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ANALYSIS ON GROUPS OF DIFFEOMORPHISMS
OF MANIFOLDS WITH BOUNDARY AND THE

AVERAGED MOTION OF A FLUID

STEVE SHKOLLER

Abstract
We establish the existence of three new subgroups of the group of volume-
preserving diffeomorphisms of a compact n-dimensional (n ≥ 2) Riemannian
manifold which are associated with the Dirichlet, Neumann, and Mixed type
boundary conditions that arise in second-order elliptic PDEs. We prove
that when endowed with the Hs Hilbert-class topologies for s > (n/2) +
1, these subgroups are C∞ differential manifolds. We consider these new
diffeomorphism groups with an H1-equivalent right invariant metric, and
prove the existence of unique smooth geodesics η(t, ·) of this metric, as
well as existence and uniqueness of the Jacobi equations associated to this
metric. Geodesics on these subgroups are, in fact, the flows of a time-
dependent velocity vector field u(t, x), so that ∂tη(t, ·) = u(t, η(t, ·)) with
η(0, x) = x, and remarkably the vector field u(t, x) solves the so-called
Lagrangian averaged Euler (LAE-α) equations on M . These equations, and
their viscous counterparts, the Lagrangian averaged Navier-Stokes (LANS-
α) equations, model the motion of a fluid at scales larger than an a priori
fixed parameter α > 0, while averaging (or filtering-out) the small scale
motion, and this is achieved without the use of artificial viscosity. We
prove that for divergence-free initial data satisfying u = 0 on ∂M , the
LAE-α equations are well-posed, globally when n = 2. We also find the
boundary conditions that make the LANS-α equations well-posed, globally
when n = 3, and prove that solutions of the LANS-α equations converge
when n = 2, 3 for almost all t in some fixed time interval (0, T ) in Hs,
s ∈ (n/2 + 1, 3) to solutions of the LAE-α equations, thus confirming the
scaling arguments of Barenblatt & Chorin.
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1. Introduction

The Lagrangian averaged Euler (LAE-α), or Euler-α, equations may
be written in Euclidean space R

n as the following system of partial
differential equations (PDE):

∂t(1− α2�)u+ curl(1− α2�)u× u = −grad p,
u(0) = u0, div u = 0,

(1.1)

where u(t, x) is the velocity vector field, p(t, x) is the scalar pressure, and
α > 0 is the averaging length-scale. This conservative system of PDE
models the averaged motion of an ideal incompressible fluid, filtering
over spatial scales smaller than α (see [20] and [24] for derivations of
this model). Let P denote the Hodge (or Leray) projector defined below
in Section 5, and let A = −P� denote the Stokes operator. When
dissipation is present due to kinematic viscosity ν > 0, we obtain the
so-called the Lagrangian averaged Navier-Stokes (LANS-α), or Navier-
Stokes-α, equations:

∂t(1− α2�)u+ curl(1− α2�)u× u = − grad p− ν(1− α2�)Au,
u(0) = u0, div u = 0.

(1.2)

The LANS-α equations were first studied in [17] with periodic boundary
conditions; the extension to bounded domains will be addressed herein
and in [24]. We remark that when α = 0 the Euler (ν = 0) and Navier-
Stokes (ν > 0) equations are recovered. Equations (1.1) and (1.2) have
received a great deal of attention in both the mathematics and physics
literature, because of their remarkable ability to reproduce the large-
scale averaged motion of the Euler and Navier-Stokes equations, without
the use of artificial viscosity or dissipation. We refer the interested
reader to the papers [7], [8], [9], [27], [10], [30], and [29] for numerical
simulations of turbulent flows using the LANS-α equations, as well as
(energy) scaling arguments, and modifications of the morphology of fluid
structure.

In a striking coincidence, if the damping term ν�u is added to the
right-hand-side of (1.1) instead of the dissipative term −ν(1−α2�)Au,
then the equations are precisely the Rivlin-Ericksen second-grade fluids
equations developed in [33]; furthermore, (1.1) can be exactly identified
with vortex blob methods (introduced in [11]), and in two-dimensions
are globally well-posed for Radon measure initial data [30].
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Thus far, there has been no analytic study of any kind for either the
Lagrangian averaged Euler (LAE-α) or Lagrangian averaged Navier-
Stokes (LANS-α) equations on Riemannian manifolds with boundary.
In this paper, we shall generalize (1.1) and (1.2) to the setting of a
compact, n-dimensional (n ≥ 2), Riemannian manifold with smooth
boundary. In the inviscid case, we shall extend our results from [34] and
[23], and prove that solutions of the LAE-α equations are geodesics on
new subgroups of the volume-preserving diffeomorphism group with re-
spect to a very natural (new)H1-equivalent right-invariant weak metric.
Because of this fact, there is a wonderful interplay between the geome-
try and curvature of the new volume-preserving diffeomorphism groups
which we introduce, and the analytical properties of solutions to both
the LAE-α and LANS-α equations. In the geometric setting, one can
view this work as an extension of the program initiated by Arnold [3], [4]
and Ebin & Marsden [13] to the setting of turbulence modeling. In the
PDE setting, our intent is to write (1.1) in Lagrangian variables, and
study the resulting Lagrangian PDE; as we shall explain below, there
is greater temporal regularity available when studying the Lagrangian
PDE rather than the Eulerian PDE, as well as interesting geometric
implications to the study of volume-preserving diffeomorphisms.

We shall establish C∞-in-time local well-posedness in any dimension
for the LAE-α equations with Hs initial data, s > (n/2) + 1, by prov-
ing that unique C∞ geodesics exist; solutions are global in dimension
two. These results are analogous to the fundamental results of [3] and
[13], wherein it was proved that solutions of the incompressible Euler
equations are smooth geodesics of the weak L2 right-invariant metric.
In our setting, however, we must first establish the existence of new C∞

volume-preserving diffeomorphism groups on manifolds with boundary,
such that motion on these subgroups corresponds to solutions of both
the LAE-α and LANS-α equations. We remark that it is quite easy to
establish a local existence theory in Eulerian variables, and we do this
in the proof of Theorem 3.

In the viscous case, we shall derive the boundary conditions which
provide well-posedness for the LANS-α equations when boundaries are
present. Unlike the three-dimensional Navier-Stokes equations, the three-
dimensional LANS-α equations are globally well-posed (see [17] for spa-
tially periodic solutions, and [25] for solutions on bounded domains).
We establish that solutions of the LANS-α equations converge regularly
to solutions of the LAE-α equations even in the presence of boundaries.
This result verifies the scaling arguments used by Barenblatt & Chorin
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in [5].

A generalization to Riemannian manifolds

We begin by generalizing the system of equations (1.1) from R
n to the

setting of a C∞, compact, oriented, n-dimensional Riemannian manifold
with C∞ boundary, (M, g). Letting ∇ denote the Levi-Civita covariant
derivative, (1.1) becomes

∂t(1− α2�r)u− ν�ru+∇u(1− α2�r)u

− α2(∇u)t · �ru = −grad p,
div u = 0, u(0) = u0,

(1.3)

where α > 0 is a constant and

�r = −(dδ + δd) + 2Ric.

We supplement this PDE with one of the following three boundary
conditions:

(a) Dirichlet or no-slip: u = 0 on ∂M .

(b) Neumann or free-slip: g(u, n) = 0 and (∇nu)tan + Sn(u) = 0 on
∂M .

(c) Mixed: u = 0 on Γ1, and g(u, n) = 0, (∇nu)tan + Sn(u) = 0 on
Γ2, where ∂M = Γ1 ∪ Γ2, Γ1 = ∂M/Γ2, and the sets Γ1, Γ2 are
disjoint.

On a Riemannian manifold, there is always more than one choice for
the correct “Laplacian” on vector fields or 1-forms. Our Laplacian �r

is the operator
L = −2Def∗Def

acting on divergence-free vector fields (or coexact 1-forms), where the
(rate of) deformation tensor is given by

Def(u) =
1
2
(∇u+∇ut) = 1

2
£ug, £ = Lie derivative,

and Def∗ is the L2 formal adjoint of Def. Other possible choices are the
Hodge Laplacian −� = (dδ + δd) or the rough Laplacian −Tr∇∇, but
the boundary conditions (a)-(c) insist upon our choice L. Note that

(∇nu)tan + Sn(u) = [Def(u) · n]tan
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for vector fields u which are tangential to ∂M , so the second-fundamental
form of the boundary ∂M is encoded into the natural boundary condi-
tion; this is a significant improvement over the energy function used in
[23], and shows that the curvature of the boundary contributes to the
energy of the averaged fluid motion.

1.1 Reformulation of the LAE-α and LANS-α equations

All of our analytical results are founded on a reformulation of the LAE-
α and LANS-α equations. We shall show that the LAE-α equations
have the equivalent form:

∂tu+∇uu+ Uα(u) +Rα(u) = −(1− α2L)−1 grad p ,(1.4a)
div u(t, x) = 0 ,(1.4b)
u = 0 on ∂M ,(1.4c)
u(0, x) = u0(x),(1.4d)

where

Uα(u) = α2(1− α2L)−1Div [∇u · ∇ut +∇u · ∇u−∇ut · ∇u] ,(1.5)

and

Rα(u) = α2(1− α2L)−1{Tr [∇ (R(u, ·)u) +R(u, ·)∇u+R(∇u, ·)u]
−(∇uRic) · u+∇ut · Ric(u)} ,(1.6)

and that the LANS-α equations are given by

∂tu+∇uu+ Uα(u) +Rα(u) = −(1− α2L)−1 grad p− νAu,(1.7)

together with (1.4c) and (1.4d), where

A = −P�r

denotes the Stokes operator on Riemannian manifolds. The regularizing
terms Uα(u) and Rα(u) are not dissipative; rather, they remove energy
from the scales smaller than α in a dispersive fashion.

In the simplest setting of the flat torus T
n (periodic box) with R = 0,

the LANS-α equations become

∂tu+∇uu+Div τα = − grad p+ ν�u ,(1.8a)

τα(u) = α2(1− α2L)−1 [∇u · ∇ut +∇u · ∇u−∇ut · ∇u] .(1.8b)
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The term τα may be thought of a subgrid stress analogous to the tra-
ditional Reynolds stress, but unlike Reynolds Averaged Navier-Stokes
(RANS) or Large Eddy Simulation (LES) models, the additional term
Div τα is not dissipative. In particular, no artificial dissipation is added
to the Navier-Stokes equations to filter the small scale fluid motion;
rather, a geometric, nonlinear-dispersion-type mechanism is used to av-
eraged over spatial scales smaller than α. The idea of smoothing by
nonlinear dispersion was used extensively by Holm, Ratiu, & Marsden
[19].

