 0.5
T t 2
+ / / [F \/EVUM + F V’l)t \/EVvtt + F Vvt V’l)t \/EVvt]
0 0 0.5

We repeat the interpolation estimates between L?(Q2) and H!(Q) just as for the
estimates for curl vy; for example,
¢
/0 Vv

t
/ F\/Evvttt
0

so that by Jensen’s inequality and Sobolev embedding,

<V/Co/C1

0.5

)
1.5

t
u / Fy/aVou|2s < Ct sup Ex |[Vrvml s
0 [0,t]

Thus, integrating from 0 to T' gives the estimate

T t T
/ H / FVRVu25 < CT P( sup Exl(t)) / VRl
0 0 0

t€[0,T]

< CTP(sup ELt)).
te[0,T]
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The other time dependent terms in (I0II]) have the same bound by the same
argument. The time ¢ = 0 terms require analysis of the elliptic problem for ¢;(0):
Ag(0) ~ iy := V[P(Vug) Vq(0)] + F Vv (0) in £,
q:(0) ~ by := Q(Iny)D*ug + Q(Ing)Aupd*no
+ kA (v4(0) - N) + kAo(ug - Q(Ono,,)0ug,) on I'.

By interpolation estimates (as above),

T
/O VR (0)[V 0 (0) + Vor(0) Vor (0)] |5 5 < KT [P(Vuo) 7. 032 (0)F 5,

and since time differentiation of the Euler equations shows that
v:(0) = —Vug Vg(0) — Vg (0),
interpolation provides the estimate
Val[ve(0) 115 < VElI Va0 Va(0)llo.s + Ve[ Vuo V2q(0)]lo.5 + V&4 (0)]|2.5

< Mo + VEllitllo.s + VE[b1]2

< My + Velbi]2,
where we have used the elliptic estimate [|¢(0)|2.5 < My (from above) for both the
second and third inequalities. (The remaining estimate for |b|y places the regu-
larity constraints on the polynomial function My in the hypothesis of the lemma.)

Because H2(T') is a multiplicative algebra, the bound for \/k|b1|2 is controlled by
the highest-order terms /k|v:(0)]4 and v/k|ugkls < /KEC||ugll5.5- Now,

VE[(0)]4 < VE[lg(0)]5.5 < VElliolla.s + vilbols ,

and |lig]|s.5 is bounded by P(|luo|la.5) while the highest-order terms in +/k|bgls
require bounds on /k||no||7.5 and /| ug|l7.5. With our definition of My, we see
that

KT || P(Vuo) |7 [lve (0)[|F 5 < Mo

and hence fOT vk curlvi||g 5 < Mo + CT P(supye(o 7 Ex(t))-

The proof that fOT |V curlvg||2 5 < Mo + CT P(supepo, 1) Ex(t)) is essentially
identical. 4
The divergence estimates begin with the fundamental equation a,Jv’,; = 0. By

taking one derivative of this equation and integrating by parts in time, we find that
t t
Vdivy = vni,j/ DA, +/ (0 AV =V A ;).
0 0
Computing the H25(Q)-norm of this equation yields the estimate
sup || divn(t)||25 < Mo+ CT P( sup E,(t)).
te[0,T] t€[0,T]

The divergence estimates for v, vy, vy, \/KVst, and y/kvyy follow the same argument
as the corresponding curl estimates.

In the case that n = 3, the estimates are found in the same way, with one minor
change. Set E,(t) = E2P(t). The estimates for curlyn, which rely on Sobolev
embedding, require greater regularity on v;. The estimate (I0.7)) becomes

t
sup || curl |35 < TluolZs +t sup II/ V|35 +T sup vellsllnll3s .
te[0,T] t’'€[0,t] 0 te[0,T]
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and similarly,

T
sup ||/ curl]|3 5 STllx/EuoH?.ﬁT/ [vll3s +T sup [lvellslvAnlZs-
t€[0,T7] 0 t€[0,T7]

O

11. SOME GEOMETRIC IDENTITIES

We will usually omit writing dSy in our surface integrals, and for convenience we
set o = 1. Let H§- denote the projection operator onto the direction normal to 7(T"),
defined as 1T} = 62 — g*Fn 6;m'5, where g is the induced metric on 7(T") defined in
(T4). The mean curvature vector motivates us to introduce the projection operator
II. In particular, we have the important formula

(11.1)
—VgHnon=/gA(n)
=9 [97(07 = 80" 5 0 0P s +(9°7 " = g 9NN 5 1 ]
= V99" T e
where the last equality follows since (g*?g*” — g* g"Pnt 51/, 7 ua = 0. For a

vector field F on I, IIF = [n - F]n, ie., I =nQ&n.
We let

(11.2) Qn) = f1(0n)/ f2(V9)

denote a generic rational function where f; and fo are smooth functions. We record

for later use that that n = @;—%l = % and that |[a” N| = \/detg on T, as

17,1 X 1,2 \2 = 5ijk77ja1 77k72 Eirsh 51152
= (5jT5kS - 5j55k’f)77k71 njas 77Ta1 775,2 - |77a1 |2|77a2 |2 - [7771 1152 ]2 =dety,

where ¢;;, denotes the permutation symbol of (1,2,3). We will use the symbol @
to denote any smooth (tensor) function that can be represented as (I1.2)).

Remark 9. The L*°-norm of the numerator of ) is bounded by a polynomial of
the energy function, while the L*-norm of the denominator of () is uniformly
controlled by (83a). Thus, the generic constant C' which appears in the following
inequalities may depend on a polynomial of det go. In particular, ||Q(9n)|L~ <
C(det go) || P(9n)|| Lo -

For a vector field Fon T, F- N=F-n+ F - (N —n) and

t t
IN — nlp < / Inel e = / QO] = < Ct P(E()),
0 0

the last inequality following from B3al). If [IIF|, < My+ CP(E.(t)), then |F- N|;
satisfies the same bound.
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12. K-INDEPENDENT ESTIMATES FOR THE SMOOTHED PROBLEM
AND EXISTENCE OF SOLUTIONS IN 2D

All of the variables in the smoothed k-problem (&I]) implicitly depend on the
parameter . In this section, where we study the asymptotic behavior of the solu-
tions to [@1I) as k — 0, we will make this dependence explicit by placing a ~ over
each of the variables. We set E, (t) = E2P(t).

Remark 10. The only difference between the 2D and 3D cases arises from the
embedding of 9; € L*>(Q). In 2D, &, € H?5(Q) is sufficient, while in 3D, we need
o € H3(Q).

The pressure function ¢ can be formulated to solve either a Dirichlet problem
with boundary condition (IZ3]) or a Neumann problem found by taking the inner-
product of the Euler equations with L N. We use the latter.

Lemma 12.1 (Pressure estimates). With (9,q) a solution of the k-problem (L1
(12.1) 1G5 + 1 ®)1I5.5 + 3 (DT < C P(Ex(?)).

Proof. Denoting a, by A, we define the divergence-form elliptic operator L4 and
corresponding Neumann boundary operator B4 as

La=0;(J7tAIALD), Ba=J tAlAIN;0,.

For k£ =0,1,2, we analyze the Neumann problems

(12.2) Lo(0Fq)=fr in @ B,(0fq) =g, on T
with
fO = atAg f}iaj ) go = —Ut - \/ GrTix,

fl = _LAt(‘j) - 8t2Az f}ivj _815"45 5273‘ ) g1 = BAt((j) - 'Dt'( gnﬁn)t — Uy gnﬁm
f2 *QLAt(qt) - LAtt((j) - 8?*4? ’Diaj y 92 = QBAt(qt) + BAtt((j) — Vgt * \/ GrTlks

— 207 Al 0},; 0, Al By — 2041 - (V/Gni)e — Bt - (VG )iz -

For s > 1, elliptic estimates provide the inequality

(12.3) 10£a(0) s < Cs[P(nllas) fills—2 + lgrls—s/2 + llllo]

where || - || -1 denotes the norm on [H'(Q)]’. We remark that the usual H* elliptic
estimates require that coefficients have the regularity 0°71(ALAY) € L>°(Q); how-
ever 9°1(ALAY) € L%(Q) is sufficient. See see [J] or the quasilinear estimates in
[19].

As we cannot guarantee that solutions G to the x-problem ([@1l) have zero average,
we use ||G|lo < CJ|||; and the H! elliptic estimate for the Dirichlet problem L 4(q) =
fo in Q with —¢ = Agfj - 7y, + KA(0 - 72,) on I'. Thus,

ldll < C(ll follo + 257 - 7w + £AG(D - 71)]0.5) < C P(E,(t)).

From ([[0.4), it is clear that || fol|? 5 + |go]3 < CP(E(t)); thus, from the elliptic

estimate,
(12.4) ldll3s < CP(Ex(2)).
Next, we must show that ||f1]|2 5 + (9113 < C P(E,(t)). But

fi~P(J YA V) ([VE)? + V3§)
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so that with (I24), ||f1|25 < C P(E,(t)), with the same bound for |g1 |3, so that

@35 < CP(E.(t)). Using this, we find, in the same fashion, that ||fallo <
C P(E(t)). The normal trace theorem, read in Lagrangian variables, states that
if ﬁttt S L2(Q) with HA‘zﬁztt,] ||0 S L2(Q), then 6ttt . \/g_,{’flﬁ € H_0‘5(F) with the
estimate |’5ttt . \/g_n’ljln‘%oﬁ S CP(EH(t)) Since || T‘I'(A Vf}ttt)H% = H TI'(?)At V’ljtt +
3A4 Vg + Ay VO)||3 < C P(E.(t)) and using the above estimates for ¢ and g, we
find that |ga|—0.5 < C P(E(t)), thus completing the proof. O

Our smoothed k-problem (£I) uses the boundary condition (£Ie) which we
write as

Vi
Vi

where (we remind the reader) x > 0 is the artificial viscosity,

(12.5) G, = H - T e — 600 (0 - T ) e

——1 -
Ao =Gx  0a(v/5095"05),

7 is the unit normal along the boundary 7(¢)(T") and 7, is the unit normal along
the smoothed k-boundary 7, (¢)(T).

We begin with an energy estimate for the third time-differentiated problem.
Although we are doing the estimates for the 2D domain 2, we keep the notation
of the 3D problem as well as terms that only arise in 3D when differentiating the
mean curvature vector. Thus, when we turn to the 3D problem in Section [I4] the
modifications will be trivial.

Lemma 12.2 (Energy estimates for the third time-differentiated x-problem). For
My taken as in Lemma [I0T] and 6 > 0, solutions of the k-problem [&I)) satisfy

(12.6)

T
sup [||ﬁttt||8+\@tt~ﬁ|%]+/ ROPE - 2
te[0,T] 0

< My+TP(sup E.(t))+6 sup E,.(t)
te[0,T] te[0,T]

+ CtESEépT][P(H@t”%.E;) + P(H5H35) + P(||77||4215)] + CP(H\/EthtH%?(O,T;HM(Q))) .

Proof. Letting A = @, and testing 93 (J,.9}) + 97 (A¥G,x ) = 0 with 939 shows that

T T
1 7 ~i\A3~i ~i
(12.7 |5 [edae - [ [ ot ot
0 Q o Ja
T
== [ [ adnnn)) -0 dsio.
o Jr
Step 1. Boundary integral term. We rewrite the modified boundary condi-

tion (I2.0) as

NG [Fe e e e Fe = e - N
(12.8) (111%—\/—9_’i {Hn—!—Hn-(nﬁ—n)n+Hn-nK(nH—n)} — kAT - i) T -
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We first consider the boundary integral on the right-hand side of (I27) with only
the first term on the right-hand side of ([I2.8)):

(12.9)
T ~ . .
— / / 2 (/gHR' 0 n)dR5 dSy
/ /fgozﬁnzaQ ~j 83 7 / /\/ ~Uv ~ aﬂ_gaugp ] ~7 8211] ,'7}683 7

/ /Q (01, O0) 8,51)] 81} +/ /Q 877,81})83 i

=1+ I1I+1IT+1V.

The first term I on the right-hand side of (129 is given by
1 oy . royr :
1= [Vamersgganart |« [ [ aenenort, o,

where we use the notation f]I' = f(T) — f(0). Since Héf){t,g = (H;@gt),g —IT%, o,
and II¢ .5 = Q1] (97)ii' 1, with Q(0j) defined by [IL2), for § > 0,

_ % / V(L0275 (IL,025%,)
< _%|Hﬁtt\§ + 0[50} + (1+ C) |Q3° (07) a0 T z :
where the constant Cjs depends inversely on d. Since for any ¢ € [0, 7]
(@@ s ) || 0 < OPEL),
it follows that

1
I<—= sup |Moy|?+ Mo(8) + 6 sup E.(t) +CTP( sup E(t)).
t€[0,T] t€[0,T) te[0,T]

The second term I requires some care (in the way in which the terms are
grouped together). Letting

Al — 1070, 7771'3317,2] A2_|:"7,1'8t27~1,1 7771'3317,2]
) U U . )

Mo 0701 720702 T 020701 72070,
020, Dq-020,
12.10 A= | PGt Ut Gita
( ) { No-0701 20702
we find that
(12.11)

1

II_/ /det 2 (9; det A" — det A% — det A%)

T

:/ /—(detg_%)t det.A1—detg_%(det.A2+detA3)+/detg_% detAl}
o Jr r

0
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For oo = 1,2, let Vo, = 7,0 - 870; thus Va5 = Al 5 + 71,05 0f; so that
det Al = det(Va,p —7',ap f),ft)
= det Vo5 — det(7,a Utt) + Pj; (62 )Uttvtt + P (8277)17&5%@ .
With A = Cof(0V), det OV = APV, 5. It follows that
/detg—% det OV = —/(detg—%),ﬁAﬁav,a,
r r

as AP® 3= 0 since A is the cofactor matrix. Hence,

(12.12) /detgfédetAl :/ Z](5' n)vttvtt + PS (8277)@;6{,5,& )
r r
so that
. T
II</ /Q (0n,00) 82 : 821)] + /[%(3277)172#7“ (52 )vttvttwé}
r 0

By the fundamental theorem of calculus and Young’s inequality, for § > 0,

[ Ps@niiita)r)
/F (P2(0%7)5,)(0) Ty (T / / (P2 (0%7)] dt oo (T)

2

<Mo<6>+6||@n<T>|%5+T( [ s (@i |2dx> 15T

te[0,T]
Since [Pf}(9*7)0}], € L>(0, T; L*(T)), we conclude that

IT < My(6)+ 06 sup E.(t)+CTP( sup Eu(t)).
te[0,T] te[0,T]

A temporal integration by parts in the third and fourth terms on the right-hand
side of (I2Z9) yields

T
nr+1v = - [ [[165(00.00)5,0+Q2 000, s
0 r
T

+ / Q2 (07, 00)5 5 +Q5 (07, 00)|lre |

0
which has the same bound as term I7; it follows that

(12.13)

//a (VgHRo7) -0

= —— sup |3+ Mo(8) +0 sup E.(t) +CTP( sup E,(t)).
2 te[0,7] te[0,7] te(0,7]

Remark 11. The determinant structure which appears in (I2I0]) is crucial in order
to obtain the desired estimate. In particular, the term det.A; is linear in the
highest-order derivative d9?v rather than quadratic (as it a priori appears).
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There are three remaining boundary integral terms appearing on the right-hand
side of (I2.7) arising from (I2.8)); the terms involving x are

(12.14)
T b -
fn/ ([0 (D 7n), BP0 - ] | + 3 [0F(D - Tin), DD - Deie]
0
+3[04(0 - 1iw), OF0 - 7 ] | + [0+ T, DP0 - D] ) -

The first term in (I2.14) provides both the energy contribution fOT |VEOPD - 7|2 as
well as error terms. We start the analysis with the most difficult error term,

T
(12.15) Ii/ [0+ 00} T, O - 030)]0,
0

whose highest-order contribution has an integrand (modulo L* terms) of the form
82\/E7)~ntt \/Ea’[)ttt

With 7, = (017 X 027k)/+/g = Q(I7x), Q given by [ILZ), the highest-order
term in 9937, is Q(07),)020%¥,, so that with Ry denoting a lower-order remainder
term, and using ([B3H]), we have that

T
—/@/ [0 - 0037, O - O3D)]0
0

T
<C S[up]|P(1~)aaﬁn)|L°°/ IWEDD - |1 [VEO Oxl2 + Ra
telo,T 0

<C S[UPT] |P(0, 07 ) | Lo [V/EOLD - Tus| p2 (0,711 () [V EOF D 20,1 12 (1)) + Ra
teo,
2

< Cs | sup |P(0,90x)| Lo IVEVse || L2 (0,7552-5 ()

t€[0,T)
+ O|V/Kstt - elT2 0 7o oy + R

< Mo+ CTP( sup Ex(t) + |[VEUeull 12010250y +6 sup Ex(t),
te[0,T] te[0,T]

where Ry also satisfies Ry < C'T P(supyeo, 1) £i(t)) + 0 supsepo, 77 £x(t). The sec-
ond term in (I2I4) has a highest-order contribution with the same type of inte-
grand, and its analysis (and bound) is identical. The third and fourth terms in
([I214)) are effectively lower order by one derivative with respect to the worst case
analyzed above.

Next, we estimate fOT [ O HR - iy, (72, — 1)} 050, Since i, = Q(il) and since
|7 — 1| < sup,, |0Q(Ony )] |Onk —In|, then our assumed bounds (B3 together with
[26) imply that

(12.16) [l — 7| poe < CVE|P(O7,0%7)| 1~ |Tll25 < Ck P(EL(t)).
Similarly,
(12.17) 071 — Of| e < C /K |P(0], 0%1)| Lo |7i]3.5 -

Also by 26), for k =1,2,3,
(12.18) |0F i — O e < CV/R|P(O7], 0%7)| oo |0 Tla5
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and
(12.19) 1070 — 070]0 < C V5 [Tuel 15 -

Taking three time derivatives of formula (ITI]), we see that the highest-order term
in 03 (v/gHR) is Q(07)0?Vy;. Thus, the highest-order term in the integral

T
| [ eamnya @ - anap
0 r

is estimated using an integration by parts in space. The highest derivative count
occurs when the tangential derivative is moved onto the v term giving us

T T
/ / Q5(07)0T, s, (R, — A7)0y < C / PO | oo [ty [ — il e 1031
0 I 0
T
< C/ |P(01,00) Lo 1|25 |01 |VEVwe 1
0

T
< CsT P( sup En(t))+5/ IVEDl7
t€[0,T) 0

where (I2I7)) is used for the second inequality. If, instead, integration by parts
places the tangential derivative on 7,, — 72, then (I2.I7]) provides the same estimate
for this term. The other terms are clearly lower-order.

