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We prove the global well-posedness and regularity of the (isotropic) Lagrangian aver-
aged Navier{Stokes (LANS-¬ ) equations on a three-dimensional bounded domain
with a smooth boundary with no-slip boundary conditions for initial data in the set
fu 2 Hs \ H1

0 j Au = 0 on @« ; div u = 0g, s 2 [3; 5), where A is the Stokes operator.
As with the Navier{Stokes equations, one has parabolic-type regularity; that is, the
solutions instantaneously become space-time smooth when the forcing is smooth (or
zero).

The equations are an ensemble average of the Navier{Stokes equations over initial
data in an ¬ -radius phase-space ball, and converge to the Navier{Stokes equations
as ¬ ! 0. We also show that classical solutions of the LANS-¬ equations converge
almost all in Hs for s 2 (2:5; 3), to solutions of the inviscid equations ( ¸ = 0),
called the Lagrangian averaged Euler (LAE- ¬ ) equations, even on domains with
boundary, for time-intervals governed by the time of existence of solutions of the
LAE-¬ equations.
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1. Introduction

The Lagrangian averaged Navier{Stokes (LANS- ¬ ) equations for a ®uid moving in
a region « in R3 with boundary @« are given by

ut + ruu + U ¬ (u) = ¡ (1 ¡ ¬ 2¢)¡1 grad p ¡ ¸ Au; (1.1 a)

div u(t; x) = 0; (1.1 b)

u = 0 on @« ; (1.1 c)

u(0; x) = u0(x); (1.1 d)

where
U ¬ (u) = ¬ 2(1 ¡ ¬ 2¢)¡1 Div[ru ruT + ru ru ¡ ruT ru]; (1.2)

and A := ¡ P ¢ is the Stokes operator, with P the Leray (also known as Helmholtz{
Hodge) projector. The inviscid form of these equations (in a di¬erent formulation), as
well as related equations for geophysical and other ®ows,  rst appeared in the context
of averaged ®uid models in Holm et al. (1998a,b); the derivation used averaging
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1450 J. E. Marsden and S. Shkoller

and asymptotic methods in the variational formulation. Viscosity was added to the
conservative dynamics in Chen et al . (1998, 1999a{c). An alternative derivation was
given in Holm (1999). We give additional comments on the history of this model
below.

Marsden & Shkoller (2001) presented a new derivation by averaging over the set of
solutions of the Euler equations with initial data in a phase-space ball of radius ¬ , and
treating the dissipative term ¸ Au via stochastic variations. We shall review the salient
features of this new procedure below, which we feel ameliorates the prior derivations.
We employ the term Lagrangian averaging, because one uses a turbulence closure
that is based on the behaviour of Lagrangian ®uctuations, namely a generalization
of the turbulent closure hypothesis of Taylor (1938) often referred to as the frozen
turbulence hypothesis.

The time-dependent velocity  eld u(t; x) and pressure function p(t; x) which solve
the LANS-¬ equations are mean quantities, and re®ect the uncertainty in accurately
reproducing the initial data when repeating the same ®uids experiment many times.
Formally, it is clear that as the parameter ¬ ! 0, the Navier{Stokes equations are
recovered, as should be expected, since this indicates that there is no uncertainty in
specifying the initial data, or equivalently, that the identical initial data are used for
every repetition of the ®uids experiment.

In dimension two, for which we have global well-posedness theorems for both the
Euler and Navier{Stokes equations, Oliver & Shkoller (2001a) proved that for initial
vorticity curl u in L 1 , solutions of (1.1) converge globally in time to solutions of the
Navier{Stokes equations as ¬ ! 0 for all  xed ¸ >0. As we shall remark below,
convergence as ¬ ! 0 also holds for classical solutions in dimension three on short
time-intervals.

There are two types of Lagrangian averaged Navier{Stokes equations: the isotropic
version (1.1) in which the (®uctuation) covariance tensor is assumed to be a constant
multiple of the metric tensor, and the anisotropic version, in which the covariance
tensor becomes a dynamic variable, coupled with the evolution equations for the
velocity and pressure. We refer the reader to Marsden & Shkoller (2001) for details
regarding the anisotropic theory.

The main purpose of this paper is to prove global (in time) well-posedness and
regularity of solutions for the isotropic LANS- ¬ equations on a compact three dimen-
sional region « with smooth boundary @« , and for initial data in the class fu 2
Hs \ H1

0 j Au = 0 on @« ; div u = 0g, s 2 [3; 5). We also show that for  xed ¬ > 0,
solutions of (1.1) converge in L1 (0; T), D(As=2), s 2 (2:5; 3), to solutions of the
inviscid ( ¸ = 0) problem, even in the presence of boundaries, on time-intervals gov-
erned by the inviscid equations. Since the Navier{Stokes equations are well-posed
in dimension two, all of our results on the LANS- ¬ equations also hold trivially in
dimension two.

Global existence for the isotropic LANS-¬ equations for ®ow with periodic bound-
ary conditions was proved in Foias et al. (2001). Using our formulation (1.1), based on
proposition 5 of Shkoller (2001a), we are able to extend the well-posedness theory and
the global existence result to domains with boundary. However, the reader should
be cautioned that for ®ows on domains with boundary, it may be the anisotropic
equations that will play the most important role in practice, and we shall examine
their global (in time) behaviour in a future publication; we view the isotropic case
as an important stepping stone toward that goal.
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Foias et al. (2001) also computed the dimension of the global attractor for the
three-dimensional LANS-¬ equations on a periodic box; an estimate of the dimension
of the global attractor as well as global existence and uniqueness of weak solutions
on bounded domains is given in Coutand et al. (2001). Global existence for the
three-dimensional inviscid Lagrangian averaged Euler (LAE- ¬ ) equations (that is,
the LANS-¬ equations with with zero viscosity), remains an open problem.