The form of LANS-α given by (1.7) also solves the problem of bound-
ary conditions; namely, it is clear that for all solutions to LANS-α, Au
must equal zero on the boundary, since all of the other terms in the
equation equal zero on the boundary, whenever u = 0 on ∂M . It thus
makes sense to write the LANS-α equations as

∂t(1− α2�r)u+∇u(1− α2�r)u− α2(∇u)t · �ru

= − grad p− ν(1− α2�r)Au(1.9a)
u = 0 and �ru = 0 on ∂M ,(1.9b)

since for sufficiently regular velocity fields, Au is in the domain D(1 −
α2�r) = H2(TM) ∩ H1

0 (TM). Both forms of the LANS-α equations,
(1.7) and (1.9), are equivalent, but it is (1.7) which provides the addi-
tional boundary condition to deal with the fourth-order operator ν(1−
α2�r)A on bounded domains.

1.2 Notation

For each x ∈ ∂M , the g-orthogonal bundle splitting TxM = Tx∂M⊕Nx

induces the Whitney sum

TM |∂M = T∂M ⊕g N,

where N is the normal bundle, N = ∪x∈∂MNx ↓ ∂M .
Letting π : E → M be a vector bundle over M (or over ∂M),

we denote the Hs sections of E by Hs(E) and for all η ∈ Ds, we set
Hs

η(E) := {U ∈ Hs(M,E) | π ◦ U = η}.
For any vector bundle E over a base manifold M, we shall often

make use of the notation Em ↓ M to denote E , where Em is the fiber
over m ∈ M.



diffeomorphism groups and averaged fluid motion 151

We use R to denote the Riemannian curvature operator of ∇. The
Ricci curvature as a bilinear form is given by

Ric(x, y) = Tr g(R(x, ·)·, y),
with the associated linear operator Ric: TxM → TxM given by

g(Ric(x), y) = Ric(x, y).

If η ∈ Hs(M,M), then the tangent mapping Tη is in

Hs−1(M,T ∗M ⊗ η∗(TM)).

If w ∈ TxM , then in a local chart,

Tη(x) · w = (η(x), Dη(x) · w)
where D is the matrix of partial derivatives of η with respect to the
coordinate chart.

We shall use the symbol £ to denote the Lie derivative, d for the
exterior derivative on Λk(M), the differential k-forms on M , and δ for
its formal adjoint with respect to the L2 pairing. For a vector field u
on M , ∇ut shall denote the transpose of ∇u with respect to g.

The Hodge Laplacian on differential k-forms is � = −(dδ+δd), and
�r = �+ 2Ric.

When we wish to explicitly convert between vector fields and 1-
forms, we shall use the musical maps % : TM → T ∗M and & : T ∗M →
TM ; for example, if u is a vector field on M , then u� is the associated
1-form.

2. Main results

We prove the existence of smooth-in-time classical solutions to the
Lagrangian form of (1.3); namely, we study the Cauchy problem for
the Lagrangian flow map on any one of three subgroups (which we
construct) of Ds

µ. We let Ds
µ denote the topological group consisting

of Hilbert Hs-class volume-preserving diffeomorphism of M with Hs

inverses. Solutions of the LAE-α equations have better temporal regu-
larity in Lagrangian variables than in Eulerian variables and contain the
Riemannian geometry of the volume-preserving diffeomorphism group
as we shall describe below.
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New subgroups of Ds
µ

For η ∈ Ds
µ, s >

n
2 + 1, we let Tη denote its tangent map, i.e., the

Frechet derivative of η thought of as bundle map. In local coordinate
xi, Tη(x) is ∂ηi/∂xj(x).

Theorem 1. Set s > n
2 + 1 and let n denote the outward-pointing

normal field along the boundary ∂M , and let Sn : T∂M → T∂M denote
the Weingarten map so that

g (Sn(u), v) = IIn(u, v) = −g(∇un, v), u, v ∈ Hs− 3
2 (T∂M),

where IIn is the second fundamental form of ∂M ⊂M . Define the sets

Ds
µ,N = {η ∈ Ds

µ | Tη|∂M · n ∈ Hs−3/2
η (N), for all n ∈ Hs−1/2(N)},

Ds
µ,D = {η ∈ Ds

µ | η|∂M = e},
and

Ds
µ,mix = {η ∈ Ds

µ | η leaves Γi invariant, η|Γ1 = e,

Tη|Γ2 · n ∈ Hs−3/2(N |Γ2), for all n ∈ Hs−1/2(N |Γ2)},
where we suppose that M,∂M are C∞, that Γ1 and Γ2 are two disjoint
subsets of ∂M such that if m0 ∈ Γi (i = 1, 2), a local chart U (in M)
about m0 can be chosen so that U ∩ ∂M ⊂ Γi; furthermore, we assume
that Γ1 = ∂M/Γ2 and that ∂M = Γ1 ∪ Γ2.

Then Ds
µ,D, Ds

µ,N , and Ds
µ,mix are all C∞ subgroups of Ds

µ, and the
tangent space at the identity of these groups is given by

TeDs
µ,N = {u ∈TeDs

µ | (∇nu|∂M )tan + Sn(u) = 0 ∈ Hs−3/2(T∂M)

for all n ∈ Hs−1/2(N)},
TeDS

µ,D = {u ∈TeDs
µ | u|∂M = 0},

and

TeDS
µ,mix = {u ∈ TeDs

µ | (∇nu|∂M )tan + Sn(u) = 0 ∈ Hs− 3
2 (TΓ2)

for all n ∈ Hs− 1
2 (N |Γ2) and u|Γ1 = 0}.

We also form the corresponding sets Ds
N , Ds

D, and Ds
mix which do

not have the volume-preserving constraint imposed. These sets are C∞

subgroups of the full diffeomorphism group Ds, and have the analogous
tangent spaces at the identity without the divergence-free constraint.

We call the groups Ds
µ,D, Ds

µ,N , and Ds
µ,mix, the Dirichlet, Neumann,

and mixed volume-preserving diffeomorphism groups.
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Well-posedness in Lagrangian variables

Theorem 1 allows us to do smooth calculus on these spaces, and hence
consider the Lagrangian flow of (1.3). In this article, we shall prove
results for the case of the group Ds

µ,D, as the no-slip conditions have
been of most interest in the literature.1

Theorem 2. Set s > (n/2) + 1, and let 〈·, ·〉 denote the H1-
equivalent right-invariant metric on Ds

µ,D given at the identity by

〈X,Y 〉e = (X,Y )L2 + 2α2 (Def(X),Def(Y ))L2 , ∀X,Y ∈ TeDs
µ,D.

For u0 ∈ TeDs
µ,D, there exists an interval I = (−T, T ), depending on

|u0|s, and a unique geodesic η̇ of 〈·, ·〉 with initial data η(0) = e and
η̇(0) = u0 such that η̇ is in C∞(I, TDs

µ,D) and has C∞ dependence on
the initial velocity u0.

The geodesic η is the Lagrangian flow of the divergence-free time-
dependent vector field u(t, x) given by

∂tη(t, x) = u(t, η(t, x)), η(0) = e,

and u ∈ C0(I, TeDs
µ,D) ∩ C1(I, TeDs−1

µ,D) uniquely solves (1.3), and de-
pends continuously on u0.

We use η̇(t, x) to denote ∂tη(t, x).

Corollary 1. If n = dim(M) = 2, then T = ∞, so C∞ geodesics
of 〈·, ·〉 on Ds

µ,D exist for all time.

The proof, which is based on the fact that | curl(1 − α2�r)u|L2 is
conserved, is given by Theorem 2.1 in [35], where the same result is also
shown to hold for the Euler equations.

Limit of zero viscosity

In certain topologies which are not too strong, we can also prove the
limit of zero viscosity; namely, solutions of the LANS-α equations con-
verge to solutions of the LAE-α equations on bounded domains, with
the no-slip u = 0 boundary condition.

Theorem 3 For n = 2, 3 and s ∈ (n2 +1, 3) solutions of the LANS-
α equations (1.7) converge in L∞((0, T ), TeDs

µ,D) to solutions of the
LAE-α equations (1.4).

1By setting ∂M = ∅, all of our results hold for compact oriented n dimensional
Riemannian manifolds without boundary.
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This theorem confirms the scaling arguments of Barenblatt-Chorin (see,
for example, the second paragraph of [5]). We remark that when s ≥ 3,
the LANS-α equations satisfy the additional boundary condition Au = 0
which the LAE-α do not; thus, in such strong topologies, a boundary
layer forms, and requires the development of a Prandlt-type theory.

Riemannian geometry of (Ds
µ,D, 〈·, ·〉)

There are some interesting geometric corollaries which Theorem 2 pro-
vides. We define the Riemannian exponential map Expe : TeDs

µ,D →
Ds

µ,D of the right invariant metric 〈·, ·〉 by Expe(tu) = η(t), where t > 0
is sufficiently small, and η(t) is the geodesic curve on Ds

µ,D emanating
from e with initial velocity u. Because the above theorem guarantees
that geodesics of 〈·, ·〉 have C∞ dependence on initial data, Expe is well
defined, satisfies Expe(0) = e, and so by the inverse function theorem
we obtain

Corollary 2. For s > (n/2)+1, the Riemannian exponential map
Expe : TeDs

µ,D → Ds
µ,D is a local diffeomorphism, and two elements η1

and η2 of Ds
µ,D that are in a sufficiently small neighborhood of e can be

connected by a unique geodesic of 〈·, ·〉 in Ds
µ,D.

Note that for the L2 right invariant metric on Ds
µ whose geodesic

flow gives solutions to the Euler equations, the analogous local result
was obtained by Ebin-Marsden [13], but Shnirelman [36] has shown that
this local result does not hold globally. Namely, whenM is the unit cube
in R

3, he proved the existence of fluid configurations which cannot be
connected to the identity by an energy minimizing curve. This has mo-
tivated the construction of generalized flows; Brenier [6] has recently
constructed Young measure-valued flows that are both Lagrangian and
Eulerian in character, and which give weak solutions to the Euler equa-
tions in the sense of connecting any two fluid configurations (again on
the unit cube in R

3). The construction of such weak solutions for the
weak form of (1.3), given on the flat three-torus T

3 by
∫ T

0

∫
T3

{−u · ∂tφ− u⊗ u : ∇φ
+α2(1− α2�)−1

[∇u · ∇ut +∇u · ∇u−∇ut · ∇u] : ∇φ}
dxdt = 0

for all φ ∈ C∞([0, T ] × T
3) with div φ = 0, is the subject of ongoing

research. In this setting, one generates weak solutions whose distribu-
tional derivatives are Young measures.
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Note that while the group exponential map is only C0 and does not
cover a neighborhood of the identity, the Riemannian exponential map
on Ds

µ,D is smooth by Theorem 2, so that in conjunction with the fact
that the right multiplication map is C∞, the topological group Ds

µ,D

looks very much like a Lie group. As a consequence of the smoothness
of Expe and the proof of Theorem 12.1 in [13], geodesics of 〈·, ·〉, which
are the solutions of (1.3), instantly inherit the regularity of the initial
data. Thus,

Corollary 3. For s > n
2 + 1, let η(t) be a geodesic of the right

invariant metric 〈·, ·〉 on Ds
µ,D, i.e., ∂tη(t, x) = u(t, η(t, x)) and u(t, x)

is the unique solution of (1.3) with ν = 0. If η(0) ∈ Ds+k
µ,D and η̇(0) ∈

Tη(0)Ds+k
µ,D for 0 ≤ k ≤ ∞, then η(t) is Hs+k for all t ∈ I.