Thanks to (TZI8]),
T
/ / On(/GHR®) O (R, — ")} 035"
0 T

T
< C/ |P (071, 077) | Lo 10?00 |0t ]2.5 [ VDt |o
0

< CsTP(sup Ei(t))+0 sup E.(t).
te[0,T) te[0,T]

We next consider the integral
T
[ [ Vamio -y ot
o Jr
T ~
(12:20) = [ [ Vaftn -0t ()5
o Jr

T
+/ / \/EHﬁ-ﬁ,i 02 (e — 1) - Dpge + Ro
o Jr
=TI+ 1I+R,y,
where Ry is a lower-order term. For term I, we use the estimate |7, — 7|
C k|fi|3.5. One \/k goes with 977,, and the other \/k goes with @;. Thus, |I|
CT P(supyepo,r) Ex(t)) + dsupiepo 1) Ei(t).

To study IT, we set f = \/GHR -7, and consider the term fOT Jp £ Nutee - Ogee. We
expand v into its normal and tangential components: set 7, = 1],, so that

<
<

O =v" T4+ v" 0, where v 7 = (U-7,) Tq and v" =7 - 7.
Then

f)ttt = ’UZ—ttT + 3’[};7} + 3’1)2—7'” + ’UTTttt + ’U;&tﬁ + SUZ’Flt + 3’1}?’”&“ + v"ﬁttt .



872 D. COUTAND AND S. SHKOLLER

The most difficult term to estimate comes from the term vj,7, which gives the

integral fOT Jo f e - TR

First, notice that nsy - 7 is equal to —n - 744, plus lower order terms that have
at most two time derivatives on either 7 or 7, and 7t - Ty = 7 - Og¥y for B =1 or
2. Next, the k problem states that o}, = (A¥q,1 )i, where we recall that

A=a,.
We have the formula
ii'5 A¥OGy = T%0sGy (no sum on B)  for B=1,2,
where
Tl =ita A, JP=1is A2

(In the case that x = 0, J°? = J = 1.) Using this, we see that the highest-order
term in our integral is given by

T
(12.21) /O /ij (71 - Opne ) Dpiae -

Second, write G as

_ V3 o o I

G = — | —=[8g(70) - 1+ Ag () - (e — R)] + £AO(D - 71w) |

We begin by substituting the first term on the right-hand side of (12.22]) into (I2.21]);
the highest-order contribution comes from 9302 Az () = Q(97, 07 )G 71 - 04,y s-
Integrating by parts with respect to 0,, the highest-order term in our integral is
given by

(12.22)

T
/ / QO i) £ (- Foos ) G (7 - et ) -
0 I

Letting G}’ 1= Q(01,00,) [ nif; = Q(017, 07, )9%n, integration by parts in time
yields

(12.23)

T
f/ /&ij” ”Dg,yg 6;,#5+/8tngV @g,yg ”Dz,uﬁ
0 I r 0

< CTP( sup Eu(t))+ Mo+ C sup |Ge|re ||f)t||§.5

T

te[0,T] te[0,T]
< Mo+ CTP( sup Eu(t)) +C sup [P(|5:ll35) + P(|5]35) + P(Ill.5)] -
te[0,T) t€[0,T]

For the second term on the RHS of (IZ.22)), the highest-order term gives the integral
T
| [ £Q@000) (0 5u3) 3 Wt~ )
o Jr
T
<CTP(sw E0)+5 [ [VunlRs,
0

te[0,T]

where we used |1, — 1|~ < C k|7]5.5 again.
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For the third term on the RHS of (IZ22]), the highest-order term gives the
integral
T ~
5 /O /F £ Q94,071 (7 - vre) (7o - 0%71r)

< Mo+ CTP( S[Up . E.(t) + VA0l 12 (0.1 525(52) -
tefo

We have thus estimated the integral fo [ O} Hfi- iy, (2 — 1)} 039, The remaining
integral fOT [ O3 Hy - (i — 1) 72, } O30 has the same bound.
Step 2. The pressure term. We next consider the pressure term in (I27):

T T
- / / RB(AS DT, = — / / P, [0 ABG + 307 AV Gy + 30, AF Gy + AL PG
0 Q 0 Q

(12.24) =I+IT+IIT+1V.

We record the following identities:

(12.25a) O AN = J-L(ASAF — AF AT,

(1225b) oAl = ; (ASAF — AEAO,0EPH(T 1 A,T5,).
(12.25¢) FAF = J M (ALAY — AR AT +PF (I, A, V)00 -

With ([Z25d) and f3F := J_1(AsAF — AFA$)G, term I is written as

T
I= / / (o070 1, 070y +070 1 00k Py (Tt A, V)]
0
= I,+ 1.

We fix a chart 6; in a neighborhood of the boundary I' and let £ = |/a;, where once
again, we remind the reader that {a; }~_; denotes the partition of unity associated to
the charts {#}Z ,. With Z, denoting the restriction L,|u,, where U;NQ = 6,((0,1)3),
and letting p := pL and 6 := 0;, we have that

7, - / / OB 0)€p 20 ps 7 0) + O aGE V)i
0,1 3

= Ial +Za2 ’

where G(&,V¢) is a bilinear function which arises when the gradient acts on ¢
rather than 4. The term Z,; is the difficult term which requires forming an exact
derivative, and this, in turn, requires commuting the convolution with f5¥. We let

V(0) = pxn £0(0)
so that using the symmetry property (Z71), we see that

T
Toy = / / pn [FREO0T 1 (0)) PV (0)
0o J(0,1)3

T
= [ @y e

+(p*n [FEFEO}0 ] — £2Fpn [€070° 1)) Vi s |
::Ia1i+Ia1ii'
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Since f5F is symmetric with respect to i and r and k and s, we see that
To=3 [ [ o0 5 v o)
0,1)3
1 ,
= / 0L OOV OV (0)+ 5 [ £
(0,1)3 2 J(o,1)2
(3 T T
RV 1, (0)FVT 5 (0)], -
We sum over our patch index | = 1,..., L. The spacetime integral is bounded by

CTP(supiepo, 1) Ex(t)). For the space integral at time ¢ = T', we employ the funda-
mental theorem of calculus:

T
/ SRV Vi (T) = /Q Vi (T)Vis (T)£25(0) + /Q Vi (T)Vi o (T) / oy fsk

T
< Vet (D) ol + 11Vae (T)113 H/O | fell o

4/3 2/3 | ~
< oD o (D1 1ol +CTP( up EL(t))
<|0,

) -
< S5 +C@)va (TG ldol3+CTP( sup Ex(t)
t€[0,T]
<0 sup E.(t)+ Mo(d) + CTP( sup E,.(t)),
te[0,T] t€[0,T

where Young’s inequality has been used. For Z,;;, the commutation Lemma 2T
shows that

T
1 ~ ~
Toris < Ot [ 1l IRt 5l
0
T T
<o [ IRl +Cs [ 17IB ol
0 0

Summing over | = 1,..., L, we integrate by parts in time and write the term Z,5 as
T

T
Zao :_/o /QfV17ttG(§7V§)(fﬁtt)t+ /QfVﬁttG(&Vf)fﬁtt .

This is estimated in the same way as the term Z,;,. The term I;, is handled in the
identical fashion with the same bound. Thus, we have shown that

I <4 sup E.(t)+ Mo(6) + CTP( sup E(t)).
te[0,T] te[0,T]

Using ([2:250) for term 17, integration by parts in time gives the identical bound
as for term I. For term I71, a different approach is employed; we use (IZ.25a)) and
integration by parts in space rather than time, and let F2F := 3J-1(AsSAF — Ak A?)
to find that

T T
I =— / / B[]0 o quel s+ / / 5y FSE Ny e
0 Q 0 IN

The Cauchy-Schwarz inequality together with the pressure estimate (I21]) give
the bound CTP(sup,co, 7] Ex(t)) for the first term on the right-hand side. The
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boundary integral term requires integration by parts in time:

T
/ /Uttt Nthtvms* /tht Nthtvms:| */0 szt[FﬁikaQttﬁZ;s]t

= I1I, + IIT,.
First, note that
G FF N = 3 A8 [(GAF NG ) — 23:0,AF Ny — GO} AF Ny |
(12.26) —3J, A5 [(GAEN) w — 26,0, AENy, — GOFAEN,]
Next, substitute the boundary condition (I2.§]), written as
(12.27) —GAF N, = /GAG(7) 85 + (n)j — y)its + 70 (7 )i — 703)]
+ 6(v/9095 " [B - s ) o T

into (IZ26). The two bracketed terms in (I2.26) are essentially the same, so it
suffices to analyze just the first term. We begin by considering the term /gA;(7")

in (I2:27).

Then I11, can be written as

(12.28)

IIl, = 3/ {82 \/_gaﬁn 8 )ra Upys A 72qt5‘tA N7, —qO; AkN iUy }ﬁ;t]

/ fg“ﬁn’,ﬁ tt msAs”tt)
— 20 0 AP NG B, — T 02 AFNGET 0, 1D

<0 sup Ei(t)+ Mo(d) + CTP( sup E.(t)),
te[0,T] t€[0,T]

T

0

the last inequality following from the fundamental theorem of calculus and the same
argument we have used above.
In order to estimate I}, because we do not have a trace estimate for 93 A, we

let Q,(07) := V3 (7is), and compute
ath = ?iﬁ,iaa ; 82@7" = Q?Z’U;aa ﬁm,ﬁ’ +Qmatv,~moz s
(1229) 8SQT = Q?gzvzﬂa Umﬁ vH’] +3Qrz] RLe atvmﬂ +Qa at2 ;Zma .
Since \/gn(ﬁn)rqtt = (\/@H(TNLR)T(j)tt — 2@@,. (jt — 8t2Q7 (j, it follows that
(12.30)
111, = -3 / [T [ 0) Dot A+ 50 Qe A
_/Dtt(Qerﬁfma 17/1’8 Az Qt + Q?Igﬁéaa ﬁfwﬂ ’[]275 Af(j + Q?latﬁ,ijﬂl 172,5 Afd)t:| .
Using the pressure estimates and by definition of our energy function, for ¢ € (0,7),

Ge(t) € H(T),  Qu(1),8:Qn(t) € L=(T), 8;Q.(t) € L*(T),
ot (t) € H'S(T), 0y (t) € LA(T).
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Thus, all of the terms, except the first, on right-hand side of (I2:30]) can be easily
bounded by CT P(sup,¢(o 71 Ex(t)). Integrating by parts in space, the first term in
(I230) has the following estimate:

(12.31)
T .
3 / / Vo Ge T T (5,50 T A
0
+ V362 g% — g™ g" Vi o Ol 15 (T 0s P AS) e
+[Pz‘o;ﬁ(aﬁv aﬁ)ﬁft,g +P; (01, 85)](”&7%’5 ngAf),aﬁ CTP( sup E(t)).
t€[0,T]

The remaining three terms in the boundary condition (IZ27]) are now considered.
The additional integrals which arise in the (I2230]) are given by

—3/OT/F8,§”{\/Elflﬁ-(ﬁn—ﬁ)ﬁr—k\/Eﬁﬁ-ﬁﬁ((ﬁn)r—ﬁr)

+Ry gnA(j(ﬁ . ﬁﬁ)ﬁﬂ} ﬁras &ff);t
= J1+Jo+ J3.

Term J3 with the artificial viscosity provides the integral « fOT (03 (07 ), P(V7), VD)
029]1. The highest-order terms in this integral are estimated as

T
K /0 {[Pgﬁ(aﬁm Vi, Vo) 00’y , 0707, ]o + [P (9, Vi, B, VD) 0756y af&;’a]o}
T
<C Vi [PV VD)1 001 (V0TI + |Vi0} T2}
0

T T
<) / | P(V, Vo)l 1025 + 5 / (VRG] + |Vmo2,[2)
0 0

< CO)TP(sup Ei(t))+0 sup Ex(t).
te[0,T] te[0,T]

The lower-order terms in J3 also have the same bound. As to terms .J; and Js, the
estimates for the terms with (\/§H#). are obtained exactly as in (IZ31). For the
terms that contain 74, we use the formula (I2:29]) for the third time derivative of
the unit normal; it immediately follows that terms J; and .J5 are also bounded by
5SUPte[O7T] Eq(t) + CTP(SuPte[mT] Ei(1)).

Now we need only consider the additional terms in (IZ28)) from the remaining
three terms in the boundary condition [I227)). The only novelty is in the highest-
order integral coming from integration by parts in space in the s term:

/ P (T)vkys0 (Tl (T)

where Pgﬁ(t) and 8tPgﬂ(t) are both in L*>°(T") for each ¢t € [0,7]. Using the
fundamental theorem of calculus and the fact that /kvy, € L2(0,T; HY5(Q))

together with Jensen’s inequality shows that this term is bounded by My(d) +
6SUPte[0,T] Eq(t) + OTP(SuPte[O,T] (1))



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 877

To study term IV, we use ([I225)) together with the incompressibility condition
(0,5 A¥) e = 0 to find that

T
IV — — / / (300, Op AP + 0 O3 ARGy + 364 02 AXGpye] =2 IV, + IV} .
0 Q

For IV, we integrate by parts in time:
T ' 4 T
IV, = / / (041 OF AF)1Gee — / 30 6§A§dﬁ}
o Ja Q 0

Since 97 A is bounded in H?5(Q), the spacetime integral is easily bounded by
CTP(supycpo,r) Ex(t)); meanwhile, the remaining space integral satisfies

IVyy < 3/9[172% (0)97 A7 (0)]gs(T) + /Q /()T[@tiak 07 Af]e dt qu(T) + My
< 8llqu ()5 + Mo(9) + Ttes[lé%] 1Tk 02 AT )elo lgee (T lo
<0 sup Ei(t)+ Mo(d) + CTP( sup E,.(t)).
te[0,T] te[0,T]
With F3F .= J-1(ASAF — AR A3), TV, is written as
(12.32

1V,

)
T - - . .
—/ /(38§5T;s FSFo o 4070005 FEF0 1 )Gaee + 0k PJE(J,«M_% A, V)00, i Gt
0Ja
= IVal +IVa2 +IVa3 .

Term IV,5 is estimated in the same way as term IV;. For term I'V,,, we integrate
by parts in space to find that

T T
Vg = — / / OFVLFF0" ), Guue Ns + / / OFT (FEF0" 1, Geae ) s := TViao; + TV
0 I 0 Q

The first integral IV,s,; is handled identically to term III, to give the bound
CTP(supicpo, 1) Ex(t)). We write the second integral as

T
Wi = / / P25 g Guvers +ORT (T 1 )on e
0 Q

integrate by parts in time, and obtain

T
A / / (G20 FEN5 1 Vet 02T (FEFS 1 s ]
0 Q
T

b [ OBTLFEA s s +OBTFEE s )
Q 0

Since 937, is bounded in L?(Q) and (F Vo), is bounded in L (), the spacetime
integral is bounded by CT'P(sup;c(o 1 Fx(t)). Next, we analyze the highest-order
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term in the remaining temporal boundary integral in I'V,,:

/ [(OFTLFSFD" 1 ) eess |(T)
Q

T
- / (D2 (0)F=E (0) s (0))ioeos (T) + / / (P FE 3 )vdnss (T)
Q QJ0
< M) + Al (T 4T s [GETLEEET )l o)l
telo,

< My(6)+0 sup E.(t) + CTP( sup E.(t)).
t€[0,T] t€[0,7]

The remaining term is analyzed in the same fashion.
Step 3. The inertia term. Finally, the inertia term in (I27) satisfies

’ 30 F ~iy~i L5 g 1. 2
0; (J01)0iz, = 511 IR Deee (D)5 — 51922 (0) 5
0o Ja
T ~ ~ . . ~ . .
+ / / (2500 Tulta[? + 802 T4,y + 0} T 0
0o Ja
Singe O J, = Trace(a Vﬂﬁ),Nafjﬁ = Trace(a, VO:0,) + P(jn_l,diﬂﬁ), and

02 J,, = Trace(a, VO?9,) + P(J 1, a,, Vi,) VOiD,, then using condition (3.3d), we
see that

sup [[vaellg < (|90 (0)[[§ + CT P( sup_Ey(2)).
t€[0,T) te[0,7]
From (IZ.2)) evaluated at t = 0, we see that ||7:(0)||2 < My, so the lemma is
proved. O

Lemma 12.3 (Energy estimates for the second time-differentiated x-problem). For
My taken as in Lemma [I0T] and 6 > 0, solutions of the k-problem [&I)) satisfy

(12.33)

T
sup |82@t-mg+/ |VEO?Dys - T2
0

t€[0,T]

< My + TP( sup En(t)) +d sup E,{(t) + CP(H\/E@tH%?(O,T;H?’-s(Q))) .
t€[0,T t€[0,T
Proof. We let 99? act on ([£ID) and test with (299 where (2 = q;, and «; is an
element of our partition of unity. This localizes the analysis to a neighborhood of the
boundary I' where the tangential derivative is well defined. In this neighborhood,
we use a normal coordinate system spanned by (0179, 9219, N).

We follow the proof of Lemma and replace 97 with 992. There are only
two differences between the analysis of the second and third time-differentiated
problems. The first difference can be found in the analogue of term IT7 in (I29),
which now reads fOT fr P(017},00) 0ty 0%y After integration by parts in space, this
term is bounded by C'T" P(sup,¢(o,71 £« (t)); however, this term requires a bound on
|Us]1, which requires us to study the third time-differentiated problem. (Compare
this with the third time-differentiated problem wherein integration by parts in time
forms an exact derivative which closes the estimate.)