(a) A brief history

The isotropic LAE- ¬ (the Lagrangian averaged Euler) equations on all of Rn  rst
appeared in Holm et al. (1998a,b), and those on compact Riemannian manifolds in
Shkoller (1998). The variational formulation of these equations retains the quadratic
form of the variational structure for the original Euler equations, so that the equa-
tions can be viewed as describing a certain geodesic ®ow, just as in the work of
Arnold (1966) and Ebin & Marsden (1970). The original work on the Lagrangian
averaged Euler equations was motivated by the developments of a one-dimensional
shallow water theory (see Camassa & Holm 1993) combined with developments in
symmetry reduction and Euler{Poincaŕe theory (see Marsden & Scheurle 1993).

Dissipation was later added to the LAE-¬ equations to produce the LANS- ¬ equa-
tions, also known as the Navier{Stokes-¬ model.y The papers by Chen et al . (1998,
1999a{c)  rst added the Navier{Stokes dissipation term to the LAE- ¬ equations.
They used physical arguments to write the particular form of the di¬usion term.
They described the e¬ect of ¬ in the LAE-¬ as nonlinear dispersion, because of its
similar e¬ect in the one-dimensional Camassa{Holm shallow water equation. Their
physically motivated argument produced the correct form of dissipation on domains
that do not have a boundary such as the torus; it appeared, however, that in order
to extend the model to domains with boundary, an additional boundary condition
would be required. Such an additional boundary condition seemed unnatural, and
so the extension of the model to bounded domains remained an open problem. The
extension to bounded domains was made in Shkoller (2001a) and Marsden & Shkoller
(2001). The di¬usion term was obtained by considering the velocity  eld as a stochas-
tic process, and replacing deterministic time derivatives with backward-in-time mean
stochastic derivatives. This process, which follows the ideas of Chorin (1973) and
Peskin (1985), seems more natural to us, generalizes the dissipative term which the
above authors obtained, and does not require any additional boundary data.

Remarkably, except for the crucial form of the viscosity term, the LANS-¬ equa-
tions are mathematically identical to inviscid second grade ° uid equations introduced
by Rivlin & Erickson (1955). We had initially thought that the second-grade ®uid
equations had the correct form of viscosity, and in our previous paper (Marsden et
al. 2000), we had termed those equations the Navier{Stokes-¬ equations; however,
this form of viscosity is not the natural dissipation that enters via molecular colli-
sion. After we obtained the LANS- ¬ equations using the stochastic methodology, we
further appreciated the physical insight in the original papers of Chen et al . (1998,
1999a{c).

The geometric analysis of these equations, including local well-posedness of
smooth-in-time solutions in Lagrangian variables and on arbitrary n-dimensional

y In earlier papers, some authors referred to the equations as the viscous Camassa{Holm (VCH)
equations instead of LANS- ¬ or Navier{Stokes- ¬ .
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Riemannian manifolds, was given in Shkoller (1998, 2001a) and Marsden et al.
(2000). Global existence in two dimensions of smooth-in-time solutions was proved in
Shkoller (2001b). These references also discuss the relationship with the second-grade
®uids literature in more detail.

In Oliver & Shkoller (2001a), it was shown that the isotropic two-dimensional
LAE-¬ equations are globally well-posed for Radon measure initial vorticity, which
includes point-vortex initial data; this fact is not known to be true for the origi-
nal Euler equations. Correspondingly, while the Kirchho¬ point-vortex Hamiltonian
ODEs do not generate solutions of the original Euler equations, their counterparts,
namely vortex blob solutions, do generate solutions of the LAE-¬ equations. The
weak solutions to the two-dimensional LAE- ¬ equations induce a weak coadjoint
action on the vector space of vorticity functions, modelled as the space of Radon
measures. The existence of such a weak coadjoint action makes rigorous the formal
constructions of Marsden & Weinstein (1983) on the geometry of point-vortex and
vortex blob dynamics.

As we described above, the LANS-¬ equations are a system of PDEs for the mean
velocity  eld, but unlike the Reynolds averaged Navier{Stokes (RANS) or large-
eddy simulation (LES) models that add arti cial dissipation to the Navier{Stokes
equations to  lter small scales, the LANS-¬ equations do not add any arti cial
viscosity; rather, a nonlinear dispersive mechanism  lters the small scales. As such,
the LANS-¬ equations serve as a nice model for turbulent ®ow. In Chen et al. (1999c)
and Mohseni et al. (2001) and works cited therein, it was shown that the LANS-¬
equations give comparable computational savings as LES models for forced turbulent
° ows in periodic domains ; moreover, those papers provided numerical simulations
which suggested that the energy spectrum and the energy ®ux behaviour is preserved
by LANS- ¬ at scales larger than ¬ .

For the more demanding case of decaying turbulence, a similar computational sav-
ings is demonstrated in Mohseni et al. (2000). The e¯ cacy of these models for the
case of wall-bounded ®ows remains to be demonstrated; it is quite likely that the
anisotropic model is needed for such situations.

(b) A discussion of related mathematical models

We conclude the introduction with some miscellaneous remarks on related models.
The LAE-¬ equations (3.1) are close in form to the template-matching equations
(TME) that occur in computer vision (see Mumford (1998), J. T. Ratnather et al .
(2000, personal communication), Younes (1998), Dupuis et al. (1998), Trouv´e &
Younes (2000) and references therein). In fact, the TME equations are the same
as our LAE-¬ equations when ¬ = 0, and the pressure term and the divergence
constraint are omitted. Explicitly, they are

@

@t
u + (u r)u + u div u + (ru)T u = 0:

(This reduces to @tu + 3uux = 0 in one dimension.) These are the Euler{Poincaŕe
equations associated with the right invariant L2 metric on the full di¬eomorphism
group of the ®uid container « .

We expect that the averaged equations (equations (3.1) retaining ¬ and with the
pressure term and the divergence constraint dropped) and even their anisotropic
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counterparts may also be of interest in computer vision! The isotropic H1 template-
matching equations are thus the same as the L2 equations except that u is replaced
by (1 ¡ ¬ 2¢)u; in one dimension, these H1 template-matching equations reduce to
the shallow water equations,

ut ¡ uxxt = ¡ 3uux + 2uxuxx + uuxxx;

which are completely integrable and have peaked soliton solutions (see Camassa &
Holm 1993).