Our final theorem is geometric and concerns the existence of the
weak Levi-Civita covariant derivative on Ds

µ,D of the the weak right
invariant metric 〈·, ·〉, as well as its Riemannian curvature operator.

Because the metric 〈·, ·〉 is equivalent to an H1 metric by Korn’s in-
equality, it induces a weak topology relative to the strong Hs topology,
s > n

2 + 1, of Ds
µ,D. In general, there does not exist a weak covariant

derivative operator associated to a weak metric, nor a bounded Rie-
mannian curvature operator. Thanks to Theorem 2, however, these
structures do indeed exist.

Theorem 4. Extending Xη, Yη, Zη ∈ TηDs
µ,D, η ∈ Ds

µ,D, to smooth
vector fields X,Y, Z on Ds

µ,D, there exists a right invariant unique Levi-
Civita covariant derivative ∇̃ of 〈·, ·〉 on Ds

µ,D given by

∇̃XY (η) =
{
Pe ◦

[
∂t(Yη ◦ η−1) +∇Xη◦η−1(Yη ◦ η−1)

+
1
2
(U(Xη ◦ η−1, Yη ◦ η−1) +R(Xη ◦ η−1, Yη ◦ η−1))

]} ◦ η,
where U and R are given by polarization of the operators U1andR1,
defined in (1.5) and (1.6), respectively, and where for r ≥ 1,

Pe : Hr(TM) ∩H1
0 (TM) → V r

µ

is the 〈·, ·〉e-orthogonal projection given by

Pe(F ) = v,

where v ∈ Vr
µ is the unique solution of the Stokes problem

(1− L)v + grad p = (1− L)F,
div v = 0, v = 0 on ∂M.
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For right-invariant vector fields X,Y on Ds
µ,D which are completely de-

termined by there value at the identity Xe, Ye,

∇̃XY (e) = Pe ◦
[
∇XeYe +

1
2
(
U(Xe, Ye) +R(Xe, Ye)

)]
.

Finally, define the weak Riemannian curvature tensor

R̃η :
[
TηDs

µ,D

]3 → TηDs
µ,D

by

R̃η(Xη, Yη)Zη =
(
∇̃Y ∇̃XZ

)
η
−

(
∇̃X∇̃Y Z

)
η
+

(
∇̃[X,Y ]Z

)
η
, η ∈ Ds

µ,D.

Then for s > (n/2) + 2, R̃ is right invariant and continuous in the Hs

topology.

Since the weak curvature operator R̃ is bounded in Hs for s >
n
2 + 2, the fundamental existence and uniqueness theorem for ordinary
differential equations provides us with the following:

Corollary 4. For s > (n/2) + 2 and y, ẏ ∈ TeDs
µ,D, there exists

a unique Hs vector field Y (t) along a geodesic curve η of 〈·, ·〉 which is
solution to the Jacobi equation

∇̃η̇∇̃η̇Y + R̃η(η̇, Y )η̇ = 0, Y (0) = y, ∇̃η̇Y (0) = ẏ.

Because the geodesic flow η of the right invariant metric 〈·, ·〉 on Ds
µ,D

is the solution of (1.3), and since the Jacobi equation is the lineariza-
tion of the geodesic flow, Corollary 4 proves existence and uniqueness of
solutions to the linearized LAE-α equations, where the linearization is
carried-out about a solution u = ∂tη ◦ η−1 to (1.4). We are thus able to
follow Arnold [3], and study the Lagrangian stability of our solutions,
by studying the curvature of our infinite-dimensional group. Positive
curvature indicates stable motion, while negative curvature implies ex-
ponential divergence of trajectories.

Since this system, averages over the small-scale fluid motion, one
might hope that solutions of (1.4) have nicer stability properties than
solutions to the Euler equations. Geometrically, this implies that as α
is increased away from zero, the sectional curvatures which are negative
for the Euler flow, may flip sign and become positive. Indeed, this seems
to be the case; we give a simple example.
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We consider periodic two-dimensional motion, so the configuration
space is the group of volume-preserving diffeomorphisms of the two-
torus T

2. Consider the parallel sinusoidal steady flow given by the
stream function ξ = cos(k, x) and let ψ be any other vector of the
tangent space at e, i.e., ψ =

∑
xlel, where x−l = x̄l. Theorem 3.4 of [4]

states that the curvature of the group Dµ(T 2) in any two-dimensional
plane containing the direction ξ is non-positive and is given by

Kξψ =
S

4

∑
l

a2kl|xl + xl+2k|2,

where akl =
(k × l)2

|k + l| , k × l = k1l2 − k2l1 is the (oriented) area of the

parallelogram spanned by k and l, and S is the area of the torus. Then,
a corollary of this theorem states that the curvature in the plane defined
by the stream functions ξ = cos(k, x) and ψ = cos(l, x) is

Kξψ = −(k2 + l2) sin2 β sin2 γ/4S,

where β is the angle between k and l, and γ is the angle between k + l
and k− l. Recall that these are the curvatures with respect to the right
invariant L2 metric.

Now using the right invariant metric 〈·, ·〉 on Ds
µ(T

2), we can prove
the following result [32]. Let K̃(ξ, ψ) denote the sectional curvature on
Ds

µ(T
2) with the right invariant metric 〈·, ·〉, where ξ = cos(k, x) and

ψ = cos(l, x). For |ε| sufficiently small, let l = k + ε. Then for any k,
there exists 0 < α0(k) < 1, such that for all α > αo(k), K̃(ξ, ψ) > 0.
This means that for certain large enough values of α, the sectional
curvature does indeed become positive, and stabilization of the flow
occurs.

3. Review of the Hilbert manifold of maps and
diffeomorphism groups

Let us briefly recall some facts concerning the geometry of the man-
ifold of maps between two Riemannian manifolds. We refer the reader
to [31], [14], and [15] for a comprehensive treatment of this subject. Let
(M, g) be a C∞ compact oriented n-dimensional Riemannian manifold
with boundary, and let (N,h) denote a p-dimensional compact oriented
boundaryless Riemannian manifold. By Sobolev’s embedding theorem,
when s > n/2+k, the set of Sobolev mappings Hs(M,N) is a subset of
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Ck(M,N) with continuous inclusion, and so for s > n/2, an Hs-map of
M into N is pointwise well-defined. Mappings in the space Hs(M,N)
are those whose first s distributional derivatives are square integrable
in any system of charts covering the two manifolds.

For s > n/2, the spaceHs(M,N) is a C∞ differentiable Hilbert man-
ifold. Let exp: TN → N be the exponential mapping associated with h.
Then for each φ ∈ Hs(M,N), the map ωexp : TφHs(M,N) → Hs(M,N)
is used to provide a differentiable structure which is independent of the
chosen metric, where ωexp(v) = exp ◦v, and

TφH
s(M,N) = {u ∈ Hs(M,TN) | π̄ ◦ u = φ},

where π̄ : TN → N .
When ∂M  = ∅, the set Hs(M,M) is not a smooth manifold. We

can, however, embed M into its double M̃ , a compact boundaryless
manifold of the same dimension, extending the metric g to M̃ . Using
the above construction, we form the C∞ manifold Hs(M, M̃). Then for
s > (n/2) + 1, the set

Ds = {η ∈ Hs(M, M̃) | η is bijective , η−1 ∈ Hs(M, M̃),
η leaves ∂M invariant}

is an open subset of Hs(M, M̃). By choosing a metric on M̃ for which
∂M is a totally geodesic submanifold, the above construction provides
Ds with a C∞ differentiable structure (see [13] for details). For each
η ∈ Ds, the tangent space at η is given by

TηDs = {u ∈ Hs(M,TM) | π ◦ u = η, g(u ◦ η−1, n) = 0 on ∂M}
and the vector space TeDs consists of the Hs class vector fields on M
which are tangent to ∂M .

Let µ denote the Riemannian volume form on M , and let

Ds
µ := {η ∈ Ds | η∗(µ) = µ}

be the subset of Ds whose elements preserve µ. As proven in [13], the
set Ds

µ is a C∞ subgroup of Ds for s > (n/2)+1. We call Ds
µ the group

of volume preserving diffeomorphisms of class Hs. The tangent space
at η ∈ Ds

µ is given by

TηDs
µ = {u ∈Hs(M,TM) | π ◦ u = η, g(u ◦ η−1, n) = 0 on ∂M,

div(u ◦ η−1) = 0},
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so that the vector space TeDs
µ consists of divergence-free Hs class vector

fields on M that are tangent to ∂M .
We have the following standard composition lemma:

Lemma 1 (ω and α lemmas). For η ∈ Ds, right multiplication

Rη : Ds → Ds (Hs → Hs), ζ "→ ζ ◦ η, is C∞,

and for η ∈ Ds+r, left multiplication

Lη : Ds → Ds (Hs → Hs), ζ "→ η ◦ ζ, is Cr.

Finally, the inverse map (η "→ η−1) : Ds → Ds is only C0 and not
even locally Lipschitz continuous. Thus, Ds and Ds

µ are not Lie groups,
but are C∞ topological groups with C∞ right translation.

4. Proof of Theorem 1

4.1 The Neumann group Ds
µ,N

We begin by first establishing the result for Ds
µ,N . We split the proof

into three steps.

Step 1. Bundles over Ds
µ and the transversal mapping the-

orem.

Recall that a smooth map between Hilbert manifolds f : M1 → M2

is transversal to a submanifold M3 of M2 if for all m ∈ f−1(M3),

Tf(m) (TmM1) + Tf(m)M3 = Tf(m)M2.

The transversal mapping theorem asserts that f−1(M3) is a submani-
fold of M1 if f is transversal to M3.

Let us define the following infinite dimensional vector bundles over
Ds

µ:

F = H
s− 3

2
η (TM |∂M) ↓ Ds

µ,

E = H
s− 3

2
η (T∂M) ↓ Ds

µ,

G =
[
H

s− 3
2

η (TM |∂M)∗ ⊗H
s− 3

2
η (T∂M)

]
↓ Ds

µ.
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For x ∈ ∂M , let Πx : TxM → Tx∂M be the g-orthogonal projector,
and define the section Π : Ds

µ → G pointwise by Π(η)(x) = Πη(x), so

that for all η ∈ Ds
µ, Π(η) : Hs−3/2

η (TM |∂M) → H
s−3/2
η (T∂M). For

n ∈ Hs−1/2(N), define the section of F , hn : Ds
µ → F , by

hn(η) = Tη|∂M · n.
Finally, let fn : Ds

µ → E denote the section of E which is given by

fn = Π ◦ hn.
Then, the set Ds

µ,N is the inverse image of fn acting on the zero section
of E .
Lemma 2. The map fn : Ds → E is C∞.

Proof. This follows from Lemma 4, the trace theorem, and the fact
that Π is smooth, as g and ∂M are C∞. q.e.d.