The second difference is significant. Because the energy function places

Dyee € L°(0,T; L2(Q)) and 9y € L>(0,T; H5(Q)),
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there is a one-half derivative improvement that accounts for (I2.33)) being better

than (T2.0]).

In particular, the analogue of term I7 in (T2Z20) is fOT Jr VGHRM -7, 002 (70 — 1) -
Oy, and since [002 (i, — 7))o < C |P(9n)|p |U¢|2, then this integral is easily seen
to be bounded by C'T P(supc(o ) Ex(t)). (This is in sharp contrast to the difficult
analysis required at the level of the third time-differentiated problem which follows

equation (I2:20).)
All of the other estimates follow identically the proof of Lemma with 9}
being replaced by 992. O

Lemma 12.4 (Energy estimates for the time-differentiated k-problem). For My
taken as in Lemma 0] and § > 0, solutions of the k-problem (@) satisfy

T
sup |a3ﬁ~ﬁ|3+/ |\/KO3T - |2
t€[0,T) 0

(12.34)

S MO + TP( sup E,i(t>) + 0 sup En(t) + CP(”\/E’D”%Q(O’T;HLS(Q))) .
te[0,T) t€[0,T

Proof. After replacing 997 with §29;, the proof is the same as the proof of Lemma
123 O

Lemma 12.5 (Energy estimates for the s-problem). For My taken as in Lemma
0T and § > 0, solutions of the k-problem ([@I) satisfy

(12.35)

T
sup |54ﬁ-ﬁ\g+/ |\/E8417~7~L,.€\g < My+TP(sup Et)+06 sup Ex(t).
te[0,T] 0 t€[0,T] t€[0,T]

Proof. Let 9% act on ([ID) and test with 935. All of the terms are estimated as
in Lemma[T2.3] except the analogue of (IZ.15]) which reads, after replacing 9 with
03, as
T
Ii/ [0 - 0, T - O10)]o -
0
Since the energy function places v/kij € L% (0,T; H%5(2)), we see that this integral
is bounded by ¢ sup,¢(o ) Ex(t) + CT P(sup,epo 1 Ex(t))- O

To the above energy estimates, we add one elliptic estimate arising from the
modified boundary condition (I2.8)). We will make use of the following identity:

(12.36) [vgA¢(n)]y = Va9 T sy +3/9(9" 9% = g 9" I0' 507 o0 10 sy s -

Lemma 12.6 (Elliptic estimate for /k7). Let My be given as in Lemma I0J1
Then for 6 > 0,

(12.37) sup |VEJ|Z(t) < Mo(6) +6 sup E.(t) +CTP( sup E.(1)).
te[0,T) te[0,T) t€[0,T]

Proof. Letting Q?i = Q?’B z(877) denote a smooth function of 97, from (I2.30) we
see that

PINVaAG ()] = [VIF T 15y +4/3(55%° — 55T 571 0 0% yur Jra
+ [aQ?6182ﬁj7ﬁ7 +82Q?ﬂlaﬁj7ﬁ7 +83Q?Blﬁj75W ]704 .
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The estimate ([Z37) is obtained by letting 829, act on the modified boundary
condition (IZX) and then testing this with (2§7°TL}9%7,5, where (? = q.

For convenience we drop the subscript ¢ from §2; and T';. (Recall that «; de-
notes the partition of unity introduced in Section 2.) For the surface tension term,
integration by parts with respect to 0, yields

T
/ [83(\/§Hﬁ‘ o 77])7’7 ) ng&ynasﬁﬁ ]0
0

T
1
< [ [-16va* Pl + 1|~ Inla 1dsno]
0

where F := P((,0n, 0v,0n) is a polynomial of its arguments. To get this estimate
we have used the fact that

Vg™ g =g it s 1w 1y IO 50 = 0,
since 7j%,5 II} = 0. (This ensures that the error term is linear in |I19°7|o rather than
quadratic.)

We next analyze the artificial viscosity term. The testing procedure gives us the
integral

T
- / R0%0, Mo - o), €257 T 15 .
0

The positive term comes from 5‘387 acting on v. This gives, after integration
by parts in space, the highest-order integrand #(9%7,a~ -7 ) g7 g5 (i - 1107, 35 ),
where II = n ® n. We can write this term as

5(835’117 'ﬁﬁ)gwggﬁ(ﬁn : 8377’&5 ) + H(agf)aav 'ﬁn)gvéggﬁ(ﬁﬁ (I — H,{)f)Bﬁ,g(; )s
where II,, = n, ® 71, The first term is an exact derivative in time, and yields

kd . s
§E|85n f|? — KOPH P AL O .
The space integral of the second term is estimated by
C|F|pe VKol [VEils 1L — I e
and
L, = | < C ki35

From ([Z3)
~ ——1 = o~
KaBAO(U : nrc) = _63( V 9k \@Ag(’?) : nm) + 63(1-
Thus,
C Vr|KD]s < KIF| Lo (|8]3 + [V&D]4) + (k2 + £2)| F| oo ila + | F| = [R5 + /|3 ,
so that

T
/ / K(agqjaav 'ﬁn)gfyéggﬁ(ﬁn (11— Hn)agﬁvﬁé )
0 N

T
<C [ [VRIFL=(ala + [VRDla + [ila + lil) Vs + |Flu= V]
0

Having finished the estimates for the terms leading to the positive energy contribu-
tion, we next consider the most difficult of the error terms. This occurs when 5‘387

acts on 7, producing the integral fOT K[C2 D - O*i, Ty - O*))0.
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To analyze this term, we let ¥ = ©70,17),; + Unfx; we remind the reader that
for v = 1,2, 0,7, spans the tangent space of 7, (t)(I") at 7.(x,t), so that 9,7, is
orthogonal to 7. It follows that vY0,7j - 0°f,. is equal to —v7R, - (’95(’9777,.C plus
lower order terms v7 R} (7)), which have at most only five tangential derivatives of
7. Note also that since 7, - i, = 1, i, - 0°fic is a sum of lower order terms which
have at most only five tangential derivatives of 7.

Thus,

T T
/ K[C2D - DO, Mo - D)0 :/ K[C? 0Ty, - 090471 + 0VRY (1), i - 070
0 0
where the remainder term satisfies

T T
/ KERY(@) s - OPlo| < C / \Fl [[VRol [v/Rils + [VRiL.
0 0

We must form an exact derivative from the remaining highest order term

T
(12.38) /0 KC2 T - 050y s - 000

and this will require commuting the horizontal convolution operator, so that the 7
on the right side of the L?(I") inner-product also has a convolution operator, and is
hence converted to an i, - 0*p1 %, 7 term. With this accomplished, we will be able
to pull-out the d, operator and form an exact derivative, which can be bounded by
our energy function.

Noting that on I" the horizontal convolution %, restricts to the usual convolution
* on R?, we have that

=Y v (o1 [p2 * (Va0 0)]] 007
=1

For notational convenience, we set p = py /.., ¢ = \/ag, and R = [0, 1?2 = 9;1(F0U¢).
It follows that (I2:38]) can be expressed as

T K
(12.39) /O KZ/R(mﬁ,ﬂ)oai-aya5 [C(0:)p * p* (Cil) 0 0;] (R - O°77) o 6;.
=1

With g, := 8°p x ((0;)7(6;), we see that
(12.40)
Rity, - 9,07 [C(6:)p % p * (C7j 0 65)]
= K - (8,0°C(6:))p % p o+ (CT1(6:)) + KT - p o+ Dy + KR (71)

where the remainder R5(77) has at most five tangential derivatives on 7. Substitu-
tion of (I2:40) into (I2339) yields three terms, corresponding to the three terms on
the right-hand side of (I2Z:40). For the first term, we see that

T K
K 5 NG - p* o (CF(0:) (7 - OF(0;
/0 ;/R(@a C(0:))07 0 - px px (CTi(05) (7 - O°71(6;))

T
<c / I/A8:lls 5 7(6:)] = | /Rl
0
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The second term on the right-hand side of (IZ40) gives the integral

T K
/0 K;/R(ﬁﬁ - 0ygk) (e - Gc) + Re (1),

where the remainder R¢(7) is lower order containing terms which have at most four
tangential derivatives on 77 and five on ((6;).
We fix ¢ € {1,..., K}, drop the explicit composition with 6;, set

Aﬁmgx = ﬁﬁ : p*gﬁ - p * (fﬁ’H : gl‘ﬁ) )
Ni, cosi = Tug - p x CO° — px (R, - CO°)
and analyze the following integral:
/R{Cﬁﬁ s Pk gﬁ} {’FLN : 6577}
= [ Ao# G} i O+ [ B G0
= [ A b i 0% 5 G = [ (i} B, coms

+ / D (i - GO} + R (i)
R

where the remainder R7(7j) comes from commuting 9° with the cut-off function
¢ and has the same bound as R4(77). The first term on the right-hand side is a
perfect derivative, and for the remaining terms we use Lemma [2.]] together with
the estimate #|gx|o.r < C||75.5 to find that

. /R (i - p# e} {iin - i1} < CF| = VA2,

Thus, summing over ¢ € {1,..., K},
T T

f’v/ (20 T, i - D)0 < C / |F|pe (V&L |6 + [VED]4 + [VEis) [VER]s
0 0

where |\/kT|g := max;cq1,. ky [vVKbile-
It is easy to see that

T T
/ 100, (/52 (7) - (s — A)iie), CC5PTTI0%,5] < C / \F| e |/

0

with the same bound for [} [028,, (/G (7)) -t (7w — 1), (1§ TIO% 7,5 . With (B3),
we infer that

T
wﬁa%-m%(ws%w/ a2
0

T
e / |Flze (WRTs + [VAola + [VRills) [VAls
0

Adding to this inequality the curl estimate (I0.1) for v/~7 and the divergence esti-
mate (which has the same bound as the curl estimate), and using Young’s inequality
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T ~ ~ T ~ T ~
to get ;| Fluw [VRbls [VAils <3 Ji VRO +Co fi 1l [y/RTE, we see that

sup |Vrilz < My+CT su%] (||Ut||§5 + [lvll35 + ||77||i.5)

te[0,T] te[o
T
+CT sup ([P (VADE +Wwild) +3 [ IViolE,
te[0,T] 0
from which the lemma follows. O

12.1. Removing the additional regularity assumptions on the initial data.
At this stage, we explain how we can remove the extra regularity assumptions on
the initial data, up and €, so that the constant My depends on |Jugll4.5 and |T'|5.5
rather than /k|luglli0.5 and /k|T|7 as stated in Lemma M0.I] The modification
requires the following regularization of the initial data: set ug = p_1 * Eq, (u(0)),
where €, is obtained by smoothing €2 via convolution with [ i.e., we use p1x 6;
as our family of charts. We make use of the fact that

P(||[Vkuoll10.5) < CPllugllas), P(]VkL|10) < CP(|T]55),

which follows by integration by parts of six tangential derivatives onto the mollifier
P 1; this results in the constant C' > 0 being independent of .

12.2. The limit as x — 0.

Proposition 12.1. With My = P(||ugllas,|T]5.5) a polynomial of its arguments
and for My > My,

(12.41) sup E,(t) < Mo,
te[0,T]

where T depends on the data, but not on k.

Proof. Summing the inequalities (IZ.0]), (I2Z33), (1234), (IZ35)), and (IZ37), and
using Lemma [I0.1] and Proposition BE.], we find that

sup E.(t) < Mo+ CTP(sup E.(t)+3d sup E.(t),
t€[0,T) t€[0,T) t€[0,T)

where the polynomial P and the constant My do not depend on x. Choose § < 1.
Then, from the continuity of the left-hand side in T, we may choose T sufficiently
small and independent of k, to ensure that (IZ4I)) holds. (See [§] for a detailed
account of such polynomial inequalities.) O

Proposition 2] provides the weak convergence as k — 0 of subsequences of
(v,q) toward a limit which we denote by (v,q) in the same space. We then set
n = Id+ f(f v, and u = von~!. It is obvious that ©,, arising from the double
horizontal convolution by layers of @, satisfies 9, — v in L?(0,T; H3*(Q)), and
therefore 71 — 7 in L2(0,T; H*(Q)). It follows that divu = 0 in n(2) in the limit
as k — 0 in (I3d). Thus, the limit (v,q) is a solution to the problem (LJ), and
satisfies Ey(t) < My. We then take T even small, if necessary, to ensure that (33)
holds, which follows from the fundamental theorem of calculus.
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13. A POSTERIORI ELLIPTIC ESTIMATES

Solutions of the Euler equations gain regularity with respect to the E,(t) from
elliptic estimates of the boundary condition (L3d)), which we write as \/gHn(n) =

Vgqn.
Replacing 0, with 0; in (I2.36]), we have the identities

(13.1) 9 (vgHn o n)' = —[VGg Lo 13 +1/3(g" g — g g™’ s 0
and
(13.2)
97 (VgHn on)’
= —[vag* v} 5 +/a(9"" 9" — 9° "' s 1w vl A QP 5]

where Qéaﬁ = Q(n) is a rational function of dn.

Lemma 13.1. Taking My as in Proposition I21, and letting My denote a poly-
nomial function of My, for T taken sufficiently small,

s [T ()55 + [lo(®)[l4.5 + [[ve (@) lls] < Mo

)

Proof. We begin with the estimate for v;. Following the proof Lemma [IZ.6] we
let 9,02 act on the boundary condition (L3d) and test with —(2g?°TI% vF 5, where
¢? = a4, an element of our partition of unity. Using ([3.2)), we see that

B /r 0,07 [gHn(n)] - (P9 v, = /F(\/Eqn)tt [CP9" v, ]y

Using ([2ZAT), letting C' denote a constant that depends on My, and summing over
the partition of unity, we find that

(13.3)
0%v; - nfg < C o]z + Inlz (Joels + [v]) + [(av/gn)eclo] [07ve - nlo + ClolFinls -
This follows since

[Va(a g% = g W' 317 0] | (97 i 50 ] = 0.
while
/F {\/E(g””g“ﬁ — 9" s vf,m} (9711 ) 0 05 5 |
< Clogl (10%0; - nlo + [vela [nls) -
Applying Young’s inequality to (I33)) yields, after adjusting the constant,
|0%v; - nlg < Clnl3 + [0 + [0el? + lgsel5] -
A similar computation shows that
|0%v; - nlg < Clnli + [0 + vel3 + lgse ]3] -
Thus, by interpolation

sup |a Vg n|0 5 < c sup [|77|3 5+ |U|2 5T ‘”t| + |‘Itt|(2)‘5] <Mp.
te[0,T] te[0,T]
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Computing the H2(Q2)-norm of (I03)), we find that

sup || curlvglls < Mo+ CT sup |vells,
t€[0,T] t€[0,T]
with the same estimate for sup,cjo py[|divot|[2. Hence, for T' taken sufficiently
small, we infer from Proposition [5.1] that

(13.4) sEup [loells < M.
telo

Next, we let 8,0%0; act on the boundary condition (L3d) and we test with
—(?g"°I,0°0" 5. Using ([Z36), we find that

sup |0%-nlf < C sup [Inlf + [vf3 + la:[3] < Mo
t€[0,T te[0,T]

Computing the H3-%(Q)-norm of ([0.8), and again taking 7' sufficiently small, we

see that sup,c(o 71 [[v]l45 < Mo.

In order to prove our remaining estimate, we need a convenient reparameteriza-
tion of I'(¢) via a height function h in the normal bundle over I'.

Consider the isometric immersion 19 : (T, go) — (R3,Id). Let B =T x (—¢,¢)
where € is chosen sufficiently small so that the map B : B — R3 : (y,2) — y+2zN(y)
is itself an immersion, defining a tubular neighborhood of 7(I') in R®. We can
choose a coordinate system %, a=1,2, and %.

Let G = B*(Id), denote the induced metric on B, and note that G(y,z) =
G.(y) + dz ® dz, where G, is the metric on the surface T’ x {z}, and that Gy = go.
Let h : I' — (—¢,¢) be a smooth function and consider the graph of h in B,
parameterized by ¢ : I' — B : y — (y,h(y)). The tangent space to graph(h),
considered as a submanifold of B, is spanned at a point ¢(x) by the vectors

0,0 _ 0 oo
oye’  oy>  Oyx Oy~ 0z’
and the normal to graph(h) is given by

(13.5) n(y) = I w)( -

Du(

ap Oh 0O 0
on 0, 0)
") gy gyB Oz

where J, = (1+ h’an(ﬁy)hﬁ)l/Q. Therefore, twice the mean curvature H is defined
to be the trace of Vn, while

0
T Owl G
. Substituting the formula (I35 for

(Vn)” = G(VB

2 _ d _ 9
where z7= = Ty for o =1, 2 and 55

n, we see that

(v”)aﬁ

o e )

= — (Gn)sp(Jy "' GI’hy) o + Flg(y, h,Oh),
0 0 0
_ B _ 1,6 v -1~ Y
(Vn)gs—G(V%{ TGy 4 82},(%)
= Fo%ﬁ(ya hv 8h)
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for some functions F; and F25, a,3 = 1,2. Letting 7o denote the Christoffel
symbols associated to the metric gg on I, we find that the curvature of graph(h) is
given by

(13.6) Li(h) = H = —(J; ' G}’h ) 5 + T, (ol — G hylolls) -

Note that the metric Gj, = P(h), and that the highest-order term is in divergence
form, while the lower-order term is a polynomial in 0h. The function h determines
the height, and hence shape, of the surface I'(t) above T'.

Given a signed height function h : I'g x [0,T) — R, for each ¢t € [0,T), define the
normal map

77” : 1_\O X [Oa T) - F(t)’ (y7t) =y h(ya t)N(y) .

Then, there exists a unique tangential map n™ : T'g x [0,T) — I’y (a diffeomorphism
as long as h remains a graph) such that n|r(¢) has the decomposition

nir(t) =n"(t) on™(t), nlr(y,t) =n"(y,t) +h(n"(y, 1), t)N(n"(y,1)) .

The boundary condition (LId) can be written as oLy (h) = qo (n7) L.