In one dimension, both the L2 and the H1 template matching equations have
smooth-in-time solutions in Lagrangian variables: the L2 equations reduce to the
usual equations for characteristics, while the H1 equations can be expressed in
`characteristic-like’ form (see Shkoller 1998). This is certainly not true for the L2

equations in higher dimensions, but may continue to hold in higher dimensions for
the H1 equations.

Recently, Misiolek has shown that the shallow water equations are not well-posed
for initial data in Hs if s < 3=2; however, the existence of H1 global weak solutions
has recently been established by Xin & Zhang (2000), although uniqueness does not
appear to hold in this class even though numerical simulations seem to choose certain
peakon solutions.

2. A review of the Euler equations

(a) The geometry of the Euler equations

As was shown by Arnold (1966), the ®ow of the Euler equations of an ideal incom-
pressible ®uid is a geodesic of the right-invariant L2 metric on the group of volume
preserving di¬eomorphisms. This fact implies that solutions of the linearized Euler
equations are Jacobi  elds, and that the linear stability problem is completely deter-
mined by the sign of the sectional curvatures. Arnold (1966) computed the sectional
curvatures of the volume preserving di¬eomorphism group of T2 for the `tradewind
current’ solution, and showed that they were negative in most directions. Shkoller
(2001a) made the same computation for the LAE- ¬ equations, wherein it was shown
that the sectional curvatures can ®ip sign, from negative to positive, when ¬ is taken
to be sū ciently large. Thus the LAE- ¬ regularization stabilizes ideal ®uid motion.

In addition to the linear stability analysis, well-posedness results may also be
obtained in Lagrangian coordinates as in Ebin & Marsden (1970). In fact, the Euler
equations become an ODE (in the sense of being a smooth vector  eld with no
derivative loss) on the volume-preserving di¬eomorphism group in Lagrangian co-
ordinates, so that local well-posedness results follow directly from the Picard itera-
tion technique. In two dimensions, using the fact that vorticity is conserved, global
well-posedness holds in Lagrangian variables (see, for example, Kato 2000; Shkoller
2001b), just as in Eulerian variables.

The reduction of the equations from material to spatial (Eulerian) representation
may be viewed by the now classical technique of Euler{Poincaŕe reduction which
we brie®y review below; see Marsden & Ratiu (1999) and Holm et al. (1998b) for
an exposition and further references. The Euler{Poincaŕe point of view is a helpful
guide to understanding many ®uid theories other than the LAE-¬ equations. We now
explain some of these points in more detail.
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1454 J. E. Marsden and S. Shkoller

Let « be an open subset of Rn with C 1 boundary (possibly empty). The Euler
equations for the velocity  eld u of an ideal, incompressible, homogeneous ®uid with
density » = 1 are given by

@u

@t
+ (u r)u = ¡ rp; (2.1)

with the constraint div u = 0 and the boundary condition that u is tangent to the
boundary @« : The pressure p is determined by the incompressibility constraint. In
Cartesian coordinates, these equations are given as follows (using the summation
convention for repeated indices):

@ui

@t
+ uj @ui

@xj
= ¡

@p

@xi
:

We let the ®ow of the time-dependent vector  eld u(t; x) be denoted by ² (t; x) so
that

@t ² (t; x) = u(t; ² (t; x));

with ² (0; x) = x for all x in « . For each t, we denote the map ² (t; ) by ² t so that
² 0 = e, the identity map. Thus, the map x 7! ² t(x) gives the particle placement ¯eld
for the ®uid. Corresponding to the condition div u = 0, each map ² t is a volume
preserving di® eomorphism, so that det D² = 1, where D² (t; x) = @² i=@xj(t; x) in
coordinates, i.e. the matrix of partial derivatives.

We shall be working with vector  elds u of Sobolev class Hs for s > (n=2) + 1
and, correspondingly with volume-preserving ®ow maps ² t in Ds

· , where Ds
· denotes

the group of Hs-volume preserving di¬eomorphisms of the ®uid container « . We
refer the interested reader to Ebin & Marsden (1970) and Shkoller (2001a) for some
basic properties of Hilbert class di¬eomorphism groups for domains (manifolds) with
boundary.

Arnold’s theorem on the Euler equations may be stated as follows. A time-depend-
ent velocity ¯eld u is a solution of the Euler equations if and only if its Lagrangian
° ow ² t is a geodesic of the right invariant L2-metric on Ds

· .

This L2-metric is de ned as follows. The tangent space to Ds
· at the identity is

identi ed with the space Xs
d iv, the vector space of Hs divergence free vector  elds on

« that are tangent to the boundary @« . The right invariant L2-metric is de ned to
be the weak Riemannian metric on Ds

· whose value at the identity is

hu; wiL2 =
«

u(x) w(x) dx;

where as usual, the pointwise inner product is de ned by u(x) w(x) = ui(x)wi(x),
and the Euclidean norm is simply ju(x)j2 = u(x) u(x). Arnold’s theorem is a rela-
tively easy consequence of the general Euler{Poincaŕe theory.

(b) Vorticity form of the Euler equations

The Euler equations (2.1) can be written using the Lie derivative as

@u[

@t
+ $uu[ = d( 1

2
juj2 ¡ p) = ¡ dp0; (2.2)

Phil. Trans. R. Soc. Lond. A (2001)



Well-posedness for the LANS- ¬ equations on bounded domains 1455

where u[ is the one-form associated to the vector  eld u via the metric (or, equiva-
lently, by lowering the index), and $uu[ denotes the Lie derivative of the one-form
u[ along u. Taking the exterior derivative of (2.2) gives the familiar Lie advection
equation for vorticity,

@!

@t
+ $u! = 0;

where ! = du[ is the vorticity, thought of as a two-form. In two dimensions, ! is
identi ed with a scalar and is traditionally thought of as the two-dimensional-curl
of the velocity  eld, so that by taking the curl of (2.1) we obtain

@t! + grad ! u = 0:

In three dimensions, ! may be identi ed (using the volume-form dx) with a vector
 eld which is traditionally obtained by taking the curl of u. In this case, taking the
curl of (2.1) gives the familiar vorticity equation,

@t! + (u r)! = Def u !;

where the vortex-stretching term appears on the right-hand side.
The vorticity equation is the in nitesimal version of the following advection prop-

erty:
!t = ( ² t) ¤ !0:

Of course in two dimensions, this gives the usual advection of vorticity as a scalar
function, while in three (or higher) dimensions, the advection is understood in terms
of advection of two-forms.