Hence, by the transversal mapping theorem, to show that Ds
µ,N is

a C∞ subgroup of Ds
µ, we shall prove that fn is a surjection; this will

provide Ds
µ,N with smooth differentiable structure. That Ds

µ,N is a C∞

subgroup then follows from the fact that Ds
µ,N is trivially closed under

right composition.

Step 2. The covariant derivative of fn.

We use the symbol ∇ to denote the weak Levi-Civita covariant
derivative on sections of F and G (as obtained in Lemma 4). Follow-
ing the methodology of Lemma 4, we compute that for all η ∈ Ds

µ and

u ∈ TηDs
µ, ∇uhn(η) ∈ Fη = H

s−3/2
η (TM |∂M) is given by

∇uhn(η) = ∇nu,

where ∇ denotes the Levi-Civita covariant derivative in η∗(TM).
Next, we compute the covariant derivative of the section Π of G. We

shall denote the metric tensor g evaluated at the point η(x) by gη(x).
Using the fact that g is covariantly constant, and letting (·)tan denote
the tangential component of a mapping v : ∂M → TM |∂M , we have
that

gη(x)
(
[∇uΠη(x)] · v(x), z(x)

)
= −gη(x)

(
(∇uv(x))tan, z(x)

)
−gη(x)

(
(∇uz(x))tan, v(x)

)
(4.1)

−u [
gη(x)(v

tan(x), ztan(x))
]
,
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where we use the notation: u[f ] = df · u for any function f ∈ C1(M).
It is clear that the operator ∇uΠη is self-adjoint with respect to g.
By definition of the g-orthogonal projector Πη(x), we see that for all
x ∈ ∂M ,

gη(x)
(
Πη(x) · w(x), ν(x)

)
= 0, ∀ w ∈ Fη, ν ∈ Hs−3/2

η (N),

so that setting the map v in equation (4.1) equal to the mapping ν, and
noting that the covariant derivative ∇ on G is the functorial lift of ∇,
we obtain the formula

[∇uΠ(η)
]
(ν) = −(∇uν)tan = Sν(u).

It follows that for all η ∈ f−1n (0),

∇ufn(η) = ∇uΠη · h(η) + Πη∇uh(η)
= Sν(u) + (∇nu)tan ∈ Eη,

where ν = Tη|∂M · n ∈ Hs− 3
2

η (N).

Step 3. fn is a surjection.

It remains to show that for all η ∈ f−1n (0), ∇fn(η) : TηDs
µ → Eη is

onto. Because right translation on Ds
µ is a smooth operation, it suffices

to find u ∈ TeDs
µ such that ∇ufn(e) = w for any w ∈ Hs−3/2(T∂M).

To do so, we shall solve the following elliptic boundary value problem:
Find (u, p) ∈ TeDs

µ ×Hs−1(M)/R such that

(1−�r)u+ grad p = F, div u = 0 in M,
g(u, n) = 0, (∇nu)tan + Sn(u) = w on ∂M,

(4.2)

where F ∈ Hs−2(TM), w ∈ Hs−3/2(T∂M), n ∈ Hs−1/2(N).
We first define the space

H1
A(TM) = {v ∈ H1(TM)|div v = 0 and g(u, n) = 0 on ∂M},

and establish the existence of a unique weak solution u ∈ H1
A(TM) to

(4.2). Let B : H1
A(TM)×H1

A(TM) → R be the bilinear form given by

B(u, v) =
∫
M
[g(u, v) + 2ḡ(Def u,Def v)]µ.

B is symmetric and by Korn’s inequality, which states that |u|1 ≤
C|Def u|0 + C|u|0 (see, for example, [38] Corollary 12.3), there exists
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β > 0 such that β|u|1 ≤ B(u, u); hence, B is coercive with respect to
H1

A(TM). Let F : H1
A(TM) → R be given by

F(v) =
∫
M
g(F, v)µ+

∫
∂M

g(w, v)µ∂ .

By the trace theorem,

∣∣∣
∫
∂M

g(w, v)µ∂

∣∣∣ ≤ C|w|L2(T∂M) |v|1,

so that together with the Cauchy-Schwartz inequality and the embed-
ding H1 ↪→ L2, we see that F ∈ H1

A(TM)∗. Hence, by the Lax-Milgram
theorem, their exists a unique u ∈ H1

A(TM) satisfying B(u, v) = F(v)
for all v ∈ H1

A(TM). This, in turn, uniquely determines p ∈ L2(M)/R,
as the solution of B(u, v) − F(v) =

∫
M p · div vµ for all v ∈ H1(TM)

that satisfy g(u, n) = 0 on ∂M . We have thus obtained a unique weak
solution (u, p) ∈ H1

A(TM) × L2(M)/R of the boundary value problem
(4.2).

Now, since

2Def∗Def u = −2DivDef u = −�u− 2Ric(u),

we see that if u ∈ H2(TM) ∩H1
A(TM) satisfies

B(u, v) = F(v), ∀ v ∈ H1
A(TM),

then u is a solution of (4.2). We shall use an elliptic regularity argument
to prove that u is in fact a classical Hs solution of (4.2).

Let (U, φ) coordinate chart on M , and χ ∈ C∞
0 (U). Since

(1−�r)(χu) = χ((1−�r)u) + [(1−�r), χ]u,

and since [(1−�r), χ]u is a first-order differential operator, our elliptic
regularization of u can be localized to the chart U . We can assume that
U intersects ∂M , for otherwise, standard interior regularity estimates
can be applied. Let xi denote the coordinates on U and set ∂i = ∂/∂xi.
We may express the Hodge Laplacian � on U as

�u = �loc + Y (u),

where �loc = gij(x)∂i∂ju, and Y is a first order differential operator.
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We consider the boundary value problem in U given by

(1−�loc)u+ grad p = F, div u = ρ in U,
B0(u) = 0, B1(u) = w on ∂U,

where B0(u) = g(u, n), B1(u) = 2[(Du + Dut) · n]tan, and Du · n =
∂ju

igjkn
k. Applying induction to the usual difference quotient argument

(see, for example, [38]) yields the elliptic estimate

|u|s + |p|s−1 ≤ C
(|F |s−2 + |ρ|s−1 + |B0(u)|s−1/2 + |B1(u)|s−3/2

)
.

Hence, the operator

L : Hs ∩H1
A(TU)

→ Hs−2(TU)⊕Hs−1(U)⊕Hs−1/2(T∂U)⊕Hs−3/2(T∂U)

given by

Lu = ((1−�locu),div u,B0(u), B1(u)) = (F, ρ, 0, w)

has closed range, and since its adjoint has a trivial kernel, L is an isomor-
phism (see also [26] for an alternative proof that L is an isomorphism).

A simple computation verifies that along ∂M ,

2[Def u · n]tan = (∇nu)tan + Sn(u) ∀ u ∈ H1
A(TM),

so that on ∂U , [Def u · n]tan differs from B1(u) by a linear combination
of C∞ Christoffel maps, and we shall denote this difference by Γ(u).
Hence, the operator

L : Hs ∩H1
A(TU)

→ Hs−2(TU)⊕Hs−1(U)⊕Hs−1/2(T∂U)⊕Hs−3/2(T∂U)

given by

Lu = (
(1−�r)u, div u,B0(u), (∇nu)tan + Sn(u)

)
differs from Lu by the operator Ku = (Y (u) + Ric(u), 0, 0,Γ(u)) which
is compact by Rellich’s theorem. Therefore, L has index 0 and trivial
kernel, and is thus an isomorphism, which concludes that Ds

µ,N is a C∞

subgroup of Ds
µ.

With an almost trivial modification, Ds
N is a C∞ subgroup of Ds.

To see this, we redefine the vector bundles E ,F ,G to have Ds as base
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manifold rather than Ds
µ, and we redefine the space H

1
A(TM), removing

the divergence-free constraint. In this case,

2Def∗Def u = −2DivDef u = −(�+ 2Ric + grad div)u,

so to establish that fn is a surjection, we solve the following bound-
ary value problem: For F ∈ Hs−2(TM), w ∈ Hs−3/2(T∂M) and n ∈
Hs−1/2(N), find u ∈ TeDs satisfying

[1− (�r + grad div)]u = F in M
g(u, n) = 0, (∇nu)tan + Sn(u) = w on ∂M.

(4.3)

A weak solution in H1
A(TM) is obtained using the Lax-Milgram

theorem just as in Step 3 above. Up to a compact operator, this is
precisely the elliptic system studied in ([16]), wherein existence and
uniqueness of classical Hs solutions is established. Since modification
of an elliptic operator by lower-order terms does not change its index,
we have existence of u ∈ TeDs

µ solving (4.3), and this completes the
argument for the subgroup Ds

N .

4.2 The mixed group Ds
µ,mix

We shall follow the three step proof above, keeping the same notation.

Step 1. Bundles over Ds
µ and the inverse function theorem.

We modify the vector bundles F , E , and G as follows:

F = H
s− 3

2
η (TM |Γ2) ↓ Ds

µ,

E = H
s− 3

2
η (TΓ2) ↓ Ds

µ,

G =
[
H

s− 3
2

η (TM |Γ2)∗ ⊗H
s− 3

2
η (TΓ2)

]
↓ Ds

µ.

For n ∈ Hs−1/2(N |Γ2), define f̄n : Ds
µ → Ds−1/2(Γ1)× E by

f̄n(η) = [η|Γ1 , fn(η)] = [η|Γ1 ,Π(η) ◦ (Tη|Γ2 · n)] .
The trace theorem together with Lemma 2 ensures that f̄n is C∞. Since
DS

µ,mix = f̄−1n (e, 0), we must prove that f̄n is a surjection, in order to
show that DS

µ,mix is a submanifold of Ds
µ. Again, it is clear that the set

DS
µ,mix is closed under right composition.

Step 2. Computing the tangent map of f̄n.
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Step 2 of the case Ds
µ,N shows that for any u ∈ TηDs

µ,

∇ufn = Sν(u) + (∇nu)tan ∈ Eη, ν = Tη|Γ2 · n ∈ Hs−3/2
η (N |Γ2).

Now ∇ufn is the vertical component of Tfn ·u, the TE-valued image
of u under the tangent mapping Tfn. Letting H ⊂ TE denote the
connection associated with the Levi-Civita covariant derivative ∇ (see
Step 1 above), we have the local decomposition Tfn ·u = ∇ufn−ωH(u) ·
fn, where ωH is the local connection 1-form on E associated with the
horizontal distribution H. Then,

T f̄n(η) · u =
(
u|Γ1 ,∇ufn(η)− ωH(u) · fn(η)), u ∈ TηDs

µ.

Step 3. f̄n is a surjection.