The operator Ly is a quasilinear elliptic operator; from the standard regularity
theory for quasilinear elliptic operators with H> coefficients on a compact manifold,
we have the elliptic estimate

hls.5 < Clgo(n7) ss < Cllglls-
By ([I22), we see that for all ¢ € [0, 7],
lglls < Cllall3 [0l3 + Clnls vel2 < Mo,

the last inequality following from (I34).
Since I'(t) =graphh(t), this estimate shows that I'(t) maintains its H?°-class
regularity for t < T. (Il

14. K-INDEPENDENT ESTIMATES FOR THE SMOOTHED PROBLEM
AND EXISTENCE OF SOLUTIONS IN 3D

The 3D analysis of the k-problem requires assuming that the initial data ug €
H55(Q) and T is of class H5®. This is necessitated by the Sobolev embedding
etll~ < Cllls.

By replacing the third-time differentiated problem with the fourth time-differen-
tiated problem the identical analysis as in Section [I2] yields

EED(t) S MO )

where My is a polynomial of ||[ug||s.5 and |T|gs. (In fact, our analysis in Section
used all of the 3D terms and notation, so no changes are required other than
raising the regularity by one derivative.)

We let (v, ¢) again denote the limit of (9, ¢) as kK — 0. The identical limit process
as in 2D shows that (v, ¢) is a solution of the Euler equations.

Having a solution (v, q) to the Euler equation, we can use the a posteriori es-
timates (I3.1) as a priori estimates for solutions of the Euler equations. We see
that

sup [E2P () + [0(O)|s.5 + [lo(®)la5 + llve(t)lls] < Mo,
tel0,T
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where My is polynomial function of |lug|l4.5 and |T'|5.5. This key point here is that
the elliptic estimate for v; € H3({)) improves the regularity given by E2P(¢) and
allows for the required Sobolev embedding theorem to hold.

Since our initial data is a priori assumed regularized as in Subsection [2.1] we
see that solutions of the Euler equations in 3D only depend on M.

15. UNIQUENESS OF SOLUTIONS TO ([L3))

Suppose that (nt,v!,¢") and (n%,v%,¢?) are both solutions of (L3]) with initial
data ug € H55(Q and T' € H5®. Setting

4
En(t) = Z ”8577(75)”%.57]“
k=0

by the method of Section I2 with £ = 0, we infer that both &,1(t) and &,2(t) are
bounded by a constant M, depending on the data ug and I" on a time interval
0 <t < T for T small enough.

Let
wi=ov'—v?, r:=¢" —¢* and ¢ :=n! —n.

Then (£, w,r) satisfies

t

(15.1a) ¢ = / w in Q x (0,77,
0

(15.1b)

O’ + () i = (a = a')f ¢ in (0,17,
(15.1¢)  (a')w',; = (a® —a')]v?", in Q x (0,77,
(15.1d) ™my = —Unglaﬁfaaﬁ —U\/.Q_IA91,Q2 (772) on I' x (O,T] s
(15.1e) (&, w) =(0,0) on Q x {t =0}.
Set

3
E(t) =Y 10F )]sk
k=0

We will show that E(t) = 0, which shows that w = 0. To do so, we analyze the
forcing terms on the right-hand side of (I5.1H) and (I5.1d), as well as the term
oAy _g2(n?) in (I5Id). We begin with the third time-differentiated problem, and

study the integral fOT Jo 02(a* — a') Vg*] wyge. The highest-order term is

t t T
1 1
/ /(al — a?) Vi wi < 5/\/‘0/ la' = a®|[7~ + 5/ lwistllg < CtP(E(t)).
0 JQ 0 0

The third space differentiated and mixed-derivative problems have forcing terms
that can be similarly bounded.

The difference in pressure r satisfies, using the notation of (IZ2]), the following
Neumann problem:

Loy (r) = =0patjw'; +a'(a® = )¢’ ]y in O,

Ba, (1) = —w; - /gin' +a'l(a® —a')k¢? . Nj on T.
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Since P(||nt|l4.5) is bounded by some constant C' = P(M,), (I23) provides the
estimate

I17]l5.5 < Cllla s [[wll2.s + llat 2.5 ¢%]ss la' — a®ll25 + [V gn' |2 well2.5] -

Since [|a’ — a*[la5 < C|¢lls.5, and [|at |15, [la*[l25, [l4*[l5.5, and [\/gin'|s are all
bounded My, we see that ||r(t)||s.5 < CP(E(t)). Similar estimates for the time
derivatives of r show that ||7(¢)||s.5 + ||7(t)|l2.5 + ||ree () ||1 < CP(E()).

This shows that the energy estimates of Section go through unchanged for

equation (I5.]); therefore, using (I5.1€), we see that

sup E(t) < CT P( sup E(t)).
te[0,T] te[0,T]

16. THE ZERO SURFACE TENSION CASE o =0

In this, the second part of the paper, we use our methodology to prove well-
posedness of the free-surface Euler equations with ¢ = 0 and the Taylor sign condi-
tion (L.2) imposed, previously established by Lindblad in [13]. The main advantages
of our method over the Nash-Moser approach of [I3] are the significantly shorter
proof and the fact that we provide directly the optimal space in which the problem
is set, instead of having to separately perform an optimal energy study once a solu-
tion is known as in [6]. If one uses a Nash-Moser approach without performing the
analysis of [6], then one obtains results with much higher regularity requirements
than necessary, as for instance in [I] for the irrotational water-wave problem with-
out surface tension. We also obtain lower regularity results than those given by the
functional framework of [6] for the 3D case.

We will extensively make use of the horizontal convolution by layers defined in
Section Bl and just as in the first part of the paper, for v € L?(Q) and x € (0, ko),
we define the smoothed velocity v" by

K L
V"= Vailps [ prn (Vaiw) o 0)]] 067+ Y g,

i=1 i=K+1

The horizontal convolution by layers is of crucial importance for defining an ap-
proximate problem whose asymptotic behavior will be compatible with the formal
energy laws for smooth solutions of the original (unsmoothed) problem (I.TJ), since
the regularity of the moving domain will appear as a surface integral term. In this
second part of the paper, the properties of these horizontal convolutions will be
featured in a more extensive way than in the surface tension case of the first part
of the paper.

We remind the reader that this type of smoothing satisfies the usual properties of
the standard convolution; in particular, independently of k, we have the existence
of C' > 0 such that for any v € H*(Q):

[o"]ls < C JJolls, and [v"],_3,, < CkPlo|,_3 for p>0.

We will denote for any [ € {1,..., K} the following transformed functions from v
and 7 that will naturally arise at the variational level:
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Definition 16.1.
; 3
Vi = p1Hn (Vogu o 6y) in (0,1)°,
t
7" :Id+/ 0™ in Q,
0
t
: 3
e = 0 —|—/ vy in (0,1)°.
0

Remark 12. The regularity of the moving free surface will be provided by control
of each 7, in a suitable norm independent of the parameter k.

17. THE SMOOTHED K-PROBLEM
AND ITS LINEAR FIXED-POINT FORMULATION

As it turns out, the smoothed problem associated to the zero surface tension Eu-
ler equations can be found quite simply and naturally, and involves only transport-
type arguments in an Eulerian framework. Also, the construction of a solution
is easier if we assume more regularity on the domain and initial velocity than in
Theorem [l We shall therefore assume until Section 28] that € is of class H? and
uo € H2 (). In Section 26, we will show how this restriction can be removed.

Letting u = von® !, we consider the following sequence of approximate problems
in which the transport velocity u” is smoothed:

(17.1a) ut + Vyru + Vp =0 in (¢, Q),
(17.1b) dive =0 in ™ (¢, ),
(17.1¢) p=0onn"(tI),
(

17.1d) u(0) = up in .

In order to solve this smoothed problem, we will use a linear problem whose fixed
point will provide the desired solution. If we denote by v an arbitrary element of
Cr defined in Section [I8 and 7" the corresponding Lagrangian flow defined above,
then we search for w such that if u = wo (7%)~! and 4" = v" o (7*)~!, we have
that

(17.2a) us + Varu + Vp =0 in 77(¢, Q),
(17.2b) divu = 0 in 77(t, Q),
(17.2¢) p=0on7%(¢,I),
(17.2d) u(0) = ug in Q.

A fixed point w = 7 to this problem then provides a solution to (ITIl). In the
following sections, v € Cr is assumed given, and & is in (0, k). & is fixed until
Section 20l where we study the asymptotic behavior of the problem [I71]) as k — 0.

Remark 13. Note that, for this problem, we do not add any parabolic artificial
viscosity, in order to keep the transport-type structure of the Euler equations and
to preserve the condition p = 0 on the free boundary.
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18. EXISTENCE OF A SOLUTION TO ([[Z.1])
18.1. A closed convex set.

Definition 18.1. For T" > 0, we define the following closed convex set of the
Hilbert space L2(0,T; Hz (Q)):

Cr = {v € LX0,T; H? ()| sup [lv]lz < 2lluoz +1}.
[0,7]

It is clear that Cp is nonempty (since it contains the constant in time func-
tion ug) and is a convex, bounded and closed set of the separable Hilbert space
L2(0,T; H? ().

By choosing T'(||Vug|[; +1) < Cqeo, condition B.1)) holds for n = Id + fot v and
any v € Cp and thus (3.2)) is well defined.

We then see that, by taking 7" smaller if necessary, we have the existence of
k1 > 0 such that for any s € (0, 1), we have the injectivity of n(¢) on § for any
t € [0,T], and V" satisfies condition (3.)). We then denote a® = [Vn*]~!, and we
let n"(n"(x)) denote the exterior unit normal to n*(Q2) at n*(x), with z € T. We
now set ko = min(ko, k1), and assume in the following that & € (0, k2).

18.2. Existence and uniqueness for the smoothed problems (I7.2]) and
([@TJ)). Suppose that v € Cr is given. Now, for v € Cr given, we define p on
7" (¢, 2) by

(18.1a) Ap = —uf,juj,; in 7%(t,Q),

(18.1b) p=0on 7%(tT),

where u = v o (7%)~1. We next define @ in Q by

(18.2) 3(t) = uo + / VI, 7, )t

and we now explain why the mapping v — © has a fixed point in Cp for T' > 0
small enough. For each ¢ € [0,T], let ¥(¢) denote the solution of AU(t) =0 in
with ¥(t) = 7°(t) on I'. For x and T taken sufficiently small |77* — Id|4 << 1 so
that ¥(¢) is an embedding and satisfies

(18.3) [ (t)]|la5 < Cl7™(t)]a-
Letting Q(x,t) = p(¥(z,t),t) and A(z,t) = [V¥(x,t)]71, (I8I) can be written as
[Ai‘cqu’k]vj = (a7 uyi J(P(z,t),t) in €
Q=0 on T.

By elliptic regularity (with Sobolev class regularity on the coefficients [9]) almost
everywhere in (0,7) and using (I8.3]),

(18.4) I2llg 772,y < CP(T" )0l 2 0]l 3 PCAT" ] 7),

2

where P denotes a generic polynomial. Now, with the definition of T" and Cr, along
with the properties of the convolution that allow us to state that

_ 1
17%|a < E|77”\3
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(since the derivatives involved are along the boundary, allowing our convolution by
layers to smooth in these directions), this provides the following estimate:

pllg ey < CeP U1 I0]5 < Cullolz,

where we have used the definition of Cr, and where C,, denotes a generic constant
depending on k. Consequently, we get in [0, T,

2

t
M@mgSHWM;+A|WMﬁwﬂﬂWWg

t
(18.5) < lually + G [ ol gl
0
With the definition of Crp, this yields
sup [5(8)]1; < luolly + CuT.

Now, for T,, € (0,T) such that T,C, < 1, we see that o € Cp_, which ensures
that the closed convex set C'r, is stable under the mapping v — ¥. We could also
show that this mapping is also sequentially weakly continuous in L?(0,T,; H 3 (Q)).
Therefore, by the Tychonoff fixed point theorem, there exists a fixed point v = o
in Cr,.. Now, to see the uniqueness of this fixed point, we see that if another fixed
point ¥ existed, we would have by the linearity of the mapping v — p and the

estimates (I84) and (I83) an inequality of the type

lw=o)@lz < [ ol

which establishes the uniqueness of the fixed point. By construction, if we denote
u = v o (%)L, this fixed point satisfies the equation on (0,7} ):

up + Ufu,; +Vp =0 in 77(¢, Q).
Besides the definition of p in (I8, we have
div ug + @f divu,; = 0 in 77(¢,Q),

i.e.,
divu(t,7(t, z)) = divug(z) = 0 in Q.

This shows precisely that u = v o (7)1 is the unique solution of the linear system
@72) on (0,T,).

Now, we see that we again have a mapping ¥ — v from Cr, into itself, which is
also sequentially weakly lower semi-continuous. It therefore also has a fixed point
v, in Cr,, which is a solution of (I7.1)).

In the following we study the limit as kK — 0 of the time of existence T); and of
v,.. We will also denote for the sake of conciseness v, U, = v, on® ! and (ug)"
respectively by v, u and u”.

19. CONVENTIONS ABOUT CONSTANTS, THE TIME OF EXISTENCE T},
AND THE DIMENSION OF THE SPACE

From now on, until Section 6] we shall stay in R? for the sake of notational
convenience. In Section26] we shall explain the differences for the three dimensional
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case. In the remainder of the paper, we will denote any constant depending on
l[uolls as N(uo). So, for instance, with go a solution of

(19.1a) Nqy = fuo,é uo,g in Q,
(19.1b) go=0onT,
we have by elliptic regularity [lgolls < N(uo) (since © is assumed in H? until
Section [20]).
We will also denote generic constants by the letter C. Moreover, we will denote
K
12015 = >~ 16:ll5,0,1)2-
i=1

Furthermore, the time T,, > 0 will be chosen small enough so that on [0, 7], we
have for our solution ¥ given by Section [I8

1
(19.2a) 5 < detVq" < ; in €,
(19.2b) I7lls < 192]+1,
(19.2¢) 1glls < flgolls + 1
(19.24) 5l < lluoll + 1.

The right-hand sides appearing in the last three inequalities shall be denoted by a
generic constant C in the estimates that we will perform. In what follows, we will
prove that this can be achieved in a time independent of .

20. A CONTINUOUS IN TIME SPACE ENERGY APPROPRIATE
FOR THE ASYMPTOTIC PROCESS

Definition 20.1. We choose 0 < & € C>(Q) such that Suppé C ﬂf:KH[Suppozi]c
and £ = 1 in a neighborhood of T'. We then pick 0 < 8 € D(Q2) such that 5 =1 on
[Suppé]©. We then define on [0, T,]:

K
E(t) =sup[> IIVar(@n)iiall z 0,02 + 1715 + 18ill3 + 1ol + dllz]

[O,t] =1
K
~ 3 ~
(201) +?(;,11]) [KJ”«/O[ZUOHIH%’(O’I)Q +l<.‘,2||1/al’l}091||47(0)1)2:| +1.
=1

Remark 14. Note the presence of x-dependent coefficients in E(t) that indeed arise
as a necessity for our asymptotic study. The corresponding terms, without the k,
would of course not be asymptotically controlled.

Remark 15. The 1 is added to the norm to ensure that E > 1, which will sometimes
be convenient, whereas not necessary.

Now, since from Section[I8, & € C°(0, T,.; H2 (£2)) (in a way not controlled asymp-
totically, which does not matter for our purpose), we have 7 € C°([0, T,]: H ().
Next with the definition (I81]), and the definition of our fixed point @, we have for
p=qo (") "

Ap = —uf,; 5, nn¥(t,Q),
p=0on7%(7T),
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which shows that ¢ € C°([0, T]; H 3 (Q)). Consequently, E is a continuous function
on [0,T,].

We will then prove that this continuous in time energy is controlled by the same
type of polynomial law as (41) of [8], which will provide a control independent of x
in a time independent of k.

21. A COMMUTATION-TYPE LEMMA

We will need the following lemma in order to later identify exact in time energy
laws from terms arising from our convolution by horizontal layers:

Lemma 21.1. Let §p > 0 be given. Independently of k € (0,dp), there exists C > 0
such that for any g € H2((0,1)2) and f € H3((0,1)2) such that
do < min(dist(supp fg,{1} x [0,1]), dist(supp fg,{0} x [0,1])),

we have,
Hp% *h [fg} - fp% *h g"%7(071)2
<C ||’<¢9||%,(0,1)2Hf||g,(o,1)2 +Ck2 ||9||0,(0,1)2Hf||g,(o,1)2~

Proof. Let A = p1 xp, [fg] — f p1 xn g. Then, we have

T1+K
8@ = [ pror— )l nsns) — flor,n)] gvasz) din

1—K
this integral being well defined because of our condition on the support of fg. We
then have, since H? is embedded in L™ in 2d,

x1+K

M@ < Crll il our [ paler =) lolv,aa)] don

r1—K

showing that

[Allo,0,1)2 < CEllflls 0,1)2ll0L *n lglllo,0,1)2
(21.1) < Ckl|fllz,0,192119l0,(0,1)2-
Now, let p € {1,2}. Then,
Ap=p1*n[fgpl=fprxngptpr*n(fpgl—Ffp pLrng.

The difference between the two first terms of the right-hand side of this identity
can be treated in a similar fashion as ([21.1]), leading us to

(21.2)

1A, llo,0,1)2 < CEllfl5,0.1)2l9l11,00,1)2 + o2 5 [f1p 9lll0,0,1)2
+ 1 P2 *n gllo,0,1)2

< C"Hf”g,(o,l)ZHQ

+11fp lz)2llp2 *n gllo,0,1)2

< CK"fll%,(O,1)2‘|g

< CK"fll%,(O,1)2‘|g

l1,00,1)2 + 130 9ll0,(0,1)2

I1,00,02 + 21 fop Il 2o ((0,1)2) 191l0,(0,1)2

l1,0,1)2 + CHf”g,(o,l)2 lgllo,c0,1)2-
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Consequently, we obtain by interpolation from ZIT]) and ZL2):

1
HA||%,(0,1)2 < C“”f“g,(o,l)?||9||%,(0,1)2 + Ck? Hf”g,(o,l)?||9||0,(0,1)2~

O

We then infer the following result, whose proof follows the same patterns as the
previous one:

Lemma 21.2. Let §p > 0 be given. Independently of k € (0,dp), there exists C > 0
such that for any g € H*((0,1)?) (s = 2,2) and for any f € H3((0,1)2) such that

do < min(dist(supp fg,{1} x [0,1]), dist(supp fg,{0} x [0,1])),

we have

Hp% *n [fg] — fP% *h gHs,(o,n?
1
< C [l6glle0.2 113, 0,1)2 + CEZ gl s— 1 01921 Fll 50,192

22. ASYMPTOTIC REGULARITY OF THE DIVERGENCE AND CURL OF M

In this section, we state the necessary a priori controls that we have on the
divergence and curl of various transformations of ¥ and 7. This process has to
be justified again, since the functional framework substantially differs from the
case with surface tension, in this case with one time derivative on the velocity
corresponding to half a space derivative.