The Euler equations have both an interesting Hamiltonian structure in terms of
Poisson brackets (a Lie{Poisson bracket) and a variational structure. In this paper we
shall be working primarily with the variational structure; the Hamiltonian structure,
along with references to the literature may be found in Marsden & Weinstein (1983),
Arnold & Khesin (1998) and Marsden & Ratiu (1999).

(c) The action principle

The Lagrangian is given by the total kinetic energy of the ®uid; in spatial repre-
sentation, this Lagrangian is

L(u) =
1

2 «

ju(x)j2 dx: (2.3)

The corresponding (unreduced) Lagrangian on T Ds
· is given by

L ( ² ; @t ² ) =
1

2 «

j@t ² (x)j2 dx: (2.4)

Hamilton’s principle on Ds
· applied to the Lagrangian L gives geodesics on this group.

Euler{Poincaŕe reduction techniques (see Marsden & Ratiu 1999) show that this
variational principle reduces to the following principle in terms of Eulerian velocities:

¯
T

0

L(u) dt = 0;
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which should hold for all variations ¯ u of the form

¯ u = @tw + (u r)w ¡ (w r)u; (2.5)

where w is a time-dependent vector  eld (representing the in nitesimal particle
displacement) vanishing at the temporal endpoints.y One readily checks that this
reduced principle yields the standard Euler equations. This simple computation is
the heart of Arnold’s theorem.

(d ) Analytical issues

While the Eulerian (spatial) representation has been emphasized in most analytical
studies of the Euler equations, ®uid motion viewed on the Lagrangian (material) side
has some distinct advantages. For example, it is shown in Ebin & Marsden (1970)
that the ®ow, solving the Euler equations, on the volume-preserving di¬eomorphism
group Ds

· , s > (n=2) + 1, is smooth in time (the results are valid in the H�older classes
Ck;¬ for k >1 as well). This result holds globally in two dimensions for initial
data u0 2 fv 2 Hs j div v = 0; v n = 0 on @« g, s > (n=2) + 1 (see Shkoller 2001b).
A number of interesting consequences of this result were derived, including theorems
on the convergence of solutions of the Navier{Stokes equations to solutions of the
Euler equations as the viscosity goes to zero when « has no boundary. In addition,
Hald (1987), Marchioro & Pulvirenti (1994) and others analysed the Lagrangian ®ow
map to prove convergence of the vortex blob algorithm. The fact that vortex blobs
give an exact solution to the LAE-¬ equations warrants another look at some of these
issues. In any case, it is clear that the Lagrangian framework is a natural setting to
study the behaviour of solutions.

3. The isotropic Lagrangian averaged Euler (LAE-®) equations

(a) The equations

Let ¬ be a positive constant. In Euclidean space and in Euclidean coordinates, the
isotropic LAE-¬ equations are often written as

@t(1 ¡ ¬ 2¢)u + (u r)(1 ¡ ¬ 2¢)u ¡ ¬ 2(ru)T ¢u = ¡ grad p;

or in coordinates as

@t(u
i ¡ ¬ 2ui

;kk) + uj @

@xj
(ui ¡ ¬ 2ui

;kk) ¡ ¬ 2 @uj

@xi
uj;kk = ¡ @p

@xi
;

where ¢ denotes the componentwise Laplacian, and there is a summation over
repeated indices (in Euclidean coordinates, as is common, we make no distinction
between indices up or down). As before, we also impose the incompressibility con-
straint div u = 0, which determines the pressure. We shall additionally impose the
no-slip, u = 0, boundary conditions; see Shkoller (2001a) for the free-slip and mixed-
type boundary conditions.

Using the fact that (ru)T u = grad( 1
2 juj2) and modifying the pressure accordingly,

we can rewrite the LAE-¬ equations as follows:

@t(1 ¡ ¬ 2¢)u + (u r)(1 ¡ ¬ 2¢)u + (ru)T (1 ¡ ¬ 2¢)u = ¡ grad p: (3.1)

y The constraints on the allowed variations of the ®uid velocity  eld are commonly known as `Lin
constraints’. This itself has an interesting history, going back to Ehrenfest, Boltzmann, Clebsch, Newcomb
and Bretherton, but there was little if any contact with the heritage of Lie and Poincaŕe on the subject.
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(b) The geometry of the LAE- ¬ equations

The Euler{Poincaŕe theory also shows that the solutions of the isotropic LAE- ¬
equations can be regarded, in a similar way to the Euler equations, as geodesics on
certain subgroups of the volume preserving di¬eomorphism group, but with respect to
an H1-equivalent metric rather than an L2 metric. The fact that one has equations
for geodesics on the group corresponds simply to the fact that the Lagrangian is
quadratic in the velocities; the fact that unique smooth geodesics of such a weak
metric exist (recall that the strong topology is Hs with s > (n=2)+1) is a consequence
of a delicate analysis as performed in Shkoller (2001a).

The anisotropic LAE-¬ equations can also be interpreted as geodesic equations of
an H1-equivalent metric, but this metric depends on the covariance tensor which is
itself advected in time by the mean ®ow. These equations also possess unique smooth
geodesics as is proved in Marsden & Shkoller (2001).

(c) Rate of deformation tensor

This tensor will play a basic role in our theory, and is de ned by

Def u = 1
2
[ru + (ru)T]; (Def u)i

j = 1
2
(ui

;j + uj
;i):

It is often convenient to lower the index; we set D ² Def u[ = 1
2
[ru[ + (ru[)T], or

in coordinates,
Dij = (Def u[)ij = 1

2
(ui;j + uj;i):

Note that D ² Def u[ = $ug, the Killing tensor.