It suffices to prove that for all (ψ,w) ∈ Hs−1/2(TM |Γ1)× Ee, there
exists u ∈ TeDs

µ such that

u = ψ on Γ1
(∇nu)tan + Sn(u) = w on Γ2,

and to do so, we shall follow Step 3 for the case of Ds
µ,N , and obtain u

as the solution of

(1−�r)u+ grad p = F, div u = 0, in M,
u = ψ on Γ1,

g(u, n) = 0, (∇nu)tan + Sn(u) = w on Γ2.
(4.4)

It suffices to consider the homogeneous boundary condition u = 0 on
Γ1.

To obtain a weak solution to (4.4), we define

H1
A(TM) = {v ∈ H1(TM)|div v = 0, g(u, n) = 0 on Γ2

and u = 0 on Γ1},
and again consider the bilinear form B : H1

A(TM) × H1
A(TM) → R

given by

B(u, v) =
∫
M
[g(u, v) + 2ḡ(Def u,Def v)]µ.

We define F : H1
A(TM) → R by

F(v) =
∫
M
g(F, v)µ+

∫
Γ2

g(w, v)µ∂ .
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The argument we gave in Step 3 of the case Ds
µ,N shows that there

exists a unique solution u ∈ H1
A(TM) satisfying B(u, v) = F(v) for all

v ∈ H1
A(TM).

Now, if u ∈ H2(TM) ∩ H1
A(TM) satisfies B(u, v) = F(v) for all

v ∈ H1
A(TM), then u is a solution of the mixed problem (4.4) for which

elliptic regularity is slightly more subtle than for the Neumann prob-
lem. In particular, the identical argument which we used for that prob-
lem provides the Hs class regularity of u on M/(Γ1 ∩ Γ2); after all,
the boundary conditions on both Γ1 and Γ2 are elliptic in the sense of
Agmon-Douglis-Nirenberg as the Complementary Condition is satisfied
(see [1], and see [37] for an alternative method). The fact that ∂M
is C∞ and that ∂M = Γ1 ∪ Γ2 gives the regularity of the solution on
M (see, for example, Fichera [16], pages 377 and 385). Hence, our ar-
gument in Step 3 for the subgroup Ds

µ,N given above yields a unique
solution u ∈ Hs(TM)∩H1

A(TM) of (4.4), and thus concludes the proof
that Ds

µ,mix is a C∞ subgroup of Ds
µ.

Just as we proved that Ds
N is a subgroup of Ds by a minor modifi-

cation of the argument for the case Ds
µ,N , we easily obtain that Ds

mix is
also a C∞ subgroup of Ds.

4.3 The subgroup Ds
µ,D

This case was studied by Ebin-Marsden [13] using a different approach.
By setting Γ2 = ∅ above, we immediately prove that Ds

µ,D is a C∞ sub-
group of Ds

µ and that Ds
D is a C∞ subgroup of Ds, with the appropriate

tangent spaces at the identity.

This concludes the proof of Theorem 1.

4.4 The group exponential map.

Let Gs denote either of the groups Ds
D, Ds

N , or Ds
mix, and similarly, let

Gs
µ denote either of the groups Ds

µ,D, Ds
µ,N , or Ds

µ,mix.

Corollary 5. Let V ∈ TeG
s, and let ηt be its flow, (d/dt)ηt =

V ◦ ηt. Then, for s > (n/2) + 2, ηt is a one parameter subgroup of Gs,
and the group exponential map Exp: TeGs → Gs given by V "→ η1 is
continuous but not continuously differentiable, while the curve t "→ ηt is
C1. This holds for Gs

µ as well.

Proof. The result follows from ([13], Theorems 3.1 and 6.3). q.e.d.
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4.5 Further remarks on diffeomorphism subgroups

The existence of the above C∞ subgroups follows from the existence,
uniqueness, and regularity of solutions to certain elliptic boundary value
problems.

This methodology allows to prove directly that for s > (n/2) + 1,
Ds

µ,mix is a C∞ subgroup of Ds.

We need only modify the map f̄n given in Step 3 above as follows:
For n ∈ Hs−1/2(N |Γ2) and µ the Riemannian volume form onM , define
f̄n,µ : Ds

µ → Λ3(M)×Ds−1/2(Γ1)× E by

f̄n,µ(η) = [η∗(µ), η|Γ1 ,Π(η) ◦ (Tη|Γ2 · n)] .
Again f̄n,µ is C∞, and following the notation of Step 2, we easily com-
pute that

T f̄n,µ(η)·u =
(
div (u ◦ η−1), u|Γ1 ,∇ufn(η)− ωH(u) · fn(η)), u ∈ TηDs

µ.

Finally, the modification to Step 3 consists of obtaining a solution
u ∈ TeDs

µ satisfying the boundary value problem

(1−�r)u+ grad p = F, div u = q, in M,
u = ψ on Γ1,

g(u, n) = 0, (∇nu)tan + Sn(u) = w on Γ2.

Only minor modifications need be made to our previous proofs, so we
leave this for the interested reader.

Of course, setting Γ2 = ∅ proves the theorem when Ds
µ,mix is replaced

by Ds
µ,D, while setting Γ1 = ∅ proves the theorem in the case that Ds

µ,mix

is replaced by Ds
µ,N .

5. The Stokes decomposition for manifolds with boundary

In this section we recall well-known results about the Hodge decom-
position for manifolds with boundary (see [12] and [28] for proofs), and
define a new Stokes decomposition based on the solution to the Stokes
problem, whose summands are 〈·, ·〉e-orthogonal.

Let (M, g) be a C∞ compact, oriented Riemannian n-dimensional
manifold with C∞ boundary ∂M , and let i : ∂M →M be the inclusion
map. Then for a smooth vector field X on M and n, the outward-
pointing normal vector field on ∂M , i∗(X µ) = g(X,n)µ∂ where µ is
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the Riemannian volume form, and µ∂ is the volume form on ∂M coming
from the induced Riemannian metric.

By the trace theorem, i∗α is well-defined on ∂M for α ∈ Hs(Λk(M))
when s ≥ 1; hence, for such s, α ∈ Hs(Λk(M)) is tangent (‖) to ∂M if
and only if n α = 0, and normal (⊥) to ∂M if and only if n' ∧ α = 0.

When ∂M = ∅, (dα, β)L2 = (α, dβ)L2 , where (φ, ψ)L2 =
∫
M φ ∧ ∗ψ

(here, ∗ : Λk(M) → Λn−k(M) denotes the Hodge star operator), and
we have the standard Hodge decomposition

Hs(Λk) = d
(
Hs+1(Λk−1)

) ⊕ δ
(
Hs+1(Λk+1)

) ⊕Hs,k,

where Hs,k = {α ∈ Hs(Λk(M))|dα = 0 and δα = 0} are the Harmonic
fields.

When ∂M  = ∅, we have that

(dα, β)L2 − (α, δβ)L2 =
∫
∂M

(n' ∧ α, β)µ∂

and
(δα, β)L2 − (α, dβ)L2 = −

∫
∂M

(n α, β)µ∂ .

This shows that if δα = 0, then α ‖ ∂M iff (α, dβ)L2 = 0 for all β, in
which case the notion of α ‖ ∂M is well-defined even if α is only of class
L2. Similarly, if dα = 0, then α ⊥ ∂M iff (α, dβ) = 0 for all β. We
define

Hs
t (Λ

k) = {α ∈ Hs(Λk(M)) | α ‖ ∂M},
Hs

n(Λ
k) = {α ∈ Hs(Λk(M)) | α ⊥ ∂M},

Hs,k
t = {α ∈ Hs | α ‖ ∂M},

Cs,k
t = {α ∈ Hs(Λk(M)) | δα = 0 and α ‖ ∂M}.

Then for s ≥ 0, we have the Hodge decompositions

Hs(Λk) = d
(
Hs+1

n (Λk−1)
) ⊕ δ

(
Hs+1

t (Λk+1)
) ⊕Hs,k,

Hs(Λk) = d
(
Hs+1(Λk−1)

) ⊕ Cs,k
t ,

from which we can define the L2 orthogonal projection onto ker(δ).
Consider the Hodge Laplacian −� = δd+ dδ with domain

{α ∈ H2(Λk(M)) | n α = 0 and n dα = 0},
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and let Pt denote the L2 orthogonal projection onto Hs,k
t . We call

Pe : Hs(Λk) → Hs
t (Λ

k)
Pe(ω) = Ptω + δd(−�)−1(ω − Ptω)

the L2 Hodge projection.
We shall now restrict our attention to Hs(Λ1(M)) and identifying

1-forms with vector fields thru the metric g on M . Letting

X s
t = {u ∈ Hs(TM) | div u = 0, u ‖ ∂M},

we may equivalently express the Hodge decomposition as

Hs(TM) = gradHs+1(M)⊕X s
t ,

so that for all u ∈ Hs(TM), u = v+grad p, where v ∈ X s
t and p :M →

R is obtained as the solution of Neumann problem

�p = div u in M
g(grad p, n) = g(u, n) on ∂M.

Thus, a convenient and equivalent formula for the L2 Hodge projection
is

Pe : Hs(TM) → X s
t , Pe(u) = u− grad p.

For each η ∈ Ds
µ, we define the projector

Pη : TηDs → TηDs
µ,

Pη(X) = (Pe(X ◦ η−1)) ◦ η.
Thus P : TDs → TDs

µ, given on each fiber by Pη, is a bundle map
covering the identity and is C∞ by Appendix A of [13].

Next, we define a new projector based on the elliptic Stokes problem.
Let Gs denote Ds

D, Ds
N , or Ds

mix, and similarly, let Gs
µ denote Ds

µ,D,
Ds

µ,N , or Ds
µ,mix.

For r ≥ 1, let Vr denote the Hr vector fields on M which satisfy
the boundary conditions prescribed to elements of TeGs, and set Vr

µ =
{u ∈ Vr | div u = 0}. If 1 ≤ r < 2, then elements of Vr and Vr

µ only
satisfy the essential boundary conditions (u = 0 on ∂M if Gs

µ = Ds
µ,D,

g(u, n) = 0 on ∂M if Gs
µ = Ds

µ,N , or u = 0 on Γ1 and g(u, n) = 0
on Γ2 if Gs

µ = Ds
µ,mix) because vector fields in Vr for r < 2 do not

possess sufficient regularity for the trace map to detect derivatives on
the boundary.

We set L = −2Def∗Def, and consider the positive self-adjoint un-
bounded operator (1− L) on L2(TM) with domain D(1− L) = V2.
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Proposition 1. For r ≥ 1 we have the following well defined
decomposition

Vr = Vr
µ ⊕ (1− L)−1gradHr−1(M).(5.1)

Thus, if F ∈ Vr, then there exists (v, p) ∈ Vr
µ ×Hr−1(M)/R such that

F = v + (1− L)−1grad p
and the pair (v, p) are solutions of the Stokes problem

(1− L)v + grad p = (1− L)F,
div v = 0,

v satisfies boundary conditions
prescribed to elements of Vr.

(5.2)

The summands in (5.1) are 〈·, ·〉e-orthogonal. Now, define the Stokes
projector

Pe : Vr → Vr
µ,

Pe(F ) = F − (1− L)−1grad p.(5.3)

Then, for s > (n/2) + 1, P : TGs → TGs
µ, given on each fiber by

Pη : TηGs → TηG
s
µ,

Pη(Xη) =
[Pe(Xη ◦ η−1)

] ◦ η,
is a C∞ bundle map covering the identity.