We will base our argument on the fact that the divergence and curl of u satisfy
the following transport type equations:

(22.1a) D.diva = 0,
(22.1b) Dycurldi + @y 4%, —if @'y = 0.

We now study the consequences of these relations on the divergence and curl of 7
in the interior of 2, and of each 7, (1 <1< N).

22.1. Estimate for div(37),;. From 22.Ia), we then infer in Q that (a")!%,’
Thus, for s = 1,2

(@)1 (80),5; = =B(@")],s 0,5 +1(@)] (89),4; —B(a")]v.%; ],
and by integration in time,
(@) (B1),5; () = (a")7 (1), (0) + /O [=B(a")7,s 0,5 +((@"); (80),5; —B(@")v,5; )]

(22.2) + /O (@")7,(B71).5%; -
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Consequently,
div(Bi7)» (£) =[— (@) + 811 (8i1)& (1) + (@) (B7) & (0) + / @)1, (87).,
+ / = B(@ e 5 (@)1 (80,55 —B(a")]5.0,)]
t . . . . t . .
[ / @),1(87).55 (8) + (@) (37 (0) + / @), (87).5;
(22.3) + / (= B(@™)a 55 +(@)1(85).5, — B0, ),
showing that

I div(537),s (D]l 3
(22.4) < Ctsup || 13l 3] + C + Ctsupl a5 17l 3] < CtE(t) + C,
)t it

where we have used our convention stated in Section [I91

22.2. Estimate for div[ij,,s o, ' o (7%)~!]. Since detV#;, = 1, we then infer in
(0,1)2, with by = [V#® 0 6;]71, that

(b)) (30 61),5 = 0.
Therefore, as for (ZZ3),
B (ai) o 6.5 (6) = (5§ ) (/@i o 60). (0)
+ (Va0 - / O (0 0)
(22.5) +/ L (AT 0 0), — @) (N (50 0. .
Consequently,

pL *h [(B7)7 (/i) o 01),%; ()
=pL*n [(5?)3(\/07577 0 6;),%; (0)]

4 / pi i [BF)] (Vi o 00,5 — /a0 ()] s (0 61).5 ]
+/o pa o [0 (Vars o 0).L; —/ar(0) (6)] (50 01).1 ]
:/O p% *h [(Ef)zt(@ﬁOGZ)aé]}+R’
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with ||| < CtE(t) + C. Next, thanks to Lemma[ZEZL
||p% *h [(5?)3(\/07177 ° 01))2]’ (t)] - nlna;] || ,(0,1)2

< OGN N5 0.0y I(vaui o 61,5 (0) + /(\/_vol%)w Is,0,1)2

TK\J 1 ~ i ~ i
+ OO, 0,)2 52 1(V/eusi 0 01),5; (0) + /0 (Veuv o 01),5; [11,0,1)2]

(22.6) < Cr?E(t) + CtE(t)? + C.
By successively integrating by parts in time and using Lemma 21.2]
(22.7)

t ) ) t . )
H/O /0% *h [(bf)Zt(\/OTlﬁ © 9l>7lsj (tﬂ - /O (bf)fm% *h [(\/OTlﬁ © 9l>7lsj]H%,(0’1)2
< H/O P [(0F); (Vaud o 01),5; (¢)] 7/0 (©r)ipx *n [(Varv o 00,55 ]||s o1y
{1z n [BF) (Vauii 0 60,55 (8)] = @F Yo #n [(Vauii 0 005 1ol s 0,002
< Cr2E(t) + CtE(t)? + C.
Consequently, with 2Z5]), Z7) and @22.0]), we infer
[ div[7iiess o6; " o (i) (7" © 61) (1) — / ) o #n (Vi o 60,51 s o)

< Cr2E(t) + CtE(t)® + C,
showing that

(22'8) Hdiv[ﬁlms 09;1 © (ﬁﬁ)_l]||%’,~7~(91((071)2))

We now study the curl of the same vector fields as in the two previous subsections.

22.3. Estimate for curl(37),s. From (22.1D), we obtain:

< Cr2E(t) + CtE(t)? + C.

(@)79, —(a")30,) = curla(0) + /Ot[ =05 (@)1, (a)F + 75 (@50, (@)F].
Therefore, for s =1, 2,
(a1 (80).2; —(@)3(89).3; =0 curl a(0),0 = Bl(a")] s (9).5 —(a")}.s (9).5]
+ (@ 11(80).2; —00.%;1 = (@)31(69),2; —0.4;]
[ BL @OF0E @7 + 95 (@304 (@) )s
which implies by integration in time that

@) (67).2, —(@)4(57). L = / (@)L (57) .2, —@)3(6R).L, ] + 18 curl a(0).,
8 / 1o ()2 (@0 (5).1] + / I+
n / @)i(80) 2, —F5.2, ] - / @)31(89).}; —Fo.L 1,

0
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t ]
with f(# j/ B~ (@)}0d (@)1, and g(t) = [ B[ (@504 (@)},
0
Now, since H? is a Banach algebra in 2d,

t t
H@%Wmé4ﬁmﬁﬁﬂg§94MNQW@+W%M+AHﬁhwg

t
+ [+l
0
(22.9) < N(up) + CtE(t / If +9lls.
‘We now notice that
t
@)y =—[ BLo"5, @)10,7 @%); + 07,5 (@)]9,2 (@);]

-/ B"1 0,7 ()] (@),

= [ BLA"5 1@)30.7 @) + .2 [0 (@) (@")5]

which allows us to infer that
¢
1F@®ls < / (Ua*llz + 18l + 7l laglslla(lzolls + lallglla®(ls o]l 5]
/ IalE 1113 + (a*lz + 187z + lalls)@)la @13 18] + N (uo)
< CtE(t)* 4 N(ug) + CE(t).
Since g(t) can be estimated in a similar fashion, (2Z9]) provides us with
1@)3(87).5; =@ (67).3 || s < CLE®)® + N(uo),

showing that

0 0
(22.10) < CtE(t)* 4 N(up).

22.4. Estimate for curl[fj,,s of; ' o (77%)~!]. In a similar fashion as we obtained
[@231), we also have here

(22.11) [|curl[fue,s 06; " o (7* < CtE(t)* 4 N(up).

A PR
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22.5. Estimate for xdiv([(,/a;div;00;),s 06, ! o (77%)~!]. By time differentiating
@23) twice in time, we find:

(BF)I (Vaute) o 6:).; (1) = = ()], (Vaur) 0 61).5%; () — 2(b] )t((\/_5)09z),5j (t)
+[00)] (Vauii © 61),5 1 — [Vau(B) (5F)] s (70 61).5 ]e
(22.12) + [(5F)] (Veud 0 1), —v/ar(B) (b))} (T 0 61),2; e

Therefore,

(22.13) RIIBF ) (Varse) © 61).4; (D)lls 0,12
< CrE(t)* + H(b?)i.tHS,(O D2llr((Vau?) o 91)723 (t )||3,(0 1)2
+ 1RO s Jell s 0,002 (V@ © 00)5 Ils 0,12
< CE®)? + |K[(5F)] s el 3,002 1 (V@@ 0 6),5 |13, 0,12

Next, we for instance have

T8l 05 001,25 - 75 © 01,2
s =kh————— — K|det 0)liys —9——
w0 i = e o gy T e s GG
~K ﬁg © 9l752 ~K 17’5 o 91a2
— k[det(7" 0 6;))i———""— — K[det(7" 0 O))],s —5———,
et 0 Ol Gy G o gy~ ML 0 e R G E T

which shows that
||“(l;fas )t”%,(o,l)? < C’E(t),
and with (2ZT3)) this implies
R (OF)] (Vaute) 0 01).45 (D)3 0,02 < CE(t)?

¢
and thus, still by writing 7% (¢) = 77(0) + / 0", we finally have
0

(22.14) k||div](v/oudy 0 0;),s 007 o (77%) 7| s ey S CE(t)>.

With the same type of argument we also have the following asymptotic estimates:

22.6. Estimate for x curl[(\/a;i; o 6;),s 00, o (7).

(22.15) k||curl[(v/aqy 0 6;),s 00, o (77“>_1]Hg,ﬁ~(g) < CE(t)2.
22.7. Estimate for x2 div[(\/a;0; o 0;),s 00, ' o (i7%)~1].

(22.16) K2 || div](y/oudy 0 0,),s 00, o (i7%) ]| s 5 () S CE(t)?
22.8. Estimate for x2 curl[(,/a;d; 0 0;),s 00 " o (7).

(22.17) k2| cwrl[(v/@qy 0 0) s 08; ' o (ﬁ”)_l]H%ﬁN(Q) < CE(t)2.

Remark 16. Since we will time integrate the previous quantities, the absence of a
small parameter in front of E(t)? is not problematic.
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22.9. Asymptotic control of div @"(7*). We have
diva® (%) = (@")5,0" %
= (@ [vailps *n (80)*1(0; 1))
= [ )LIVa(6)pr *n (5x)]51(6;7).
Now, thanks to Lemma 21.2] this leads us to
diva™ (") = [p1 *n [0 )f.v/@u (00 (Bue) 5 0O 1) + 71,
with
Irills < CIVIT 516Vl 5 + 52 [[VE]l2) < CE(t).
Next, we notice that
O (BE)f = (0 Yo s *n [(vard) (6]
= paHn [Va(0) (b7 )45(6),5 ] + 72,
and by virtue of Lemma 21.2]
Iralls < CUV 5 (16955 + 1 [Vo]l2) < CE@®)?.
Now, since (b)L(6;),F = 0 in (0,1)2, this finally provides us with
(22.18) | diva®(7%)||5 < CE(t)?

23. ASYMPTOTIC REGULARITY OF k@; AND OF K20

This section is devoted to the asymptotic control of x7; and k2%, in spaces
smoother than the natural regularity H?=(Q) for 9;, the idea still being that one
degree in the power of x allows one more degree of space regularity.

23.1. Asymptotic control of xv; in H3 (©2). Our starting point will be the fact
that since ¢ = 0 on I, we have for any [ € {1,..., K} on (0,1) x {0}:

qobis
detVi~ (6;)
= (—x2,1). Therefore, we have on (0,1) x {0}:
(Vauts 0 0p),111 1" 0 6,1 = —[%
3 [\/51(91)550 01,2

detVi=(6;)
Vai(61)q o b1, o

_W 9[51111 77 001,1,

0y 00 + "ol =0,

where zt

~ 1~
]711 7% o 91,11 %001,

- n -
]31 77'{ o olalll ' 77H o alvl

showing that
(23.1)

Kl (Va0 01),111 71 0 01,1 0,000,102 < KE()? + Ckll\/au(0)i1" 0 01,1111 [l0,0(0,12
By definition,

N

Vo (000" 0 01,1111 = Z Vai(B)[pr *n E™)(0; " 001111,

i=1
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the sum being restricted to the indices i such that 6;((0,1)?) and 6;((0,1)?) have a
nonempty intersection. We then have

(23.2)
K . . . . .
Va0 0 0111 = Var(0) [ Y Vai(0)[pr xn B iinigis (651 0 0)aii 351t + A,
=1

: 11921374 __
with A 1111 — (¢

rllvVa(0)Allo,a.1)2 < CrllQlg sup[lps *n [Vaii o 0:llls 0,12

+ Crsup [lpr *n [V o 0] 1 0,1)

ot (0

o), (67 0), (6,7 06)), and

K2 2

< Cr(|9]lg + 1) E()
(23.3) < CrE(t)2.
Now, we notice that for z; € (0,1) such that 6;(z1,0) € 6;((0,1)?), we necessarily
have, since for all k € {1,..., K}, 0,([0,1] x {0}) = 9Q N 6x([0,1]?), pha.tleifl o
01(21,0) = (fu(z1),0), showing that on (0,1) x {0}, we have \/ay(61)a;; 713" = 0
except when i; =9 = i3 =iy = 1. Therefore, (23.2]) can be expressed as

(23.4)
K .
Va7 0 0111 = var(0)[Y | vai(0n)[px *n B aun (6, 0 O)aj i1y, + Al
i=1

Now, from the properties of our convolution by layers, we have (since the derivatives
are horizontal) that

(23.5) "@H[P% *h Eann ||O,(0,1)><{O} < C||Em,111 ||O,(0,1)><{O}-
Thus, with [232)), 233) and 23], we infer
KV (017" 0 01,1111 lo,0(0,1)2 < CRE(t) + CE(t),
which coupled with (23] provides us with
kIl (Veud © 01),111 71" © 611 [lo,00,1)2 < CE(t)* + C.
This provides us the trace estimate
Kl (Vauts 0 6:),1 (0,1 o (%)) 0 01,1 (6, 0 (7)™ l2,05x 6, ((0,1)2))
(23.6) < CE(t)? +C.

Consequently with the divergence and curl estimates [22.14) and [22.15) and the
trace estimate (23.0]), we infer by elliptic regularity:

(23.7) Kl (Ve 0 61),1 (6, ' o (77'{)_1)||g,ﬁw(al((o,1)2)) < CE(t)’ +C.

Remark 17. It is the presence of [|Q2f|s in the inequalities leading to ([23.3) which

explains the assumption of 2 in H 3 It is, however, not essential, as will be shown
in Section 28l One way to see this is to smooth the initial domain by a convolution
with the parameter s to form Q. Then, by the properties of the convolution,
K27 < CJQ|5.
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23.2. Asymptotic control of k27, in H? (Q). In a similar way as in the previous
subsection, we would obtain the trace estimate:

K2 (Veade 0 6:),1 (07" o (77)71)i" 0 01,1 (67 0 (7))

)

<CE{t)?*+C,
which coupled with 2216 and [2ZTI7) provides
(23.8) R I(Vare 0 ). (67 o (7))l 7400, ((0.0)2)) < CE()? +C.

24. BASIC ENERGY LAW FOR THE CONTROL OF ¥ AND 1), INDEPENDENT OF K

We will use a different type of energy than in [6], namely:

Definition 24.1.

Z/ & 001 (0 061,111 |,
0.1

where & = £ ay, € being defined in Section 201

Remark 18. The main differences with respect to the energy of [6] are in the ab-
sence in our energy of any restriction to the tangent components, allowing a more
convenient set of estimates, and in a setting in Lagrangian variables.

We have

H{(t) = Z/ 10010 001,111 000,111

&obi((a ) Gk ) © 01,111 05 001,111

I
|
N
—~

& o 91[@7)?@ ©01,p 11105 001,111,

I
|
=

0,1)?

where b = [V (7% 0 6;)]~! . Next, we see that Hf = —[H; + Hy + Hs)], with

K

B0 =3 [ GO0 7000700
l

Z/ & o0 [(bf )5 0 O1,p111 195 0 01111
0,1)2

Z/ & o i[[(BF)PG 0 O1,p i1
0,1

- (W)?@ o111 —(57)§7111 Go 01,0105 060,111 -
We immediately have for the third term
(24.1) |Hy()] < CE(t)?.
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Next, for Ho, since (£G) o 6; = 0 on 9(0,1)2,

K
Hy(t) = — Z /0 b & 06, ()P G 0 01,111 D5 0 Orpina

—Z/ (600 6:(F)E],p G © B1,111 T5 0 Bp,111 -
(0,1)2

We then notice that from the divergence condition we have (Ef)f
(0,1)?, implying

K
Hy(t) = Z/O o & 00 G0 011 (0F)% 11155 0 01,y

+Z/ & ol gobi,in (57)§,11 Vj 0 01,1

0,1)2

+ Z/ §ob gobi,in (gf)gﬂ 05 0 0p,p11

0,1)2

—Z/ 251091 b )E]p G 0 Or111 B 0 O -
(0,1)

Now, in a way similar as (BI5), we have for any f € Hz((0,1)2)

Hgl o elfal ”H%((O,l)z)' < CHfHH%((O,l)Q)’

¥ 00;,,=0in

since the derivative is in the horizontal direction. By applying this result to f =
(bf)? ,11 for the first integral appearing in the equality above, and by using the

continuous embedding of H' into L% (6 € (1,00)), and of Hz into L3 (3 € (1,4))

for the other integrals, we then obtain

(24.2) |Ha(t)] < Clla |5l 5 Iolls < CE()?.

We now come to Hj, which will require more care, and will provide us with the

regularity of 7;,,(Q) in H % independent of k. We have

Hy(t) = / . & o 91@7)?111 [Gobi,p 000,111
(0,1)

(24.3) = Hy(t) + Hia(t) — / §ro O A [Go b,y D500,
(0,1)2

with

(CofV (7" 0 01))} 111
Hi1(t) = 0 J o6 0
11( ) /(0’1)2 §iob detV(n 5 9l) [ l];p ’Ug ° U111,

Hig(t) = - /( B o), p4etV (7" 0 00111

[detV (7% 0 6;)]?

[ 001] D ’U] Oalvllla
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and
Ap . [(CO{V(TN]H o 91))?] . (COfV(’f}K © 01))?7111
7 U detV(rog) MM detV (77" o 6;)
L p[detV (7" 0 )] ;111
+ (CofV (77" 0 01)); etV (77 0 02
so that
(24.4) | AP [(&q) 0 0i],p 05 001,111 | < Cl5|5.
(0,1)2

We now turn our attention to the other terms of (24.3]), and to shorten notation, we
will set: Q; = Go ;. We first study the perturbation Hi5, which would not appear
if the volume preserving condition was respected by our smoothing by convolution.
It turns out that we do need the double convolution by layers appearing in the
definition of v” in order to identify time derivatives of space energies. We first
notice that since #; does not depend on ¢, we have

(7" 0 61)r = " o (7" 0 0;),
from which we infer in (0, 1), since 6, is volume preserving,

(24.5) [det(VH" 0 6))]; = diva™ (7" 0 ;) detV (7" o 6;).