(d ) LAE- ¬ energy law

There is an energy integral for the isotropic LAE- ¬ equations, namely

d

dt

1

2 «

[ju(x)j2 + 2 ¬ 2j Def u(x)j2] dx = 0: (3.2)

With no-slip, u = 0, boundary conditions, (3.2) is equivalent to

d

dt

1

2 «

[ju(x)j2 + ¬ 2jru(x)j2] dx = 0: (3.3)

It is essential, however, to use the energy (3.2), if either the free-slip or mixed-type
boundary conditions are used; using (3.3) instead leads to a Stokes problem whose
Green’s function is not a Fredholm operator.

Another equivalent form of the energy law is given by

d

dt «

u(x) (1 ¡ ¬ 2¢)u(x) dx = 0: (3.4)

(e) Smoothness properties

Analytical results concerning the regularity of solutions to the inviscid LAE- ¬
problem in Lagrangian coordinates were given in Shkoller (1998) on compact bound-
ary Riemannian manifolds without boundary, and in Marsden et al. (2000) on com-
pact Euclidean domains. The problem of how to formulate this system on compact
Riemannian manifolds with boundary was solved in Shkoller (2001a).
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(f ) Lie derivative and vorticity forms

The LAE-¬ may also be expressed using the Lie derivative as

@t(1 ¡ ¬ 2¢)u[ + $u(1 ¡ ¬ 2¢)u[ = ¡ dp: (3.5)

By applying the exterior derivative (the curl operator in R3) to (3.5) and letting
! = du[, we obtain the vorticity form of the LAE-¬ equations

@t(1 ¡ ¬ 2¢)! + L u(1 ¡ ¬ 2¢)! = 0;

or equivalently if the vector ! = curl u, then we see that ! solves

@t(1 ¡ ¬ 2¢)! + (u r)(1 ¡ ¬ ¢)! = ru (1 ¡ ¬ 2¢)!;

where the right-hand side again denotes the vortex stretching term. While we have a
priori control of !(t; ) in L2 for almost all t, we are still far from satisfying the Beale{
Kato{Majda condition for ensuring that blow-up cannot occur in three dimensions;
however, it appears that the Constantin et al. (1996) depletion of the nonlinearity
via vorticity alignment occurs (see Oliver & Shkoller 2001b).

It also follows from (3.5), that we have the following conservation of averaged
helicity given by

d

dt «

(1 ¡ ¬ 2¢)u(t; x) £ curl(1 ¡ ¬ 2¢)u(t; x) dx = 0:

Helicity, which is a Casimir invariant, is interesting in a number of ®uid dynamical
situations; see Marsden & Weinstein (1983), Mo¬att (2000) and references therein.

4. The Lagrangian averaging methodology

We shall now present the main ideas of the derivation of the LAE-¬ and LANS-¬
equations from Marsden & Shkoller (2001). We note that there are some interesting
links with optimal prediction theory (see Chorin et al. (1999) and references therein).

Let X denote the vector space of initial velocity  elds for which the Euler equations
are (at least locally) well-posed, and let S denote the unit sphere in X.

For ·u0 2 X, let ·u(t; x) denote the solution of the Euler equations with ·u(0; ) = ·u0.
Similarly, let u ° (t; x) denote the solution of the Euler equations with initial data u °

0,
where

u °
0 = ·u0 + ° w; w 2 S; ° 2 [0; ¬ ]

for some ¬ > 0 and small. Of course, u ° (t; x) depends on w as well, but we suppress
that dependence for notational simplicity.

We let ¸ denote a chosen measure on the unit sphere S in X , and de ne the average
of vector-valued functions f( ° ; w) on [0; ¬ ] £ S by

hfi :=
·t2

¬

¬

0 S

f( ° ; w) ¸ d ° ;

where ·t is a characteristic unit of time. This will be our chosen ensemble averaging
operation.

By uniqueness of solutions, it follows that u0(t; x) = ·u(t; x). Let ·² be the Lagrang-
ian ®ow of ·u, which solves @t·² (t; x) = ·u(t; ·² (t; x)) with ·² (0; x) = x. Similarly, let
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² ° denote the Lagrangian ®ow of u ° . We de ne the Lagrangian ° uctuation volume-
preserving di® eomorphism ¹ ° by

¹ ° (t; x) := ² ° (t; ·² ¡1(t; x)): (4.1)

Clearly, ¹ 0(t; x) = x, since ² ° = 0(t; x) = ·² (t; x) for all t >0. Let

u0(t; x) =
d

d ¬
j ¬ = 0u ¬ (t; x)

denote the associated Eulerian velocity ° uctuation about ·u. The corresponding La-
grangian ° uctuation (in spatial representation) is given by

¹ 0(t; x) =
d

d ¬ ¬ = 0

¹ ¬ (t; x):

Similarly, let

u00(t; x) =
d2

d2 ¬ ¬ = 0

u ¬ (t; x);

and

¹ 00(t; x) =
d2

d2 ¬ ¬ = 0

¹ ¬ (t; x):

Our goal is to average over all possible solutions of the Euler equations with initial
data u °

0 in an X -ball of radius ¬ about ·u; since each solution u ° (t; x) is obtained from
the  rst variation of the action as we described above, it is appropriate to de ne the
averaged action function

·S =
1

2

T

0 «

j@tu
° j2 dx dt : (4.2)

Expanding u° about ° = 0, we get

u ° (t; x) = ·u(t; x) + ° u0(t; x) + 1
2
° 2u00(t; x) + O( ° 3): (4.3)

Since ·u does not depend on either ° or w, we see that h·ui = ·u; correspondingly, we
call ·u the mean.

(a) Relationship between Eulerian and Lagrangian ° uctuations

By di¬erentiating (4.1), one obtains the relations,

u0 = @t ¹
0 + (·u r) ¹ 0 ¡ ( ¹ 0 r)·u; (4.4 a)

u00 = @t ¹
00 + (·u r) ¹ 00 ¡ 2( ¹ 0 r)u0 ¡ rr·u( ¹ 0; ¹ 0); (4.4 b)

where, in coordinates,

rr·u( ¹ 0; ¹ 0) = ·ui
;jk ¹ 0j ¹ 0k

:
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(b) Generalized Taylor or frozen turbulence hypothesis

We shall use a generalization of the classical frozen turbulence hypothesis of Taylor
introduced in Taylor (1938). In its classical form, the streamwise scalar component
of the ®uctuation is considered frozen over the time-scale of the temporal derivative,
giving

@

@t
= U

@

@x
;

where U is the local mean velocity along the streamwise direction, which is denoted
by x.