Proof. Acting on divergence-free vector-fields, L = �r. Thus, the
proof that Ds

µ,mix is a C
∞ subgroup of Ds

µ shows that the Stokes problem
(5.2) has a unique solution (v, p) ∈ Vr

µ ×Hr−1(M)/R for any F ∈ Vr,
r ≥ 1.

It is easy to verify that the summands in (5.1) are 〈·, ·〉e-orthogonal,
so it only remains to show that P is smooth. For Fη ∈ TηG

s, let
F = Fη ◦ η−1, and let (v, p) solve (5.2). By (5.3), it suffices to prove
that[

(1− L)−1grad p] ◦ η = [
(1− L)−1grad�−1div(1− L)(v − F )

] ◦ η
is smooth. Letting Vη = v◦η ∈ TηGs

µ, we have the equivalent expression
for

[
(1− L)−1grad p] ◦ η given by

(1− L)−1η ◦ gradη ◦ �−1
η ◦ divη ◦ (1− L)η(Vη − Fη)

which is a C∞ bundle map by Proposition 5 together with Lemmas 5
and 6. q.e.d.
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6. A new right invariant metric on Ds
µ,D, Ds

µ,N , Ds
µ,mix and its

geodesics

Recall that a weak Riemannian metric on a Hilbert manifold M is
given by a map γ which assigns to each m ∈ M, a continuous positive-
definite symmetric bilinear form γ(m) ∈ T ∗

mM ⊗ T ∗
mM, which is C∞

with respect to m ∈ M. The metric γ is termed weak, because it defines
a topology which is weaker than the original topology on M (and hence
on TmM).

In general, the geodesic flow of a weak metric does not exist. A
simple example is given by the lack of a well-defined exponential map
for the usual L2 metric on Ds when ∂M is not empty. Nevertheless, the
seminal paper of Ebin-Marsden [13] proves that it is indeed possible to
define a weak right invariant L2 metric on Ds

µ for manifolds with bound-
ary, and that this weak metric induces a (weak) Levi-Civita covariant
derivative and geodesic flow. As we have described, the geodesic flow of
the invariant L2 metric on Ds

µ generates solutions to the Euler equations
of ideal hydrodynamics; we shall introduce a new weak invariant metric
on Ds

µ which, remarkably, also generates the geodesic flow that solves
the LAE-α equations.

Let Gs
µ denote either Ds

µ,D, Ds
µ,N , or Ds

µ,mix, and let ḡ denote the
induced inner-product on the fibers of [T ∗M⊗ T ∗M ]∗⊗2.

Proposition 2. Define the bilinear form 〈·, ·〉e on TeGs
µ as follows:

for X,Y ∈ TeGs
µ and α > 0, set

〈X,Y 〉e =
∫
M

(
gx(X(x), Y (x)) +

α2

2
ḡx(£Xg(x),£Y g(x))

)
µ(x)

=
∫
M

(
gx(X(x), Y (x)) + 2α2ḡx(Def(X)(x),Def(Y )(x)

)
µ(x)(6.1)

and define a bilinear form on each fiber of TGs
µ by right translation so

that for Xη, Yη ∈ TηGs
µ,

〈Xη, Yη〉η = 〈Xη ◦ η−1, Yη ◦ η−1〉e.
Then 〈·, ·〉, given on each fiber by 〈·, ·〉η, is a right invariant weak Rie-
mannian metric on Gs

µ.

Proof. That 〈·, ·〉 is C∞ on Gs
µ follows from Lemma 1. That 〈·, ·〉η

is a positive-definite symmetric bilinear form is proven as follows:

2Def u = £ug = ∇u+∇ut,
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so for any of the boundary conditions prescribed on elements of TeGs
µ,

we have that
0 ≤ 2Def∗Def u = −(�+ 2Ric)u,

so that integrating by parts (and noting that the boundary terms van-
ish), we may express 〈·, ·〉e in the equivalent form

〈X,Y 〉e =
∫
M
gx

(
(1−�r)X(x), Y (x)

)
µ(x).

Since (1 − �r) is a self-adjoint positive operator (on L2 vector fields
that are divergence-free), this shows that 〈·, ·〉 is a well defined C∞

weak invariant Riemannian metric on Gs
µ. q.e.d.

The metric 〈·, ·〉 is invariant under the action of Gs
µ, so the subgroups

of the volume preserving diffeomorphism group that we have constructed
play the role of both configuration space as well as symmetry group
(this is the massive particle relabeling symmetry of hydrodynamics).
In order to formally establish the equations of geodesic motion of the
invariant metric 〈·, ·〉 on Gs

µ we shall make use of the Euler-Poincaré
reduction theorem. The reader unfamiliar with this symmetry reduction
procedure is referred to Appendix A for a brief discussion.

Proposition 3. Let the pair (Gs
µ, 〈·, ·〉) denote either Ds

µ,D, Ds
µ,N ,

or Ds
µ,mix together with the right invariant Riemannian metric defined

in (6.1). Then, a curve η̇(t) ∈ TGs
µ is a geodesic of 〈·, ·〉 if and only if its

projection onto the fiber over the identity given by u(t) = η̇(t)◦η(t)−1 ∈
TeG

s
µ is a solution of

∂t(1− α2�r)u+∇u(1− α2�r)u− α2∇ut · �ru = −grad p,
div u = 0, u(0) = u0,

(6.2)

together with the boundary conditions

u = 0 on ∂M if Gs
µ = Ds

µ,D,

g(u, n) = 0,
(∇nu)tan + Sn(u) = 0

}
on ∂M if Gs

µ = Ds
µ,N ,

u = 0 on Γ1
g(u, n) = 0,

(∇nu)tan + Sn(u) = 0

}
on Γ2


 if Gs

µ = Ds
µ,mix,

where grad p is completely determined by the Stokes projector Pe.
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Proof. From part (d) of Proposition 6, the reduced Lagrangian is
given by 〈·, ·〉e, so that η̇(t) is a geodesic of 〈·, ·〉 on Gs

µ if u(t) = η̇(t) ◦
η(t)−1 is a fixed point of the reduced action function (on an arbitrary
interval (a, b)) s : TeGs

µ → R given by

s(u) =
1
2

∫ b

a
〈u(t), u(t)〉edt.

Let ε "→ ηε be a smooth curve in Gs
µ such that η0 = η and

(d/dε)ηε|ε=0 = δη ∈ TηGs
µ;

the map t "→ δη(t) is the variation of the curve η(t) on the interval (a, b)
and δη(a) = δη(b) = 0. The curve ε "→ ηε induces a curve ε "→ uε in
the single fiber TeGs

µ such that u0 = u and (d/dε)uε|ε=0 = δu. The
Euler-Poincaré reduction theorem gives the relation

δu = ∂t(δη ◦ η−1) + [δη ◦ η−1, u]e.

Computing the first variation of the action s, we have that

ds(u) · δu

=
∫ b

a

∫
M

(
g(u, δu) + 2α2ḡ(Def u,Def δu)

)
µdt

=
∫ b

a

[ ∫
M
g((1− α2�r)u, δu)µ

+ α2
∫
∂M

g((∇nu)tan + Sn(u), δu)µ∂

]
dt.

Since u and δu satisfy the boundary conditions prescribed to elements of
TeG

s
µ, the boundary term in the above equation vanishes, leaving only

ds(u) · δu =
∫ b

a

∫
M
g
(
(1− α2�r)u, ∂t(δη ◦ η−1) + [δη ◦ η−1, u]e

)
µdt.

Using the formula [x, y]e = ∇yx − ∇xy and integrating by parts, we
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obtain

ds(u) · δu

=
∫ b

a

∫
M
g
(
(1− α2�r)∂tu+∇u(1− α2�r)u

− α2∇ut · �ru, δη ◦ η−1
)
µdt

=
∫ b

a

〈
∂tu+ (1− α2L)−1[∇u(1− α2�r)u

− α2∇ut · �ru
]
, δη ◦ η−1〉

e
dt,

where again L = −2Def∗Def. Since right translation is an isomorphism,
δη ◦ η−1 ∈ TeGs

µ is arbitrary, so u is a fixed point of s iff

∂tu+ Pe

(
(1− α2L)−1[∇u(1− α2�)u− α2∇ut · �u]) = 0,

and this is precisely (6.2), as (1 − α2L)∂tu = (1 − α2�r)∂tu since
div∂tu = 0. q.e.d.

In the next section, we prove Theorem 2 by establishing existence
and uniqueness of geodesics of the invariant metric. The following sim-
ple lemma will play a fundamental role.

Lemma 3. For s > (n/2) + 1, let u, v ∈ TeDs
µ,D, and consider the

unbounded self-adjoint operator (1−L) on L2 with domain D(1−L) =
H2(TM) ∩H1

0 (TM). Then

(1− L)∇uv =∇u(1−�r)v − div[∇v · ∇ut +∇v · ∇u]
− grad Tr[∇u · ∇v] + (∇uRic) · v
− grad Ric(u, v)− Tr[∇(R(u, ·)v) +R(u, ·)∇v].

Proof. First notice that for s > (n/2) + 1, ∇uv is an Hs−1 vector
field on M whose trace vanishes on ∂M ; thus, it makes sense for the
operator (1− L) to act on ∇uv.

Recall that L = −(�+2Ric + grad div), so we begin by computing
the commutator of [−�,∇u]. Let {ei} be a local orthonormal frame, and
write the Hodge Laplacian � = −(dδ+δd) acting on 1-forms (identified
with vector fields) as � = ∇ei∇ei +Ric, so that

�∇uv = ∇ei∇ei(∇uv)− Ric(∇uv).
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Using the definition of the Riemannian curvature operator, we compute
that

∇ei∇ei∇uv =∇ei (R(u, ei)v) +∇ei(∇[ei,u]v) +∇ei∇u∇eiv

=∇u∇ei∇eiv +∇ei(∇[ei,u]v) +∇[ei,u]∇eiv

+∇ei (R(u, ei)v) +R(u, ei)∇eiv

+∇uRic(v)−∇u (Ric(v)) .

Expressing u as ujej , we see that [ei, u] = ei[uj ]ej ; hence, one may easily
verify that

∇[ei,u]∇eiv = div[∇v · ∇u],
∇ei

(∇[ei,u]v
)
= div[∇v · ∇ut],

so that

−�∇uv =−∇u�v − div
[∇v · ∇ut +∇v · ∇u]

− (∇uRic) · v − Tr [∇(R(u, ·)v) +R(u·)∇v] .

Using the fact that div∇uv = Tr(∇u·∇v)+Ric(u, v), and combining
terms involving the Ricci curvature gives the result. q.e.d.