24.1. Study of Hi>. We have after an integration by parts in time, and the use of

24.5):
t 3 .
[ Hhe =S Hiy + Rua
0 i=1

with
t
H}Q:/ / & 0 0,(CofV (7" 0 6;))}
0 J(0,1)2

% diva” (ﬁn o 9[) [detV(ﬁ" @) 9[)]
[detV (7% o 6;)]?

t
H}, = / / &1 0 0i(CofV (77" 0 0,))%
0 J(0,1)2

[diva® (i 0 )] 111 detV(i"o8) ~
8 [detV (7% o 6;)]2 Ly 75 © 0111,

111 A 50l
Qlap 15 20111,

1% detV (7" o O)],111 -
12 /(0’1)2 &1 0 0,(CofV (77" 0 0))" [detV (7 o 0,)]2 Qu.p 75 001,111 (1),

and

(24.6) |Ris(t)| < CLE(t)? + C.

24.1.1. Study of H{,. For the sake of conciseness, we denote
P diva” (7" o ;)
7 [detV (7% 0 6;)]2

We then see, by expanding the third space derivative of the determinant in the
integrand of H{y, that H{, = S+ | Hl4 + R}, with the H{4 being estimated as H13

Ajl = & o} QZ(CofV(ﬁ“ @) 91)) [(j o 9[},1, .
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that we make precise below and Ri, being a remainder estimated as (24.6). By
definition of 7" we have, if we denote

B = py s (Vi) 06),
that
¢
Hi; :/ / [Aj(75 0012 [[Vai(0:) pr*n EY](0; 06)],1111
0 J(0,1)2 "
X [f]j © 91‘(‘%_1 ° 91)},111] + Ri,,

with |R},| < Ct and where, because of the term /a;(6;), the only indexes i and
| appearing in this sum are the ones for which 6;((0,1)?) N 6;((0,1)2) # @. Only
such indexes will be considered later on when such terms arise. From our assumed
regularity on  in H %, we then have

t
Hiy = / / [A(5 0 6).2 [[p2 *n BY](07 0 01)] 1111
0 J(,1)2 "
x [Vaiitj 0 0:(0; " 0 6;)],111 | + Ria,

with |R1}| < CtE(t)2. We next have, since the charts 6; are volume preserving,

t
Hi, :/ /71 [[A5u(75 0 61),2](6; " 0 6:) [p % B, jajaii
0 J6; " (6:;(0,1)2)
X R e V@i © 0iliyiais |+ R,
with [R| < CtE(t)? and
(24.72)
A =107 0 01 (0
(24.7b) 25 = [(6;7 " 0 61)".1 (6

7

;o 0), (0

?

;o 0) (0

?

—1 o 6‘l)i3,1](9f1 ] 91)

(3

z'_l © 9l>j471 ](el_l o 91')’

7 o0)?, (6

(3

Next, we notice that the term Ajl(Hfl o 6;) introduces a factor «; o #; which is
nonzero only if z € 6;(6;(0,1)?), leading us to

¢
= [ ] A 060,267 06 oy wn B i
0 J(0,1)?
x Cﬁ,ﬁ?ﬁ Cizl?fi [\/a_iﬁj °© ei]ﬂ'lizis ]+R’
where 6, 00; is extended outside of 6; ' (6;(0,1)?) in any fashion. This argument of

replacing an integral on a subset of (0, 1)2 by an integral on (0, 1)? will be implicitly
repeated at other places later on. Now, since p is even,

t
Hl = / / B iasuis 1 ([ (05 0002107 00,)
o J(0,1)2
(24-8) X Cgll,jfljlglmcgll,lflli% [\/ Q;1); © 91} ri1i2l3 } +R.

Now, let us call f = [Aj;(7500;),2 ](9;1091-)6‘17';{21]-13{40::[17"123 and g = [\/a;7100;],i1izis-

We notice that || f|[5 (,1)2 is the natural norm associated to E(t). Here we cannot



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 905

directly use Lemma 2 for the case where all the j; = 3, since Ei%s, is not
necessarily in Hz ((0,1)2)’ a priori. Instead, we write

Y1

f(y1,22) = f(x1,22) + (y1 — 21).f11 (21, 72) +/ [fs1 (2, 22) — fo1 (71, 22)]d,

1

which shows that on (0,1)?
PL*h [fg)(@1, x2) Zf(ﬂfhxz)/’% *h g(T1, T2)

+fa (xlvxZ)\/RP%(yl —x1)(y1 — 21)9(y1, v2)dy1

+ /Rp%(m — 1) /y1 [fo1 (z,22) = fo1 (21, 22)|dx g(y1,22)dys .

Z1

This implies
(24.9)

t

Hi, =/ /0 e [[A;1(75 © 61),21(0; " 0 65) B jjajasa

x el Gt *n [Vai(0:)[ih © 0i]iyizis || +R — Ri — R,

with
t .
Ry :/ / [Eiﬁ7j1j2j3j4 (xlvxZ)fd (xlva)
o J(0,1)2

% / p%(yl —z1)(y1 — 21)g(y1, x2)dy1 ] dardas,
R

t
Ry :/ / [Eiﬁ’j1j2j3j4 (x17x2>
0 J(0,1)2
Y1
X/P%(yl *»’Bl)/ [fa (z,22) = fo (21, 22)]dx g(y1, w2)dy1] dwidzs.
R X1

Now, for Ry, we notice that since

[fa (@, 22) = fo (21, 22)[ < C[f]3 01)2\$—$1|2<C|77|7\x_931
we have

(24.10)

t
~K K 3
Ra <C [ ) /( B g (a,2) [ paton =)t lg(on, ] derdo
0 0,1 R
t
~K 3 ik
SC/ ”77 ”%/ 1) [|I€2E1 »J1J2J374 | p% *h |gH

t
3 K
<C/ 171 42 [ B5" 1 j2isga (O )||o,<o,1)2+/O I (E1")

<Ctr? E(t) + CtE(t)?,

]
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where we have used the fact that H/@% /@;01 © ;)i igisis |0,(0,1)2 is contained in the
definition of E(¢). We now turn our attention to R;. We first remark that

fa :([Ajl(ﬁg 001),2](6; " 0 0;)cii 3% ) 1
+ Z 1(715 ©01),2 (6, o)) Zl”fff[(ﬁ_ 095) (0 ' ©0:)]1

X Hmén(e 091);1 (el_l Oai)]a

which implies that

Ry =R} + iRi",
n=1
with

Ri = /t /071)2 A BV i jagga (w1, m2) ([Ag (715 0 61),2 10, 0 0;)cii 73)
X /Rp%(yl — 1) (y1 — 1)g(y1, 22)dyy | daydas,

Ry = /t /0 12 (B jriadaa (21, 22) A (75 0 00),2](6;" 0 6;)
X (07 003" (6,7 0 0:)]1 Thpen (0, 0 01),77 (6, 0 63)
x i /Rpi(yl —21)(y1 — 21)g(y1, x2)dy1] dridws.

Let us study Ri. If we denote h(xz1,22) = [ pi (y1 —21)(y1 —21)9(y1, 22)dy1, since
(B gajaga 08 1 0 00),1 (6, 0 0;) = (67 0 61).3" (6,71 0 ) By o

t
R% = / / 655,3131]14 [(Ein7j2j3j4 09;1 o 9l>71 (9;1 o 91>
0 J(0,1)2
X ([An(i5 © 01)2 (0, 0 0)cii ¥13) o ]
t
= / / [(Eiﬁu'zjsh 06;1 © el)yl
0 J(0,1)2
X [l (A5 0 01).2](0; 1 0 0;)c i) k(671 0 6))].

Since the derivative of (E3*,;, ., 00; ' © ;) is in the horizontal direction, we infer
similarly as in (810 that

t
R% < / / [HEiK’jzjssz O@i © GZH ,(0,1)2
0 J,1)?
x |l ([An (s 0 00,216 0 0:)ei 2D B0 0 0]y (o1)e]-
Since we have by interpolation [|h[|1 (o 1)> < Ckllgl|1 (0,1)2, We then infer

(24.11) |R}| < CtE(t)%.



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 907

In a similar fashion, for R? we can identify a horizontal derivative
B jragaia (071 0 00) .77 (6,7 005)],1 T, o (6, 0 61),77 (6, 0 6)

= [(0;7 0 0).3" (07" 0 0:)]1 [TE_y(07" 0 00),37 (B3 jaga 005 0 00)1 (07 0 6y),

which leads for the same reasons as for R} to |R| < CtE(t)?. Since the other R:"
are similar in structure, we have

(24.12) |Ri"| < CtE(t)2.
Consequently from (24.9), 2410), @411) and @2412), we infer

t
Hi; = / / [[Aj(775 0 61),21(0, " 0 65) Ei*jynjssa
0 J(0,1)2

X R e E o1 xn [Vai(0:) 1 0 03y ims ]| 713,

with

(24.13) Irih(8)] < CLE(t)® + Ctr3 E(t).

Since E{H7j1j2j3j4 cgllizljlglj4 = Cﬁ?ﬂf (E{N7j2j3j4 09;1 o 61)’1 (9;1 ° ei)7 we infer as for
R} that

[Hiz (1) < Ct Supsup 1450l 5 0,02 sl + Iriz] < CLE()? + Ctr? E(t).
75 ,t

The other H{ are estimated in the same fashion, leading us to
(24.14) |HL,(t)] < CtE(t)® + Ctr? E(t).

24.1.2. Study of HZ,. Next, for HZ,, we first notice from the asymptotic regularity
result (BZI8) on div @~ (7)) that HZ, can be treated in the same fashion as H{,
leading to

(24.15) |H2,(t)| < CtE(t)® + Ctr? E(t).

24.1.3. Study of H$,. We simply write

ke detV,], ~
—m= [ @)oo ) AetVOIin 5 o B (1) + Rl
(0,1)2

[detV (77 0 6,)]

~K pft[detV(’ﬁK o 6‘1)],111 diV(ﬂ,"i o 9[) -
i /(0,1)2 §1(01)(CotV (i o 00)) e e

t ~ . ~
(7 detV (7" o 0p)[div(a" 0 O;)],111 ~
K ;DfO .
* /(0,1)2 (60) (CotV (i7" o 61)); [detV (i} o 0,)] Qup 1y © G (),

with R, being bounded by a term similar to the right-hand side of 24.15). We
also see that the first term of this equality can be estimated by a bound similar to
the right-hand side of (2415). The third term is treated in a way similar as H{,, in
order to put a convolution in front of (7; 0 6;),111. There is no difference linked to
the fact that the integral from 0 to ¢ does not apply on all terms as for Hi,, since
p1 and the 6; do not depend on time. The fourth term follows the same treatment

Ly M5 001,111 (1)

as H%,, leading us to

|H3,(t)] < CLE(t)® + Ctw? E(t),
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which with 2414) and 2415) implies
(24.16) |Hio(t)| < CtE(t)® + Ctr? E(t).

24.2. Study of Hi;. Asfor Hyq, we have if we still denote E** = p1xn((/ain)ob;)
and €™ the sign of the permutation between (m,n) and (1,2):

_ _mn_rs (T © 01)yr111 .
o =eme [ ) asEmi o a)., @)
___mn_rs [(jo 62(9;1 © 91)]75 ) ik 1
o /(0,1)2 [51(91) detV (7% o ;) [[V O‘Z(el)p% *n Eny](0; o 91)] yrill

X [’l~)n o 91(9:1 o 0[)},111}

— Jmn_rs 91 1% qu: Vi1 da i C]1]2J3J4
€€ /(0)1)2 [El( )detV(ﬁ“ 091)(9f1 o 0;) [pi h } Jizdaja Gil 111

X [T © 0] igigis |+ Ra1,

with
|Ru1(t)| < CE(t)?
and

I = (071 0 00).31 (0,7 0 00).3 (07 00,7 (6

?

o010, 0 6).

K2

Therefore,
Hiy ZGM"GTS/( )2&(91‘)[@(91')]71'1 P *h B jagsia V@0 © 0)izigiy B+ Ruy,
0,1

with
Cj1j2j3j4 i19203%4
(24.17) h(ji)1234 — [ al,r111 “il,s111 }
" etV (77 0 0,)(6; L 0 ;)

Similarly as in the study of H{i (from equations (248) to [24I3)) we have

Hyp = e™me™ /(0 b &(0)1a(0)]sis B PAEL Gy ajaga P2 [V @i © 03] i
+ 511 + R;17
with,
1S11| < CLE(t)® + Ctr? E(t).
By integrating by parts in space (and using &G(6;) = 0 on 9(0,1)2),
(24.18)
Hyyp = —€™"e’® /(0 1)2(&@)(90’15?)1234% *h [V im0 0i],41 425 4

X pLHn [Viln 0 03]iyigigi4
+ Hi, + H}) + S11 + Ray,
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with
(24.192) Hl, = —™"e"® /(0 b (&@) (0D p 1 xn [/l © Oi)sis o
| X p1 xp [ViUn © 5],iigis
(24.19b) H? = —™"" /(O . (0GR 1251 5, p1 s [V © 04351125
X P xn [\iln © 0iiigi, -

For Hi,, by taking into account the symmetric role of {is,i3,i4} and {jo, 53,74},
we obtain

Hj, = _Gmners/( )2(51(1)(91')%?)123%% *n [V @il © 0301 jrizigia
0,1
X p1*n [V/@iTn 0 03,5454 -
Next, since hys (F6)123a _ héij)m“, this implies
H111 = _emners/( )2(51(1)(91')%?)123%% *n [V/@ilim © 9i],i1j1i2i3i4
0,1

X pL*p [\/Otif]n © 9i]aj2j3j4

X p1*n [V/@in 0 03,5544 -
Therefore, by relabeling sr as rs and j as ji, we obtain by comparison to (24.19a):
Hlll = _Hlllv

and thus H{; = 0. For H},, we have by integrating by parts H?, = H}{ + H,
with

H2 = et /( . [0 [0 RE Y0, 1ogy p1 5n [ViTim © 0l
X p1 *n [\/Qin 0 03,551
H2 = mnere /( )2 Q0G0 (0P p 50 [V @il © 01l oo
X p1xn [V/QiTn 0 03], 41044 -

First, for H{, if we denote E,,,, = em"p% AT AR p1Lxp [/ @iT1n005] iniziss

we have
/ Hll = _/ / )h(ﬂ)1234]7'1 ]Ul] Enn
0,1)2

t

I P (ji)1234] . . )
+5 /(W[( &I ], T, B
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Therefore,

[ < [ WH O Ly 1 ol .01
+ e[ la(e: (ﬂ)h%h%wm () e oy, L1713 () + 1113 (0)]
e / 10 OB =5, 1 Vll oy L1112 () + N3 (0)]

With the definitions 24.17) and [22I8)) for the control of the time derivative of
det(V(77)) in H? (), we then infer

t

(24.20) \/ H{t| <CtE(t)* + N(up).
0

Next, for H2?, we have by relabeling m and n

Hif = e /(0 1)2 Q0 [&(0)RE i, po o0 [ViTin © Oilsjs s
X p1 n [Vl 0 0i],jyigisia
= —mners /( . G060 i, 1 %0 [Vl © i) oo
X p1 xp [\/Qitm 0 03], j1igisi -

By taking into account the symmetric role of {is,i3,i4} and {j2,js,ja}, we then
obtain

(2421)  HY = ””’6”/( , 10 0)hy B pa s [V/@itin © Oilizisis
0,1
X pL *p [\/Ol—z'[}m © 91‘}7]'1]'2]'3]'4 :

Consequently, by (24.19h) and 24:27)),

el O AN R P
X p1 *n [0 © 0iliigiy
—emert [ OGO L s o [T D
X p1xp [\/@iOm © 03,51 52jssa
+Hi
= et [ OGO oy 50 VT D

X PL*h [\/Oéz‘f]n © 9i]ai2i3i4 ]t
+ HE



WELL-POSEDNESS OF THE FREE-SURFACE EULER EQUATIONS 911

Therefore,

Zmners (J1)12347] . spmeo o mn
/ Hll - / / %)hrs ]711 ]tnimh]z]s]zx Niksizisia
0,1)2

~ ~ t
- emners [/(0 1)2 ( )[fl( )h(ﬂ)lnﬂvh 77:27j1j2j3j4 Ufmzigu ]O

L[t o
+§/0H11

Now, from [24.I8) and H{; = 0, we infer by integrating by parts in time:

MmN TS (11)1234 smeo e
/ Hyy = / / 2 flq h }tnz’mj1]2]3]4 Nikrivizigis
0,1

1 mn _rs ~ % t
- 56 € [/ (flq)( )h(J )1234nln’J1J213]4 nuc’lllﬂsm ]Q
(0,1)2

t
1
“1‘/ [511 + Ry + §H121}
0

Now, we claim that the only couples (i1, j1) contributing to the sum above are the
ones with i1 # j;. To see that, we notice that if i; = j;, then by simply relabeling
m and n, and using the symmetric role of {is, 3,44} and {ja2, js, ja},

(JZ)1234 mn > — (J1)1234 nm.
h?"S hrs

771;—:%1]2]5]4 nzm21222314 - 77mﬂ1]2]3]4 771;@’11121314

— (]1)1234 nm =
h 77m”1121314 nm’]112]314 ’

(§)1234 emn

leading to hys
if we denote

" — nm
N yisjajaja Miwsivinizia = 0, since €™ = —€™™. Consequently

hgﬂ:)mu
(67 06,),3" (6, 06,),5 (6, 0 6;)

7

dUizse —

)

we have

[ = geme [ Tpoae et omy

(91 to 91)’8 ](el ‘o oi)nimjlj2j3j4 ﬁ?mhh’is’izl]
— e et [/ [(&d)(8:)dD=stems e (071 0 61) 30 (6,1 0 1), ]
2 (0.1)2
- =1 =~ t
X (01 1o 9i)”inaj1j2j3j4 Nikvivizisis HO

t
1
+/ [Sll + R + §H121]
0

Now, for any fixed (i1, j1), we have

eI [0, 0 0) 31 (6, 0 6),5 ] = —det(V(6; " 0 6)) = —1,

7
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leading us to

t t
1, 3 o B
/ Hyy = —§6m"6“”/ / [(£G) (0:)AY D234 i i e siv inigia
0 0 J(0,1)2

1 o _ t
+ 567”"6“]1 [/(0 e (gl(I)( )d(ﬂ)23477m7j1jzjsj4 77ma%1122324 ]0

1
S -

t
+/ [S11+ Ri1 +
O 2

Next, by integrating by parts in space

/ Hy = emn “Jl/ / glq ﬂhsﬂtﬂd ﬁﬁ7j1j2j3j4 ﬁznmizisu
0,1)2

1 o . . t

- Eemnehjl [/ [(glq)( ) (] )234] i1 n$7j1j2j3j4 nz'nmiﬂs.u }0
(0,1)2

1
_H%I]a

t
(24.22) +/ [S11+ Ri1 + 5
0

where we have used the fact that similarly as for H{;, we have
0 = MM d(ﬂ)23477 ,,,,,
1K

We now come to the study of the crucial term bringing the regularity of the surface.