Our generalized Taylor hypothesis is a collection of assumptions, at each order of
¬ , on the behaviour of the Lagrangian ®uctuations. For the present theory, we shall
produce a closure to O( ° 2). We make the following assumptions.

O( ¬ ) generalized Taylor hypothesis:

@t ¹
0 + (·u r) ¹ 0 ¡ ( ¹ 0 r)·u = 0; (4.5)

which states that at O( ° ), the  rst-order Lagrangian ®uctuation ¹ 0 is frozen into the
mean ° ow as a vector  eld.y
O( ¬ 2) generalized Taylor hypothesis:

@t ¹
00 + (·u r) ¹ 00 = 0; (4.6)

which states that the second-order ®uctuations ¹ 00 are isometrically or parallel trans-
ported by the mean ° ow so that at the O( ¬ 2) level, no stretching of ¹ 00 may occur.z

Substituting the relations (4.4 a) and (4.4 b) into the expansion (4.3) and using the
generalized Taylor hypothesis (4.5) and (4.6), we  nd that

u ° = ·u ¡ 1
2
° 2rr·u( ¹ 0; ¹ 0) + O( ° 3): (4.7)

Substitution of (4.7) into the averaged action function (4.2) gives

·S =
1

2

T

0 «

[j·uj2 + ¬ 2hrr·u : F; ·ui + O( ¬ 3)] dx dt;

where the Lagrangian covariance tensor F is de ned by

F = h ¹ 0 « ¹ 0i:

For the purposes of this paper, we shall derive the isotropic form of the equations.
For the isotropic scenario, we assume that (or, if one prefers, impose the constraint
that),

F = c Id;

a constant multiple of the identity. By integration-by-parts and truncation of the
averaged action function to O( ¬ 2), we  nd that

·S ¬ =
1

2

T

0 «

[j·u ¬ j2 + 2 ¬ 2j Def ·u ¬ j2 ] dx dt;

y This equation may also be written as ¹ 0 + $ ·u ¹ 0 , where $ denotes the Lie derivative operation on
vector  elds.

z One may relax these hypotheses slightly by only requiring their satisfaction up to terms higher
order in ¬ .
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where we now use the notation ·u ¬ to indicate that the variable depends on the
parameter ¬ . We refer the reader to Marsden & Shkoller (2001) for the anisotropic
case.

Hamilton’s principle and the Euler{Poincaŕe theory tells us that we should consider
stationary points of the action ·S ¬ for variations of the form

¯ ·u ¬ = @t( ¯ ·² ¬ ¯ ·² ¬ ¡1) + [u; ¯ ·² ¬ ¯ ·² ¬ ¡1 ];

where ·² ¬ is the ®ow of ·u ¬ and [v; w] is the commutator of vector  elds v; w given
by [v; w] = (v r)w ¡ (w r)v. This action principle yields the isotropic LAE- ¬
equations, which are the equations (1.1) with ¸ = 0. The dissipative term ¸ Au comes
from a stochastic interpretation of the Lagrangian ®ow map. As can be seen from the
papers of Chorin (1973) and Peskin (1985), by allowing the Lagrangian trajectory to
undergo a random walk, the di¬usion term naturally arises. From the point-of-view
of stochastic ODEs, the deterministic time derivatives are replaced with backward-
in-time stochastic mean derivatives. By the It�o formula, the di¬usion term naturally
arises. Thus, our formulation of the LANS- ¬ equations given by (1.1) is the natural
form of the equations in the presence of viscosity. As can be seen, this equation can
be solved with the no-slip, u = 0, boundary condition, while the condition that Au =
on @« is automatically satis ed by solutions of the PDE.

For the remainder of the paper, we shall denote ·u ¬ simply by u.

(c) The isotropic Lagrangian averaged Navier{Stokes (LANS- ¬ ) equations

In their work, Foias et al. (2001) considered the LANS- ¬ equations in a three-
dimensional periodic box. They reasoned that since it is the momentum v = (1 ¡
¬ 2¢)u that is being transported in the LAE-¬ equations, given by (3.1), then it
is this momentum that needs to be di¬used; hence, they considered the following
version of the LANS- ¬ equations:

@v

@t
+ (u r)v + (ru)T v = ¡ rp + ¸ ¢v: (4.8)

This form of the PDE agrees with our formulation when no boundaries are present,
but requires a generalization of the term ¸ ¢v to ¡ ¸ (1 ¡ ¬ 2¢)Au, and the knowledge
of the additional boundary condition to invert this fourth-order operator. The form
(4.8) does not reveal what this additional boundary condition must be.

The key to  nding the additional boundary condition is to write the LANS- ¬
equations in the from (1.1 a) and (1.2). Speci cally, notice from (1.1 a) that Au must
vanish when restricted to the boundary; clearly, @tu +ruu vanishes on the boundary,
as do the remaining terms, since (1 ¡ ¬ ¢)¡1 has range the domain D(1 ¡ ¬ 2¢). It
follows that (1.1) is equivalent to (4.8) on domains with boundary if the additional
boundary condition

Au = 0 on @«

is imposed.

(d ) The R̀eynolds stress’

When « has no boundary, (1.1 a) takes the form

@tu ¡ ¸ ¢u + ruu + Div ½ ¬ (u) = ¡ grad p; (4.9)
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where we may identify

½ ¬ (u) := ¬ 2(1 ¡ ¬ 2¢)¡1[ru ruT + ru ru ¡ ruT ru] (4.10)

with the usual Reynolds stress. This form of the equations is useful for comparing
the isotropic LANS- ¬ equations with the LES or the RANS models.

We shall introduce another equivalent form of the LANS- ¬ equations below.