We remark that if we embedM into its double M̃ , smoothly extend-
ing g, and let (1− L̂) denote the operator (1− 2Def∗Def) on M̃ , then it
makes sense for R ◦ (1 − L̂) ◦ E to formally act on an arbitrary vector
fields on M . Here, R denotes restriction and E denotes extension; see
the proof of Theorem 2 for a more detailed construction of such an op-
erator. It follows that the above lemma also holds for the groups Ds

µ,N

and Ds
µ,mix when the operator (1−L) acting vector fields which vanish

on ∂M is replaced by R ◦ (1− L̂) ◦ E.

7. Proof of Theorem 2

Let us denote the covariant material time derivative by (∇/dt). For
the remainder of this section we shall, for convenience, set α = 1. The
unbounded, self-adjoint operator (1− L) = (1− 2Def∗Def) on L2(TM)
has domain H2(TM) ∩H1

0 (TM).

Proposition 4. For s > (n/2) + 1, let η(t) be a curve in Ds
µ,D,

and set u(t) = η̇ ◦ η(t)−1. Then u is a solution of the initial-boundary
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value problem (1.3) with Dirichlet boundary conditions u = 0 on ∂M if
and only if

Pη ◦
[∇η̇
dt

+ [U(u) +R(u)] ◦ η
]
= 0,(7.1)

where

U(u) =(1− L)−1{div [∇u · ∇ut +∇u · ∇u−∇ut · ∇u]}
R(u) =(1− L)−1{Tr [∇ (R(u, ·)u) +R(u, ·)∇u+R(∇u, ·)u]

− (∇uRic) · u+∇ut · Ric(u)},
and Pη : TηDs

D → TηDs
µ,D is the Stokes projector.

Proof. We first set ν = 0. Covariantly differentiating η̇ = u◦η yields
∇η̇
dt

◦ η−1 = ∂tu+∇uu.

Using Lemma 3, we obtain that

(1− L)
(∇η̇
dt

◦ η−1
)
=(1−�r)∂tu+ (1− L)∇uu

=(1−�r)∂tu+∇u(1−�r)u
− div[∇u · ∇ut +∇u · ∇u]
− grad Tr(∇u · ∇u)− grad Ric(u, u)
− Tr [∇(R(u, ·)u) +R(u, ·)∇u] + (∇uRic) · u.

Now

∇ut · �u = div[∇ut · ∇u] + grad φ− TrR(∇u, ·)u−∇ut · Ric(u),

for some φ :M → R; hence,

(1−�r)∂tu+∇u(1−�r)u−∇ut · �u = −grad p

if and only if

∇η̇
dt

◦ η−1 + U(u) +R(u) = −(1− L)−1grad p̃,

for some p̃ : M → R, and by Proposition 1, this is precisely equation
(7.1). q.e.d.
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We can now proceed with the proof of the theorem. We first consider
the inviscid case first with the viscosity ν = 0.

By Proposition 4, the geodesic flow of the invariant metric 〈·, ·〉 is
the solution of

∇η̇
dt

= Sη(η̇) := (1− Pη)
∇η̇
dt

− Pη ◦ (Uη +Rη)η̇,

where S is the bundle map covering the identity given on each fiber by
Sη, and

Uη(Xη) = [U(Xη ◦η−1)]◦η, Rη(Xη) = [R(Xη ◦η−1)]◦η ∀ Xη ∈ TηGs
µ.

Now the second tangent bundle T 2Ds
µ,D is identified with Hs maps

Y : M → T 2M which cover some Xη ∈ TηDs
µ,D. The second-order

vector field η̈ :M → T 2M is just such a map, covering η̇ ∈ TηDs
µ,D.

Using a local representation, we may express the material time
derivative above as the system

η̇ = Vη,

η̈ =
dVη
dt

= B(η, η̇) = −Γη(η̇, η̇) + Sη(η̇),

η(0) = e,

Vη(0) = u0,

since∇η̇/dt = η̈+Γη(η̇, η̇), where Γη(η̇, η̇) is the Christoffel map, given in
a local coordinate chart onM by Γη(x)(η̇, η̇) = Γi

jk(x)(η̇◦η−1)j(η̇◦η−1)k.
B(η, η̇) is the principal part of the geodesic spray of 〈·, ·〉 on Ds

µ,D; hence,
with U denoting a local open neighborhood of η ∈ Ds

µ,D, to establish the
first assertion we shall prove that B maps U ×Hs

η(TM) into Hs
η(TM),

and that B is C∞. The result then follows by application of the fun-
damental theorem of ordinary differential equations on Hilbert mani-
folds (see [21], Theorem 2.6), and the existing time-reversal symmetry
t "→ −t.

As the Christoffel map is a C∞ map of U ×Hs
η(TM) into Hs

η(TM)
(since g is C∞ and Hs is a multiplicative algebra), we must show that
Sη is C∞. Since Pη : TηDs

D → TηDs
µ,D is C∞ by Proposition 1, to show

that Pη ◦ Uη : TηDs
µ,D → TηDs

µ,D is C∞ it suffices to prove that

(1− L)−1η ◦ divη ◦ [∇(η̇ ◦ η−1) ◦ η · ∇(η̇ ◦ η−1) ◦ η] : TηDs
µ,D → TηDs

D
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and

(1− L)−1η ◦gradη ◦Tr[∇(η̇ ◦η−1)◦η · ∇(η̇ ◦η−1)◦η] : TηDs
µ,D → TηDs

D

are C∞ bundle maps. But this follows from Lemmas 5 and 6 together
with Proposition 5. Since R and Ric are C∞ on M , a similar argument
shows that Pη ◦ Rη : TηDs

µ,D → TηDs
µ,D is C∞ as well.

We next prove that (1− Pη) ◦ (∇η̇/dt) is C∞. Since ∂tu ∈ TeDs
µ,D,

Pη ◦ ∇η̇
dt

= [∂tu+ Pe(∇uu)] ◦ η,

so that
(1− Pη) ◦ (∇η̇/dt) = −(1− L)−1grad p ◦ η,

where p depends on v and the pair (v, p) is a solution of the Stokes
problem

(1−�r)v + grad p = (1− L)∇uu
div v = 0

v = 0 on ∂M.

Since s > (n/2) + 1, (1− L)∇uu is in Hs−3(TM); the argument in
Step 3 of the proof of Theorem 2 then gives a unique solution (v, p) ∈
Vs−1
µ ×Hs−2(M)/R. If −1 < s−3 < 0, then the pair (v, p) is interpreted

as a weak solution.
A priori, (1 − L)−1grad p is only in Hs−1, but we shall show that,

in fact, (1− L)−1grad p is actually of class Hs. We have that

(1− L)−1grad p = (1− L)−1grad�−1div(1− L)(v −∇uu).

We embed M into its double M̃ , extending g to M̃ , and choose a C∞

extension of u to M̃ . For any vector bundle E over M , let

E : Hs(E ↓M) → Hs(E ↓ M̃), E(ξ)|M = ξ

denote the linear extension operator, and let R denote the corresponding
restriction operator. Let L̂ denote R◦L◦E; then it makes sense to form
the commutator of the operators div with L̂, and the operator

[div, L̂] : Hr(TM) → Hr−2(TM)
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is continuous. Notice that as L is a local operator, if w = 0 on M , then
L̂w = 0 by the property of the extension operator given above. Since
div v = 0,

−(1− L)−1grad�−1divLv = −(1− L)−1grad�−1[div, L̂]v,

which is in Hs(TM) ∩H1
0 (TM), since

−(1− L)−1grad�−1[div, L̂] : Hs−1(TM) ∩H1
0 (TM)

→ Hs(TM) ∩H1
0 (TM)

is a compact operator.
The identical argument shows that −(1− L)−1grad�−1[div, L̂]∇uu

is in Hs(TM)∩H1
0 (TM), since ∇uu is in Hs−1(TM)∩H1

0 (TM). Since
div∇uu = Tr(∇u · ∇u) + Ric(u, u) is an Hs−1 vector field on M , and
since

−(1− L)−1grad�−1L̂ : Hs−1(TM) → Hs(TM) ∩H1
0 (TM)

compactly, we see that

−(1− L)−1grad�−1divL∇uu

is in fact of classHs. Regularity up to the boundary immediately follows
from the fact that ∇uu = 0 on ∂M . Thus (1−L)−1grad p is in Hs, and
from Section 10, it follows that [(1− L)−1grad p] ◦ η is in Hs

η(TM).
The fact that u is the unique solution of (1.3) is the statement of

Proposition 4. That u is in C0(I,Vs
µ) ∩ C1(I,Vs−1

µ ) and depends con-
tinuously on the initial data u0 follows from the fact that the inversion
map (η "→ η−1) : Ds → Ds is only C0, but is C1 when considered as a
map from Ds into Ds−1. This proves the theorem.

8. Proof of Theorem 3

Let A = −P�r denote the Stokes operator. The operator A−1 is
continuous from H = {u ∈ L2(TM) | div u = 0, g(u, n) = 0 on ∂M}
into D(A) = H2(TM)∩V , where V = {u ∈ H1

0 (TM) | div u = 0}. The
embedding of V in H is compact; thus A−1 is a self-adjoint continuous
compact operator in H, so that there exist eigenvalues

0 < λ1 ≤ λ1, . . . , λj → ∞,
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and eigenfunctions wj ∈ D(A) for j ∈ N, such that

Awj = λjwj , j ∈ N.

Let Pj : H1
0 → Vj := span{w1, . . . , wj} denote the projection onto the

span of the first j eigenfunctions of A.
Our approximating equation will be

∂tuj + Pj

(∇ujuj + Uα(uj)
)
= 0, uj(0) = Pju0.(8.1)

By Lemma 3, it follows that〈
Pj

(∇ujuj + Uα(uj)
)
, uj

〉
= 0,

so that computing the 〈·, ·〉e inner-product of (8.1) with uj shows that
d

dt

(
|uj |20 + α2|A 1

2uj |20
)
≤ −ν

(
|A 1

2uj |20 + α2|Auj |20
)

≤ |Pju0|20.
Thus, it follows that (8.1) is solvable for all t ≥ 0 whenever ν ≥ 0, for
each j. Next, we estimate higher-order derivatives of uj , so that we can
pass to the limit as j → ∞. We only consider the range of s ∈ (n2 +1, 3)
for n = 2, 3.

Using the Moser or calculus inequalities

|f · g|s ≤ C (|f |s|g|L∞ + |f |L∞ |g|s) f, g ∈ Hs(M), s ≥ n

2
+ 1,

we obtain the basic estimate

d

dt
|uj(t)|2s ≤ C|uj |C1 |uj |2s − ν〈A s

2Auj , A
s
2uj〉0.