24.2.1. Control of the trace of 7;;, on I'. Let us study the second term of the
right-hand side of (24.22)):

1 o . -
H = _§6mn61”1/ [(&q)( ) (32)234]a11 nmﬂj1j2j3j4 nymizi3i47
(0,1)2
for which we have

1, N 1 el ok
H = —Lemneinn / [[1(6) (9:)d9=54) 0 67 o (7)1 0 7% 0 6],
2 (0’1)2
X [ jagaga 007 0 (%)Y 0 11 0 03],4, Misinisis |
1 117 ~ 11)234 — ~K\— ~K
=g [ @O 007 o () )y o700 [ 0
0,1)2

X [773};7]'2]'3]'4 09;1 O (ﬁﬁ)il]ﬂj{ Oﬁﬁ O ei [ﬁﬁ o 91]»;1 ﬁznmizisu ]
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Now, for the same reason as before, the couples (i}, j1) such that if = ji will not
contribute to the sum above, leading us to

1 — Sh\— =
== pemmeit [ [(6D@:)d07] 067 0 () g o 00
(0,1)2

% 611]1611]1[7] o 0 ]"Ll [7’] [¢] 0 ]’jl
X [nimjzj3j4 Oei (ﬁﬁ)_l]’ji 077 °0; ﬁ?'f’i2i3i4}

1 o

= _56"’”6“]1 /(0 1)2 [[1(&9)(6:)dYD254] 0 6,71 0 (%)~ ,45 077" 0 8; detV(if" o 6;)

X [ﬁﬂa]ﬁjajzx Oei_l © (ﬁﬁ)il]aji Oﬁﬁ o t; ﬁ?ﬁ’i2i3i4}

]_ Ay — ~ K —_
::*égm“”ﬂ/ [1[(&@)(0:)dY>54] 0 0" o (77%) ]
7%(6:((0,1)2))

X [ﬁ;ﬁﬂzh]@ Oei_l © (ﬁl{)il}vj{ 'F]znmiﬂsiz; 001'_1 © (77 )71}
oy

with
r=—gme [ (&) )4 007 o (7).
7% (0:((0,1)2))
X [ﬁ?;vjzjsjzx 09;1 © (ﬁn)_l]m ﬁ?n7i2i3i4 09;1 o (ﬁﬁ)_l]
1 . . _ e —
7= [ (&) (O] 067" o (7).,
7% (0:((0,1)2))
X [ﬁz?zajﬂ:sjz; 091‘_1 © (ﬁﬁ)il},m ﬁznmizism 091‘_1 © (ﬁﬁ)il]'
Next, we notice that
7= /‘ [[[(&@)(8:)d9724) 0 6, o (7)™ ']m
QE:ﬁWAWMW '

X [ﬁznmjzjsjzx 091‘_1 © (ﬁﬁ)il]m 77;2,1‘21‘31‘4 001‘_1 © (ﬁn)il] + Jla
with the perturbation term
1 ~ T — ~K\ —
n=y (&) 0)d591) 067 o (7).
7%(0:((0,1)2))
X div[ﬁimjzj3j4 091'_1 © (ﬁn)il] ﬁﬁmzim Oei_l o (ﬁl{)il}
= Jll + J125
where

1 121374 ~K\— j23J4 - ~K\—
Ji= _/ [H(€IQ)(9) Cii, 1311] o, o(7") Yon CZI,JHJI o 0; Yo (7 )~
(0:((0,1)2))

X div[ﬁl‘mj2j3j4 09;1 o (ﬁﬁ)_l] ﬁymmm 09;1 © (ﬁﬁ)_l]v
1 o o
r=5/ (@)@ 0 07 o %) ey 007 0 7).
7(0:((0,1)2))

X div[ﬁiﬁﬂj2j3j4 001‘_1 © (ﬁﬁ)il] ﬁfmmu 091'_1 © (ﬁn)il]'
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Now, for Ji, let us set
fir = [(&@)(0:) e 0 0,7 o (7)™, I (6, 0 01,7 (07 0 0) % viniin ]
x (6; o (7)),

so that in order to identify a horizontal derivative on the highest order term we
have

1 _ i _ r\— C o~ _ R\ —
Jll = 5/ fil (92 Lo 9l>7114 (el Yo ("7 ) 1)dlv[77imj2j3j4 091' Yo (77 ) 1]
7%(0:((0,1)2))

1 - ja (n— SR\ — - SR —
-5/ Fa 07 000 07" o () )(07 o (7)) 4
©(0;((0,1)2))
X [ﬁiﬁ7?2j3j4l] °© 9;1 o (77“)_1
/ [fa (670004 (07 0 () 1)(6; o (i7%) ) L
7"(0:((0,1)2))
X (7w 1 007 0 (%) g (7 0 02),2. (671 0 (7))
/ [fa (07003 (67 o (7))
%(0;((0,1)2))

1

25
X (07 0 (1) 1) Flimoy 1 005 0 (1) ™M g
X (i7" 0 0;),9 (0; o (1)~ 1)] + 11

N =

1 =K — K\ —
-3 [Fa 1606204, (607 0 007" 0 00) 410 o () ™)
77(6:((0,1)2)
X diV[ﬁm,ijg, 09;1 ° (ﬁﬁ)_l]vq] + 7‘%
1 " e IR
-5/ G067 0 () i o7 0 (79 4}
77 (0:((0,1)2
1 sl — SR\ — ~K — SR\ —
=3 Loy i s o070 ) 07708 (07 0 7))
7%(0:((0,1)2

with |ri] < C||7*||3. Now, we notice that the presence of the factor & o (7%)~! in
fir implies that the integrand in the integral above is zero outside of 7% (6;((0,1)?)).
Similarly, the presence of p1 *p [\/@if] © 0:],,5 005 ' o (77%)~! implies that = €
7%(0;((0,1)?)) in order for this integrand to be nonzero. Therefore,

11

Ji = B} /(0 e Fa(@" 0 6;) (div]ir,jajs 09;1 o (ﬁ”)fl] o7 08;),; detV (7" 0 6;) + ’I“%.

Now, since the derivative of div[ijis,jnjs 00; * © (7%)7'] 0 77" 0 6; is taken in the
horizontal direction, this implies

[Jil < Cllfallz 0,02 1 div[Thir s s of; o (") Mo o Ol 0,0) + |r1]
t
< C”fil”%,(o,l)?H div([Tlirsjajs 09;1 o (ﬁn)_l]||%,ﬁw(gi((071)2)) +C|1d +/0 ﬁH%
Now, since we have in the same fashion as ([22.]))

1 v g 0 (%)l e o 0,02 < CHE@? + Crb (1) +C,
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we then have
(24.23) T < CtE(t)® + C + Cr3 E(t)2.

Next, for JZ, we notice that [cgllizljf o 9;1 o (7®)71],, is a sum of product, each one

containing a factor (6; ' 06;),7* (6; ' o (7%)~'). This implies that JZ can be treated
in the same way as J{, with the identification of a horizontal derivative on the
highest order term of the integrand, leading to the same majorization. We can also
treat I in a similar fashion, due to the curl estimate (similar to [2211])):

Il eurlfissjags 00; " © (7)1 70 6u((0,1)2)) < CLE(8) + N (uo),

which finally provides us with

B S [ a0 o)

i D (0:((0,1)2)

>/
X [nimjzjsjz; 09;1 © (ﬁﬁ>_1}7n ﬁ?nvi2i3i4 09;1 © (ﬁﬁ)_l] + hl

=X o [ 00 () G
m,n ¥ 1% (0 ((0, 2

X [ﬁ?ﬁ)j2j3j4 09;1 © (ﬁn>_1]7m ﬁf?miﬂzir; 09;1 © (ﬁﬂ)_l]
[t 0 07 o ()7 (@) ()~ )]
((0,1)%))

7,

X [isgaisis o0 ' © (1) o Wisiaizia 05 0 (%) 7] + 1,
with

IW (1)) < CLE()® + N(ug) + (Cr? + 8§)E(t)? + Cj.
Therefore, by integrating by parts,

1
H=— d(]1)234 Io) 9 1 5 . ~g1
4 /Oﬁ (0;((0 1)2))[ o (%)~ ( 1) (7)™ )] n

X [Tt sjagaga 007 " 0 (1) il sinigia 005 -0 (7)1 + B2,

with
1
=3 [[99 007 0 () ED(T)
71%(0:((0,1)2))
X [ﬁ:’lmjzjsjz; 09;1 © (ﬁn)_l}ﬁ?miﬂgu 09;1 o (ﬁﬁ)_l] + hla
so that

W2 < [llalz 1lls + 1771 2 lalls] 17115 + R ()]
< (Ck? 4+ 6)E(t)? + Cs + CtE(t)* + N(up).

Now, since ¢ = 0 and & = a; on I', we infer

t

1 . ' n
ne-tf @) o+ [ pidon ¥+ [ 01
0777 (6:((0,1)?)) 0
X sz ] © 0 0 (1) T A siziais ] 0 07 0 (1) '] + B2,
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-1 ka (p—1 ks (-1 ks
with df2st = (6, 061).y (jitvo(?l)’la()ei © 0 (6, 0 6;). Therefore, with the
e ntob

initial pressure condition
Posm Ny < —C <0 on T,

we infer
—-H < *C/ [0 (03) AL T o ga A3 T sigiais ) © 07 0 (777) 7"
1% (0:((0,1)2))
+tE(t)? +|h?|
< 70/ [ai (ei)dz§34ﬁ?n7j2jaj4 d;2‘34ﬁ?mi2i3i4] © 92_1 o (ﬁﬁ)il
1% (0:((0,1)2))

+ (Cr? + 8)E(t)? + CtE(t)* + Cs + N(ug)
<-C [ai(ei)ﬁ?mjzjﬂzx ﬁ?mizie,iz;] o 9;1 © (ﬁﬁ>_1
7% (0:((0,1)2))
+ (Cr? + 8)E(t)? + CtE({t)* + Cs + N(ug)

< *C/ [ (0;)71 111 Tipsn11 ) 0 07 o (7)1
7% (0:((0,1)2))

(24.24) + (Ck? +6)E(t)? + CtE(t)* + C5 + N(uo).

Now, it is clear that the space integral in front of the first time integral in (24.22))
can be treated in a similar way, except that we do not have a control on the sign
of the boundary term as in (24.24]), which does not matter since a time integral is
applied to it. This therefore leads us to

¢
*/ Hy < *C/ [ (0;)71 111 Tipsn1n ) 0 07 h o (7)1
0 a7 (0:((0,1)2)

+ (Cr? + 8§)E(t)? + CtE(t)* + Cs + N(uo),
which , with 240 and [242), finally gives the trace control for each 7, as well

as the control of v around I':

HE(t) +C [/ (0:)ea1 ] 0 07 0 (77) 7
27 (0:((0,1)2))
(24.25) < SE(t)? + CstE(t)* + C5N (ug).
24.3. Asymptotic regularity of each 7;,. Consequently, we infer that for each
l€{1,..., K}, we have the trace control
(24.26)

V@O 1o 07 0 (1) M I3 5m00,(0.0y2) < OE(1)* + CstE(t)* + CsN (uo).
Consequently, with the estimates (22.8)) and (22:11)) on the divergence and curl, we
obtain by elliptic regularity:

NVATE) e ] 67 0 (7)1 ot o)
< P(Ii*l15)6E(t)? + CstE(t)* + CyN (uo)]
< SE(t)* 4 CstE(t)* + CsN(ug).
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Therefore,
(24.27) v/ (00) s |13 S 02 < SE(t)? + C5tE(t)* + CsN(u),

which implies that ||/ (0;) 7,12 ||%7(0,1)2 and || /& (01) 7.2 |I3 50,12 are controlled

by the same right-hand side as in (24.27). Consequently, with (2Z8)) and 2211,
we infer in the same way as we obtained (2427 from ([24.26]) that

V@i (002 13 0.1y2 < OE(1)* + C5tE(t)" + CsN (uo),
and finally that
(24.28) /2100l (0,12 < SE(t)? + CstE(t)* + C5N (ug).

24.4. Asymptotic regularity of 7. This also obviously implies that for the
advected domain

(24.29) 1711 o < SE(8)? + CstE(t)" + C5N (uo),
L
where QF = Q ﬂ (suppa;)©.
i=K+1
From the divergence and curl estimates (22.4) and (22.10), we then infer that
(24.30) 1877 © 6;|% 7 o1y < SE(t)? + C5tE(t)* + CsN(u),
which with (2428) provides
(24.31) 17513 < SE(8)? + CotB(t)* + CsN (o, | 3).

24.5. Asymptotic regularity of . The relation [2428) provides us with the
asymptotic regularity of © near 0€). For the interior regularity, we notice that if we
time-differentiate the analog of (223]) for the cut-off § € D(Q2), we obtain

(24.32) |div((B5 0 6;),s 00, " o (77) " Hl)ﬁﬁ(m <C.

Similarly, we also have
(24.33) [|curl((B5 0 6;),5 00, " o (7") 1)||2,7~,n(9>
From (2432) and 2433), elliptic regularity yields

189 0 0i|2,(0,1)2 < C,
which, together with ([24.25]), provides
(24.34) 19]12 < 6E(t)* + CstE(t)* 4+ C5N (ug).

<C.

24.6. Asymptotic regularity of ¢. From the elliptic system

(dn)z[(aﬁ)?ik]aj = _('&Kag 11,; )(@7) in Q,

G=0onT,
we then infer on (0,7}) (ensuring that (I9.2) is satisfied):
(24.35) Ig1I3 < Clli*5 < SE()* + CstE(t)* + CsN(uo).

24.7. Asymptotic regularity of x,/o;v o 6;. From ([23.1), we have
(24.36)  [k]l\/auD o 6] %’(0’1)2]2 < [K]|uol| %]2 + 0E(t)? + CstE(t)* + CsN (up).
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24.8. Asymptotic regularity of x2./a;0 0 6,. From @33)), we have

(2] V/ait 0 61| g 0,12 < [K|[uoll3]? + CstE()* + CsN(uo),
which by interpolation leads to

(24.37)  [63 ||/ 0 0y|4,0.0)2]% < [K2 [luolla]® + SE()? + CstE(t)* + C5 N (up).

24.9. Asymptotic regularity of ;. From the elliptic system

COHI )f Giow Loy = —[@7] @5 (7)) — (@] [@)Fledie ],y in €,

we then infer on (0,7};)

(24.38) G:)|% < SE(t)? + CstE(t)* + CsN (up).

24.10. Asymptotic regularity of @;. Since 0} = —(&“)zq,j, we then infer on
(0, T%)

(24.39) 1203 < O~ 7 + lldll3)* < 6E(6)* + CstE(t)" + C5N (uo).

25. TIME OF EXISTENCE INDEPENDENT OF K
AND SOLUTION TO THE LIMIT PROBLEM

By @431), 2430), 2439), (2430), @428), 2430), (2437) we then infer the

control on (0,7}):
E(t)? < SE(t)? + CstE(t)* + CsN(uo),
which for a choice of §y small enough provides us with
E(t)? < Cs5,N(ug) + Cs, tE(t)*.

Similarly as in Section 9 of [§], this provides us with a time of existence T,, = T}
independent of k and an estimate on (0,77) independent of k of the type

E(t)* < No(uo),

t
as long as the conditions (I9:2)) hold. Now, since [|7(¢)]|s < ||Id||5 +/ 193, we
0

see that condition (I9.2h) will be satisfied for ¢ < (ao) The other conditions in
o(uo

([I32) are satisfied with similar arguments (([2438)) and ([24.39) are used for (I9.2d)

and (I9.2d)). This leads us to a time of existence T5 > 0 independent of « for which
we have the estimate on (0,7)

E(t)* < No(uo),

which provides by weak convergence the existence of a solution (v, q) of (L], with
o=0,on (0,T).
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26. OPTIMAL REGULARITY

In this section, we assume that Q is of class H2 in R3, that ug € H3 (Q), and
that the pressure condition is satisfied. We denote by N(up) a generic constant
depending on |Jug||3. With these requirements, we will only get the H 3 regularity
of the moving domain 7(Q2) and not of the mapping 7.

Due to the fact that H? is not continuously embedded in L*° in the case that €2 is
three-dimensional, we cannot directly study the integral terms as in Section 24l as we
did for the two-dimensional case. Instead, we are forced to also regularize the initial
domain, by a standard convolution, with a parameter ¢ > 0 fixed independently
of K, on the charts defining it locally, so that the initial regularized domain €2, =
Q) obtained in this fashion is of class C>. The regularized initial velocity, by a
standard convolution, will be denoted wug(e). We then start at Section [I§ in the
same way except that the regularity of the functional framework is increased by one
degree for each quantity. This leaves us with the existence of a solution to (I7.1))
on (0,7, ), with initial domain €, and initial velocity ug(e). We then perform the
same asymptotic analysis as k — 0 as we did in Sections to 24l in this new
framework. We then see that the problematic term is now updated to one which
can be treated directly by the Sobolev embedding of H? into L in 3d. This leads
us to the existence of a solution to a system similar to (LI) (with o = 0) with
initial domain Q. on (0,7}), with n. € L>(0,T.; H2(€2,)), with initial domain €2,
and initial velocity wug(€).