5. Global well-posedness

(a) Notation and some interpolation inequalities

For s >1, let V s = H1
0 \ Hs, V s

· = fu 2 V s j div u = 0g, and for s >3, let
_V s

· = fu 2 V s
· j Au = 0 on @« g: Let ¬ = ( ¬ 1; : : : ; ¬ n) denote a multi-index, and

j ¬ j = ¬ 1 + + ¬ n; D ¬ = @ ¬ 1

1 @ ¬ n
n :

We have the product rule

D ¬ (fg) =

j j6j ¬ j
¬ ¡  >0

c ¬ ;  (D  f)(D ¬ ¡  g):

For any integer s >0, we set

Dsu = fD ¬ u : j ¬ j = sg; kDsukLp =

j¬ j= s

kD ¬ ukLp :

We let C > 0 be a generic constant throughout the paper. We will make use of
the following standard inequalities in dimension three:

jvjL 1 6CjD2vj1=2
L2 jvj1=2

L2 ; (5.1)

jvjL4 64jDvj3=4
L2 jvj1=4

L2 ; (5.2)

jDivjL2 6Cjvj1¡i=m
L2 jDmvji=m

L2 : (5.3)

The inequality (5.1) is commonly referred to as Agmon’s inequality (see Agmon 1965;
Agmon et al. 1959, 1964; Nirenberg 1959), while (5.2) and (5.3) are often referred to
as Ladyzhenskaya inequalities (see Ladyzhenskaya 1963). We shall need the following
lemma.

Lemma 5.1. For s >3, U ¬ : V s ! V s and U ¬ : V 2 ! H1+ ¼ for ¼ 2 (0; 1
3
).

Proof . The  rst assertion follows from the fact that Hs, s > 1:5, is a multiplicative
algebra. The second follows from the fact that

Hr Hr » H ¼

for
r = 3

4
+ 1

2
¼ + ° ³ and ¼ = ³ ( 3

2
+ ° ):

(See, for example, lemma 5.3 in Taylor (1996, ch. 17).) Now take ³ = 1=6 and ° = 1=2
so that ¼ = 1=3.
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(b) Three forms of the LANS-¬ equations

Three equivalent forms of the LANS- ¬ equations will be useful to us.

(i) LANS-1

@tu + ruu + U ¬ (u) = ¡ ¸ Au ¡ (1 ¡ ¬ 2¢)¡1 grad p (5.4)

where the stress term U ¬ is de ned by (1.2), and where, as usual, div u(x; t) = 0
for all t >0 and x 2 « and with the boundary conditions u = 0 on @« and initial
conditions u(x; 0) = u0(x).

This form of the equations shows that Au = 0 on the boundary @« so that
Au 2 Domain(1 ¡ ¬ 2¢) whenever u 2 H4. Notice that because the domain of
de nition of the operator (1 ¡ ¬ 2¢) consists of vector  elds that vanish on the
boundary, the terms (1 ¡ ¬ 2¢)¡1 grad p and U ¬ (u) are zero on @« .

(ii) LANS-2

This form is equivalent to LANS-1 in view of our remark that LANS-1 implies
that Au = 0 on @« :

@t(1 ¡ ¬ 2¢)u + ru[(1 ¡ ¬ 2¢)u] ¡ ¬ 2ruT ¢u = ¡ ¸ (1 ¡ ¬ 2¢)Au ¡ grad p; (5.5)

where div u = 0 and u = Au = 0 on @« .

(iii) LANS-3

This form is the analogue of the Navier{Stokes equations written in terms of the
Helmholtz{Hodge projection:

@tu + ¸ Au + P ¬ [ruu + U ¬ (u)] = 0; (5.6)

where for s >1,
P ¬ : V s ! V s

·

is the Stokes projector de ned in proposition 2 of Shkoller (2001a). as

P ¬ (w) = w ¡ (1 ¡ ¬ 2¢)¡1 grad p;

where p is a solution of the Stokes problem : given w 2 V s, there is a unique vector
 eld v and a function p (unique up to additive constants) such that

(1 ¡ ¬ 2¢)v + grad p = (1 ¡ ¬ 2¢)w

with div v = 0 and v = 0 on @« .

Theorem 5.2. For u0 2 _V s
· and s 2 [3; 5), there exists a unique solution u to

(1.1) in C([0; 1); _V s
· ) \ C 1 ((0; 1) £ « ).

Proof . We  rst establish local well-posedness using the contraction mapping the-
orem; this is standard, but for completeness, we give the argument. We may rewrite
LANS-3 as

u(t; ) = e¡t¸ Au0 ¡
t

0

e(s¡t) ¸ AP ¬ [div(u(s) « u(s)) + U ¬ (u(s))] ds =: ª u(t):
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Take s in the interval [3; 5). We will  nd a  xed point of ª on C([0; T ]; _V s
· ) for some

T > 0. We begin by showing that

© : _V s
· ! V s¡1 is locally Lipschitz, (5.7)

where © (u) = P ¬ (div(u « u) + U ¬ (u)). By lemma 5.1, U ¬ : _V s
· ! V s, and since

Hs, s >3, is a multiplicative algebra, u 7! u £ u : _V s
· ! V s, so div(u « u) 2 V s¡1.

By ellipticity of the Stokes problem, P ¬ : V s¡1 ! V s¡1
· continuously so we have

established (5.7). Now,

ke¡tAk L (Vs ¡ 1; _Vs
· ) 6Ct¡1=2 for t 2 (0; 1]: (5.8)

For ¯ > 0  xed, set

Z = fu 2 C([0; T ]; _V s
· ) j u(0; ) = u0; ku(t; ) ¡ u0kHs 6̄g:

We choose T small enough so that ª : Z ! Z is a contraction. Since e¡ tA : _V s
· ! _V s

·

is a strongly continuous semigroup for t >0, we can choose T1 such that

ketAu0 ¡ u0kHs 6̄=2 for t 2 [0; T1 ]:

By (5.7), k © (u(s))kHs ¡ 1 6K1 for s 2 [0; T1] so by (5.8),

t

0

e(s¡ t)A © (u(s)) ds
Hs

6Ct1=2;

so that for T2 6T1 small enough, this will be bounded by ¯ =2 for t 2 [0; T2 ], and
ª : Z ! Z if T 6T2. Finally, by (5.7),

k ª (u)(t) ¡ ª (v)(t)kHs 6Ct1=2 sup ku(s) ¡ v(s)kHs

and for small enough t, Ct1=2 < 1, so that ª : Z ! Z is a contraction, and hence ª
has a  xed point.