We then study hereafter the asymptotic behavior of this solution and of T, as
€ — 0. This will be less problematic than in Section [24] since the convolutions by
layers with the parameter £ do not appear in the problem (LI with smoothed
initial data and domain. We will denote the dependence on € this time by a tilde,
v standing here for v, for instance, and prove that as e — 0, the time of existence
and norms of ¥ are e—independent, which leads to the existence of a solution with
optimal regularity on the initial data, as stated in Theorem .4l

Our functional framework will be different than in Sections [I9 to Our con-
tinuous in time energy will be:

Definition 26.1.

(26.1) H(t) :?élf[‘ﬁb,f 119l + 19l 5 + lldlls + 19eell2] + 1,

where 7 denotes the unit exterior normal to 7(€2).

Our condition on T, will be that on (0,7%),
1

(26.2a) 5 < detVi < g in Q,
(26.2b) I7lls < 12+ 1, [lglls < llqlls +1, [[olls < Jluolls +1,
(26.2¢) [Tell2 < flwallz + 1,
1
(26.2d)  VI€{l,...,K}, |[fiofi,1 xijols]| > 5]91,1 x0;,2 | on (0,1)% x {0},

where wy = —Vqo € H? (©). We will use a more straightforward approach than in
Section 4] which is enabled by the fact that we have a instead of the convolution
by layers a” in our equation, by defining the following energy:
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Definition 26.2.

K
=3[ eonlnaoml,
=1 (0,1)3

where D?f stands for any second space derivative in a horizontal direction, i.e.,
frarag, Where a; € {1,2}. Summation over all horizontal derivatives is taken in the
expression for E*.

Remark 19. We also note that this energy is associated with the second time-
differentiated problem; we thus avoid the use of the curl relation (2ZII) for 7,
which necessitates the supplementary condition curlug € H? (€) (which we do not
have here).

With b, = [V(7 0 6,)] ", we have: Ef =30 | E;, with

K ~ .
Ef)=-Y" / €(6)D((50))ee) (@ 0 60) . DX (B0t 0 61,

—1 /(0,13
l o ) |
Byt)=—2%" / £0)D(B)E]) D(T 0 00) i D (s 0 0,),
=1 (0,1)3
K
Es(t) == 01y EO0)[(B1)510e D*(G © 1),k D* (B © 01)7,
l:[l{ N
Eat) = -4Y" / €00 D[(B0)1:D(G: © 61).is D (s 0 61,
1=17(0.1)?

K
- —22/ £(0)D2[(B)41e (G © 01)e D2( © 017,
(0,1)3

K
=23 [ O@Da 00 Do)
1=1 "0
K
Brt) == [ €O0DO)}(an 0000 D*(5u 00)
1—1 7 (0,1)3
K .
22/ D(b)% D(Gst 0 01),1 D* (01 © 617,
1=1 (01
K
Z/ )ED?(Ger © 01),k D? (D11 0 0)°
= /o 1)3
26.1. Estimate for ¢;, ¢;; and G- From the elliptic system
&i (afqt,k )’j - 7[&5(6’?]7567/6 ) [akvlak alv 5l ]t in Qv
G+ =0 on o9,

we infer

(26.3) G lls < CL 1Bl + [ldlls + 1]l + [[3:]l2] < CH(2).
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For similar reasons, we also have

(26.4a) Geell s < CH(1),
(26.4b) Geeell2 < CH(2).

26.2. Estimate for E,, E,, Es5, Fg, Es. Thanks to the embedding of H! into L8
and H? into L3 we first immediately have

(26.5a)
|Ea(t)] < Cllaelhllals 9ll2 < CLIBell2lls + [[vl13] dllallosellz < CH(#)*,
(26.5b)
|Ba()] < Clacllzlldel s [0l < CH(1)?,
(26.5¢)
|B5()] < CllolsllGellsl|oecll2 < CH(2)?,
(26.5d)
|Bs(t)] < Cllolls|Gells || oecll < CH(®)?,
(26.5¢)
|Bs(t)] < Cllallzl|Geell g 1Teell2 < CH(2)?,

where we have used (26.3)) for ([26.5d), (26.5d)), and ([26.4al) for (26.5d).

26.3. Estimate for F3. By integrating by parts, and using [(b)?],k = 0, we obtain
Es = Ej + E3, with

K
Bi=3 [ OO G 0D o)

K
B =3 [ O (B} Do 0D G081,
1=17(0,1)?
We first have
B2(8)] < CllanlludllsIoulls < CH().

Next, B} = 32 | BV, with
K

Ej' = - ; /( - E(0)D[(5)51e D* (@ 0 0) D (51t © 01) 5

K
B == [ OO0 00D o0

K
B <=3 /( 1 DEOIB1D? 000D o )
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We obviously have |Ei3(t)] < CH(t)*. Next, we have by integrating by parts in
time:

t K 5 - .
/0 £ = lz:/ /0 1ys 00 ([(0)5166D% (s 0 61) + (D)) D*(G 0 61)) D (T © 1)

K ) -
+ [; /(0 b 5(91)[(b)§]ttD3(qo 6,)D(%; o el)’i]o’

showing, with the continuous embedding of H! into L® and of H 2 into L3:
(26.6)

t
| / B < Ctomplliaell sl -+ 1ol

for

K

+I [ @D [Ha)D* 000

1=1 7 (0,1)°

v [0 o],

< Ctsup[ljag ]| gllsllvell s + llaeelllqlls] o]l 5]

t
+ 1] 5 13(0) 1311Bee (0) 11 + Hﬁt\gt?élg[\ldt\lsllgn\ll + [1dll3][Beee[1] + N (uo)
< CSH(t)* + tH(t)* + C5N(up),
any 0 > 0. For the remaining term E%l,

|E5M| < Cllaslls 1dllsl o]l < CH(t)".

Consequently, we have

(26.7) |/Ot Bs| < CSH(t)? +tH(t)* + CsN(uo).

26.4. Estimate for E;. By integrating by parts, E; = EX + EZ, with

El = Z / | 2(5)" (Gt 0 00) D (i 0 01) ]
0,1)3

K ~ B

B2=3%" / €0, D) 0 0) D (00 0 )’
1=17(0.1)

We first have

B2 ()] < Cllallllgeel2)1Teell2 < CH(2)".

Next, we notice by integrating by parts in time and space that

/ E} _Z/ /0 1ys fqttoel),k +D? ( ) (&Gt 0 61),x 1D (Ut091)j

+ [Z/ (60 D*(b ) (&Get © 01) 1 D*(By 091)]}3.

=1 (0)1)3
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In the same fashion as we obtained ([26.6), we then infer

(26.8)
|/Ot Eq7| < Ct?(Eg[“l;tH2||C]tt||2||77t||g + [1Bll2llGeee 12113 5]
+ 119215 132 (0)[[2116(0) [l2 + ||7~)t||gt?$g[||(1ttt||2”6||2 + eIz 1Bel2] + N (uo)
< CSH(t)? + tH(t)* + C5N (uo),

where we have used (26.4h) for Gi;. Consequently, we have

(26.9) | /0 t Eq| < CSH(t)? +tH(t)* + CsN(uo).

26.5. Estimate for Fy. We notice by integrating by parts in space that

Bo(t) = / £0) (51D (e 0 00) D (Tt 0 01) ]

1—1 /(0,1)3
K

INKT 2/ ~ o 2 Gyt 0 j.
+§/(071)3 §(01) 5k [(b1)7]1D=(Gre © 01) D=( o)

Next by the divergence condition,

K ~ .
Bt ==Y [ 00D B0 0 0 200,

showing that
(26.10) |Eo(t)] < Clblla|Geel s [52el2 < CH(#)*.
26.6. Estimate for E;. If €/ denotes the sign of the permutation between {4, j, k}
and {1,2,3}, if 4, j, k are distinct, and is set to zero otherwise, we obtain
E, = E} + F3,

with

K
B = Z/(o £(01),k G 0 0. D?[(b1)5]0e D* (41 0 61),
1=1 (0,

1)3

K

1 j ~ ~ m = n ~ j

Bf =) et / EG(0) D[ 0 01,77 770 01,7 1t D (D01 © 01)
=1 (0,1)3
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26.6.1. Estimate of FE{. Now, for E{, since
DA+ 4, 5 Ui Vi, .} ] =0,
we obtain in  that
. t . . t .
(@k50) (0= 22(0) + [ (@@L a0 ) iy~ [ a0 a7 @00,
0 0
and thus,
(26.11)

al (@ vy, ),y = —[al (afo, ).y +Har(a

By elliptic regularity in the interior of Q, we infer that for any w whose closure is
contained in 2,

1530 < Cullla] @FTeon ) 116 + 15 ]12] < CoH (2).

With this estimate and the condition € 0, = 0 in a neighborhood of (0,1)? x {0},
we then obtain

|BL| < Clldll2 [CH®)Ills + [13113] [15eel2
(26.12) < C(H(t)3 +1).
26.6.2. Estimate for E? and the trace regularity. We now study E?, which

will be the term bringing the asymptotic regularity of the moving domain 7(€2).
We have that

3
-3
=1
with

K
BN =) emmienak /(O . £G(01) D?[5 0 00,77 5 0 0,7 1D (541 © 07,
=

1
K
23 e i /0 1 STOND(E 000 DG 0) |D? (344 0 01).

EP =
=1
K 1 _ _ _
B = l; € /( oy SODID e 2 00)57 DG @ 00)5 1 0 611 61)

We first notice that

|EP' + [EP| < Clldllslali3lslle + Cllalisloe s 17ls )8l
(26.13) < CH(t)*.

Now, for the remaining term E?3, an integration by parts in time provides

t
1 1
| B = gEE e SE,
0 2 2
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with
K t
231 i paj 20~ 20~ i (= -
BBl = — E b / / §(01) D= (01 0 0;),," D*(0 0 61),5 (G001 (77001),4 )t
- 0 J(0,1)?
=1 ’

E#2 = ¢mnigpai / . £(6,)D? (9, o 01)sp" D?(%; 0 91),; qo 0y (706:),y -
(0,1)

First, for the perturbation term E?3! by integrating by parts in space (and using
G=0onT):

t K
B [ Soemien [ (0020 0). D250 0030 61 (7060) )
(O (0,1)¢

t K
+/ Zemmem/ D2 (0 0y), D*(0y 0 6,) (€4 0 0y (710 61),7 )1 -
0

=1 (0,1)3

For the first integral, we notice that for any f, g smooth,
mnt _pqj £m £i,. N __ _mni _jgpfm £i,.n
€ € f7pjfg7q_6 € fajpfgaqa

and, since €P% = —€JP, this quantity equals zero, leading to

t K
BBl = / Zemmep‘” / . D?(%; 0 01)sp" D?(%,06;) (EG o 0(7 o 01)sq Vg -
0 = (0,1)

Consequently, as in (8IF) since the derivatives in D? are horizontal,

t
28 < © [ Il LI @Valh+ 9G]
(26.14) < CtH(t)*.
Now for E?32) we will introduce the notation
V()=006; and E(I) =10 0,.

We then have after a change of variables made in order to get vector fields whose
divergence and curl are controlled:

K
B2 =S emmien [ [ggon (00 o BO) ) (BOIED
=1 (0,1)?

x (D2V,(l) o E()™Y).5 (BE(W)E), (E() o EQ)™Y),n E(1),41].

g ’q1 q
Now, we notice that any triplet (i1,j1,¢1) such that Card{i1,j1,q1} < 3 will not
contribute to this sum. For instance, if j; = g1, we notice that by relabeling j and
q,

PUE(L) P E(1) E(l) = PITB(1) P E(1)) B(1),

7j 7q 7j )
where j; = ¢; is fixed in the sum above. Now, since e?% = —eP/4, this shows that

PUE() 2 E(1) E(1)) =
By a similar argument,

P1 E(Z) qr _

g 'q

e E(l),p E(l)
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Consequently, only the triplets where Card{i1, j1,q1} = 3 contribute to E?32, show-
ing that

E»? = Z E’HLTL?/GPIQIJI/O . [£G o0, P9I P1411 E(l),b E(l)’;:l E(l),I

< (D*Vi() o EQ)™H) 5t (EW)(D*Ve(l) o EW)T).5, (E(1))dy, ]

Since for each given (p1, j1,¢1) we have ~sp‘1je”1‘11j1E(l),§1 E(l),;1 E(l),3* = detVE(I)
=1, we then infer

EP? = Z €M eres / [€Gon  (D2V,(1) 0 E() 1), (D?Vi(l) 0 E(1)™).5 8]
By integrating by parts in space, we get by using ¢ = 0 on I':

K
B2 == 3o [ [egoq (DD o BQ) ) g5 (DWi0) 0 EQ) )]
=

(%)

7i(€)

K
N ZGmniquj / [(ffj o ﬁil);j (Dz‘/t(l) e} E(l)*l)’gz (Dz‘/t(l) e} E(l)*l)zég} .
=

Next, since for any f smooth,
emmep‘”f 6, =0,

we infer

K
B2 = — Z €M P [(Q)(gq o)), (D*Vi(l) o E(1)~1)," (D*V4(1) o E(1)~1)'0y.
1= n

Now, we notice that for §2e™"eP% £, if p = i, then necessarily j = m. Similarly,
if p # 4, then since p # n, necessarily, p = m, and thus ¢ = j. Therefore,

K
232 _ emni inm 2 " ° —1 7m 2 " ° —1\% 7o ~—1 m
B =3 / o (D2 B (D) 0 B (€ )
=Y e / (D*Vi(l) o EQ) 1) (D*Vi(l) 0 E()™) (€01 )i

Now, in the same way as we obtained the divergence and curl estimates ([24.32) and
[@433), we have the same type of estimates for V;(l) leading us to

VAN

IVE@) (D*Vayo B8 =DVl o EO) )b Il 13 gy

1V/€(6)div(D?Vi (1) o B(1)~

C,
1

VAN
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The fact that D? contains horizontal derivatives once again played a crucial role in
these estimates. This implies

K

B =35 [ (D)o BO ) (D) 2 EO Y (€0
1=1 i£m Y1)
K
s / (D) o EQ) ) (D2Vil) o BV (€0 V) + By
=1 7 7(8)

K
=Y [ (D)o E() ) (D*Vi(D) 0 BEW)™) (€407 )om +Ra,

with | Ry (t)| < CtH(t). Consequently,
K
1 ~ ~—
__‘Z/ D) 0 E()THPA(EG o)
1—1 Y 1()
K
1 O ~
S3 3 [ D) o B P o + B
2 ()

t t

If we write ¢ = ¢(0) +/ G, n =N +/ 7, and use the fact that £ =1 on I', we
0 0

then get

(26.15) B = Z / [D2Vil1) o B d(0)m Non + B,
on

with |Ro(t)| < §H (t)? + CstH(t)* 4+ Cs5N (up). Together with (26.5), (26.7), (Z6.9),
@6.10), 26.12), 26.13) and [26.14), this provides us on [0, T,] with

2/01 £(0,)|D? (gt 0 0;) >4 Z/B ID2V, (1) o E(1)" 1|2 (75(0)%]\7”1)

(26.16) < (5H( ) + CgtH( ) + CsN(up).

Similarly as in Section [24] from the pressure condition ([2)), this provides us with
an estimate of the type

(26.17) [|Tee 13 + H@II% < SH(t)* 4 CstH(t)* + CsN (uo).
The control
(26.18) G112 < 6H () 4 CstH(t)* + C5N (uo)

is then easy to achieve by elliptic regularity on the pressure system.
Next, we see that [26.17) implies that for any I € {1,..., K}, 9; o 6;, and thus
(Go6;),37 00,1 X7jo 0,3, are controlled in H?((0,1)? x {0}) by the right-hand side

of 26.I7). This implies the same control on (0,7;) for G0 (01)s31 0O X7 0 01,2
|qo ;37700l71 Xnoolﬁ}

in H2((0,1)? x {0}), i.e., that
(26.19) |72« < SH(t)* + CstH(t)* + CsN(uo),

which brings the H? regularity of the domain 7(€2).
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Now, for @, we notice that from the identity on (0,1)? x {0}:
Vit(1) + Go 01,3V (1)1 xE()y2+Go 01,3 E(1),1 XV (1),24+Gt 0 01,3 E(1),1 xE(l),2= 0,
we infer by taking the scalar product of the above vector by E(l),; that

‘V(l)vl ’FL

2%,(0,1)2><{0} < SH(t)* + CstH(t)" + CsN (uo),

which by divergence and curl relations for £(6;)V (1),1 (E(1)~!) similar in spirit to
the ones in Section 22} leads to

€OV (1)1 113,01y < SH () + CstH (t)* + Cs N (uo).
In a similar fashion,
€OV ()2 113, (0.1 < SH()> + CstH (t)* + Cs N (up).

Now, with divergence and curl relations for £(6;)V (1)(E(l)~!) similar in spirit to
the ones in Section 22] this leads to

l€a)13 < 6H (t)* + CstH(t)" + CsN (uo),

and consequently, with the control of the divergence and curl of ¢ inside  as in
Section B2 we get

(26.20) 1912 < 6H (t)* + CstH(t)* 4+ C5N (uq).

Now, with the estimates (26.17), (26.18), (26.19) and (26.20), we then get similarly

as in Section 25 the existence of a time 7' > 0 independent of € such that on (0,7)
the estimates (26.2) hold, and such that we have H(t) < N(ug) on (0,T) for any
€ > 0 small enough. Therefore, we have a solution to the problem with optimal
regularity on the initial data and domain as the weak limit as € — 0.

27. UNIQUENESS

Let (v,q) and (7,q) be solutions of (L2 on [0,7]. We denote dv = v — ¥ and
6q = q — @. We then introduce the energy

Z/ 9l \D 'Uttoel_vttoel)l )
01)d

where D?v stands for any second order horizontal space derivative v,; ;,. By pro-
ceeding in the same way as in the previous section, and using the fact that the
divergence and curl of v have a transport type structure as well, we obtain an en-
ergy inequality similar to (26.17), without the presence of N(ug) (since dv(0) = 0).
This establishes uniqueness of solutions.
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