We shall now use a priori energy estimates to extend T to 1.

(c) An H1 estimate

We take the L2 inner product of LANS-2 with u to get

1

2

d

dt
(juj2L2 + ¬ 2jAuj2L2 ) 6¡ ¸ (jA1=2uj2L2 + ¬ 2jAuj2L2 ) (5.9)

from which it follows that
u 2 L 1 ((0; T ]; V 1

· )

uniformly in T >0.

(d) An H2 estimate

We now take the L2 inner product of the operator A applied to LANS-3 with Au
to get

1

2

d

dt
jAuj2L2 + hAP ¬ (ruu + U ¬ (u)); AuiL2 = ¡ ¸ jA3=2uj2L2 : (5.10)
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Using (5.1) and (5.3), we get

hAP ¬ (ruu + U ¬ (u)); Aui 6C(juj1=2

H1 juj2H2 juj1=2

H3 + juj1=2

L2 juj3=2

H2 jujH3 )

6C(juj3=2

H1 jA3=2uj3=2

L2 + juj1=2

H1 jA3=2uj7=4

L2 ):

By Young’s inequality, we arrive at

d

dt
jAuj2L2 6¡ C( ¸ ¡ ° )jAuj2L2 +

C

°
(juj4H1 + juj6H1 ) (5.11)

so that taking 0 < ° < ¸ , one obtains

u 2 L 1 ((0; T ]; V 2
· ):

uniformly in T >0.

(e) An H3 estimate

To get an H3 estimate, we let ut denote @tu, and di¬erentiate the equations LANS-
2 with respect to time to get

@t(1 ¡ ¬ 2¢)ut + rut
(1 ¡ ¬ 2¢)u + ru(1 ¡ ¬ 2¢)ut ¡ ¬ 2ruT

t ¢u

¡ ¬ 2ruT ¢ut = ¡ grad pt ¡ ¸ (1 ¡ ¬ 2¢)Aut:

Noting that ut 2 D(A), we take the L2 inner product with ut to get

1

2

d

dt
(jutj2L2 + ¬ 2jA1=2utj2L2 )

6¡ ¸ (jA1=2utj2L2 + ¬ 2jAutj2L2 ) + jhut; rut
uij + ¬ 2jh¢ut; ruut ¡ rut

uij:

Now using (5.2), we estimate the next to last term by

jhut; ruutij 6jutjL4 jrujL4 jutjL2

6C(jujH2 )jA1=2utj2L2

and we estimate the last term again using (5.2) and Young’s inequality by

jh¢ut; ruut ¡ rut
uij 6° jAutj2L2

+
1

°
C(jujH1 ; jujH2 )jA1=2utj2L2

:

It follows that
1

2

d

dt
jA1=2utj2L2

6
C

°
jA1=2utj2L2

:

Since u0 is in Hs for s 2 [3; 5), it is clear that ut(0; ) 2 V 1
· and hence that

ut 2 L1 ((0; T ]; V 1
· )

for any  xed T >0. From the above estimates, for almost all t, u(t; ) 2 V 2 and
ut(t; ) 2 V 1; thus, since H2 is a multiplicative algebra, we see that for almost all t,
P ¬ (ruu)(t; ) is in V 1

· . Lemma 5.1 shows that P ¬ ( U ¬ (u)) 2 H1 + ¼ for 0 < ¼ < 1=3.
Using LANS-3, this gives

¸ Au = ¡ P ¬ (ruu + U ¬ (u)) + ut 2 V 1
·
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so by elliptic regularity of the Stokes operator A, we get

u 2 L 1 ((0; T ); _V 3
· )

for any T >0, and the H3 norm of u depends only on the initial data. Using the
usual continuation argument, we have a global solution in H3 for initial data in _V 3

· .
A standard boot-strapping argument gives global-wellposedness for initial data in
_V s

· for s 2 [3; 5), and shows that the solution becomes instantaneously smooth on
(0; 1) £ « .

Remark 5.3. Note that the restriction on the initial data u0 2 _V s
· for s 2 [3; 5)

is merely to have continuous dependence on initial data in _V s
· ; for global solutions

that are not continuous at t = 0, we can take initial data in _V s
· for all s >3.

(f ) Weak solutions and global attractors

Coutand et al. (2001) prove the global well-posedness of the LANS- ¬ equation for
initial data u0 in H1

0 together with div u0 = 0; for such initial data, H2 absorbing
sets are established which yields the existence of maximal compact global attractors
in the set fu 2 H1

0 j div u = 0g. This extends the results of Foias et al. (2001) to the
case of bounded domains.

(g) Limit of zero viscosity

Barenblatt & Chorin (1998) state that while Navier{Stokes ®ows do not, in general,
converge to Euler ®ows on domains with boundary, the averaged Navier{Stokes ®ow
should indeed have this property. The following theorem proves this.

Theorem 5.4. Let ¬ > 0 be ¯xed and let s 2 (2:5; 3). Let u0 2 V s
· be given

initial data and let u ¸ be the corresponding solution of the LANS- ¬ equations. Then
there exists a uniform time interval [0; T ] such that u ¸ converges in L 1 [0; T ]; V s

· to
a solution u of the LAE- ¬ equations.

This is proven in Shkoller (2001a). It is interesting to note that for s >3, boundary
layer formation occurs.

(h) Limit of zero ¬

Oliver & Shkoller (2001a) have proved that velocity solutions of the two-
dimensional LAE- ¬ equations on R2 converge in C0 to solutions of the Euler equa-
tions as ¬ ! 0 globally in time for initial vorticity  elds in L 1 \ L1. On three-
dimensional domains without boundary, for s >3, since U ¬ : V s

· ! V s, we have
convergence as ¬ ! 0 of classical solutions in Hs for short time, on intervals which
are governed by the existence theory for the Euler equations. Foias et al. (2001) have
shown that as ¬ ! 0, solutions of the LANS-¬ equations on the three-torus tend
to weak solutions of the three-dimensional Navier{Stokes equations. Coutand et al.
(2001) have shown the same to hold on bounded domains.
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