Since Auj ∈ D(A s
2 ) for s ∈ (n2 +1, 3), the definition of D(A

s
2 ), as given

by [39] for example, shows that

−ν〈A s
2Auj , A

s
2uj〉0 = −ν

∞∑
j=1

λs+1|uj |20 ≤ 0,

so that y′(t) ≤ a(t)y(t), where y(t) = |uj(t)|2s and a(t) = C|uj(t)|C1 .
Hence y(t) ≤ e

∫ t
0 a(s)dsy0. With this a priori bound, standard compact-

ness arguments (see, for example, the proof of Theorem 1.2 in Chapter
16 of [38]) allow us to pass to the limit as j → ∞ and obtain the ex-
istence of unique u ∈ L∞([0, T ), TeDs

µ,D), where T is independent of
ν > 0. This proves the theorem.
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9. Proof of Theorem 4

The existence of the unique Levi-Civita covariant derivative of the
right invariant metric 〈·, ·〉 on Ds

µ,D is an immediate consequence of the
smoothness of the geodesic flow of 〈·, ·〉 provided by Theorem 2. The
formulas for ∇̃ then follow from the fundamental theorem of Riemannian
geometry.

As to the properties of the curvature operator, right invariance of R̃
follows from the right invariance of ∇̃. Next we prove that R̃ is bounded
in Hs for s > n

2 + 2.
Extend Xη, Yη, Zη ∈ TηDs

µ,D to smooth right invariant vector fields
xr, yr, zr on Ds

µ,D and let x = xr(e), y = yr(e), and z = zr(e). Let

Mxy =(1− Pe) ◦ ∇xy + (1/2)Pe ◦ (U(x, y) +R(x, y)).

As the proof of Theorem 2 shows, M has the following property:

If x and y are Hs divergence-free vector fields on M , and s is
sufficiently large so that Hs−1(TM) forms a multiplicative alge-
bra, then there exists a positive constant c, such that |Mxy|s ≤
c|x|s|y|s.

Now, since ∇̃ is right invariant, we have that

R̃η(Xη, Yη)zrη =
(
∇̃yr∇̃xrzr

)
η
−

(
∇̃xr∇̃yrzr

)
η
+

(
∇̃[xr,yr]z

r
)
η

= [(∇y +My)(∇x +Mx)z] ◦ η
− [(∇x +Mx)(∇y +My)z] ◦ η
+

[
(∇[x,y] +M[x,y])z

] ◦ η
=

[
(∇y∇x −∇x∇y +∇[x,y])z

] ◦ η
+

[
(MyMx −MxMy +M[x,y])z

] ◦ η
+ [{∇x,My}z + {Mx,∇y}z] ◦ η,

where {·, ·} denotes the commutator of operators.
Since R(x, y)z ◦ η = [(DyDx − DxDy + D[x,y])z] ◦ η, this term is

clearly continuous in Hs, as R, the curvature of ∇ on M , is C∞.
That (x, y, z) "→ [(MyMx−MxMy+M[x,y])z]◦η is continuous in Hs

follows from the above property of M ; namely, [x, y] ∈ Hs−1(TM) and
for s > (n/2) + 2, Hs−2(TM) forms a multiplicative algebra so that

|M[x,y]z|s−1 ≤ c
∣∣[x, y]∣∣

s−1|z|s−1 ≤ c|x|s|y|s|z|s.
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Finally, continuity of (x, y, z) "→ [{∇x,My}z + {Mx,∇y}z] ◦ η in Hs

follows from the fact that the commutator terms are both order-zero
differential operators, together with the property of the multiplicative
algebra.

10. Smoothness of differential bundle maps over the identity

Let Gs denote either Ds
D, Ds

N , or Ds
mix. Suppose L : Hs(E) →

Hs−l(F ) is an order l differential operator between sections of two vector
bundles E and F over M . The purpose of this appendix is to carefully
explain why Rη ◦ L ◦ Rη−1 : Hs(M,E) ↓ Gs → Hs−l(M,F ) ↓ Gs is
smooth, even though the map η "→ η−1 : Gs −→ Gs is only C0. That
Rη ◦L◦Rη−1 is C∞ follows from the special structure of exact sequences
covering the identity map.

A sequence of vector bundle maps over the identity E
f→ F

g→ G is
exact at F if range(f) = ker(g); split fiber exact if ker(f), range(f)=ker(g),
and range(g) split in E,F , and G, respectively; and bundle exact if ad-
ditionally ker(f), range(f)=ker(g), and range(g) are subbundles. It is
standard ([2], Proposition 3.4.20) that a split fiber exact sequence is
bundle exact, so that if E, F , and G are Hilbert vector bundles, and
the sequence is exact at F , then ker(f), range(f)=ker(g), and range(g)
are subbundles.

Let M̃ denote the double of M , and set Hs(Λk) = Hs(Λk(M̃)), the
Hs class sections of Λk(M̃). Let Hs

η(Λ
k) denote the Hs class maps of

M̃ into Λk(M̃) which cover η.

Lemma 4. For s > (n/2) + 1, the map

(η "→ Tη) : Ds → [Hs(TM)∗ ⊗Hs−1
η (TM)] ↓ Ds

is C∞.

Proof. For each x ∈M , the metric g induces a natural inner-product,
say ḡ, on elements of T ∗

xM ⊗ Tη(x)M , and hence a weak L2 metric on
Hs(TM)∗⊗Hs−1

η (TM) given by
∫
M ḡ(·, ·)µ. There exists a unique Levi-

Civita covariant derivative associated with this weak L2 metric which we
denote by ∇. The covariant derivative ∇ is induced by the connector K
which is the functorial lift of the connector K uniquely associated with
the metric ḡ thru the fundamental theorem of Riemannian geometry
(see Theorem 9.1 in [13]).
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Let us denote the map η "→ Tη by s, i.e., s(η) = Tη. Continuity of
s is immediate. Thus, we shall show that s is of class C1. Let ε "→ ηε be
a smooth curve in Ds such that η0 = η and (d/dε)|ε=0ηε = Vη ∈ TηDs;
then, ∇Vηs(η) ∈ Hs(TM)∗ ⊗Hs−1

η (TM) is computed as

∇Vηs(η) =
d

dε

∣∣∣∣
ε=0

s(ηε) =
d

dε

∣∣∣∣
ε=0

Tηε = ∇Vη,

where ∇ denotes the unique Levi-Civita covariant derivative in the pull-
back bundle η∗(TM) associated to the metric g on M . Specifically, for
W ∈ TxM and Vη ∈ η∗(TM), ∇WVη(x) has the local expression

∇WVη(x) = TVη(x) · (Tη(x) ·W (x)) + Γη(x) (Vη(x), Tη(x) ·W (x)) ,

where Γη(x) denotes the Christoffel symbol of the metric g evaluated at
the point η(x) ∈M .

We compute the operator norm of

∇s(η) ∈ Hom(Hs
η(TM), Hs(TM)∗ ⊗Hs−1

η (TM))

which we shall denote by | · |op. We have that

|∇s(η)|op = sup
Vη∈Hs

η ,|Vη |s=1
|∇Vη|Hs(TM)∗⊗Hs−1

η (TM)

= sup
Vη∈Hs

η ,|Vη |s=1
sup

W∈Hs,|W |s=1
|∇WVη|s−1

≤ sup
Vη∈Hs

η ,|Vη |s=1
sup

W∈Hs,|W |s=1
|∇V |s−1 |W |s

< C(g, |Tη|s−1) <∞.

Computing the supremum of |∇s(η)|op in a neighborhood of η yields
the C1 topology; as the supremum is finite, we have established that s
is a C1 map.

To see that s is of class C2, we compute in a local chart

d

dε

∣∣∣∣
ε=0

∇Vηε =TVη(x) · ∇WVη(x)

+ TΓη(x) · Tη(x) (Vη(x), Tη(x) ·W (x))

+ Γη(x) (Vη(x),∇WVη(x)) .

Since Tη is in the multiplicative algebra Hs−1, and Γ ∈ C∞, the same
argument as above shows that s is C2. In particular, we see that the kth
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derivative of s is a rational combination of η, Tη,∇Vη and derivatives
of Γ, which combined with our argument showing that s is C1 together
with the fact that multiplication of Hs−1 maps is smooth, shows that s
is Ck for any integer k ≥ 0, and hence that s is C∞. q.e.d.

Define d : Hs
η(Λ

k) ↓ Gs → Hs−1
η (Λk+1) ↓ Gs to be the bundle map

covering the identity given by

dη(αη) = [d(αη ◦ η−1)] ◦ η ∀ αη ∈ Hs
η(Λ

k).

Similarly, define

δ : Hs
η(Λ

k) ↓ Gs → Hs−1
η (Λk−1) ↓ Gs

by δη = [δ(αη ◦ η−1] ◦ η. Lemma A.2 of [13] states that these bundle
maps are smooth. We give the following proof. First note that, as d is
an antiderivation satisfying

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ ∀ α ∈ Λk,

it suffices to give the proof for k = 1, in which case dα = ∇α − (∇α)t,
where ∇ is the Levi-Civita covariant derivative on T ∗M . Using the
chain rule, we see that dη = [∇ ◦ Tη−1 − (∇ ◦ Tη−1)t] ◦ η. Now Tη−1

is of class Hs−1 whenever η is an Hs class diffeomorphism, so the proof
of Lemma 4 shows that d is C∞. The fact that δ is C∞ follows from a
similar argument. We also have the following

Lemma 5. For s > (n/2) + 1, if Xη, Yη ∈ Hs
η(TM̃), then

divη ◦ [∇(Xη ◦ η−1) ◦ η · ∇(Yη ◦ η−1) ◦ η] ∈ Hs−2
η (TM̃).

Proof. We identify Xη, Yη ∈ Hs
η(TM̃) with αη, βη ∈ Hs

η(Λ
1), respec-

tively. It then suffices to prove that δη ◦(dη(αη) ·dη(βη)) is in Hs−2
η (Λ1),

and hence that dη(αη) · dη(βη) is in Hs−1
η (Λ1) (since δ is C∞). But this

follows since Hs−1 is a multiplicative algebra, and d is a C∞ bundle
map. q.e.d.

A similar argument yields

Lemma 6. For s > (n/2) + 1, if Xη, Yη ∈ Hs
η(TM̃), then

gradη ◦ Tr[∇(Xη ◦ η−1) ◦ η · ∇(Yη ◦ η−1) ◦ η] ∈ Hs−2
η (TM̃).

We shall need Lemma A.3 in [13] which we state as follows:
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Lemma 7. Let π : E → M be a vector bundle, let J be a fi-
nite dimensional subspace of Hs(E) consisting of C∞ elements, and let
P : Hs(E) → J be a continuous orthogonal projector onto J . Then
J = Jη ↓ Ds is a subbundle of Hr

η(M,E) ↓ Ds for r ≤ s, where
Jη = {f ∈ Hr(M,E)|f ∈ RηJ }. Furthermore, P : Hr

η ↓ Ds → J ,
given by Pη = Rη ◦ P ◦Rη−1 is a C∞ bundle map.

For the remainder of this appendix, A shall denote the bundle map
given by Aη(αη) = [A(αη ◦ η−1)] ◦ η for any linear operator A acting on
Hs(Λk). We shall use the notation W to denote the bundle Wη ↓ Ds for
any vector space W. For example, Hs(Λk) shall denote Hs

η(Λ
k) ↓ Ds.

Again, for r ≥ 1, let Vr denote the Hr vector fields on M which
satisfy the boundary conditions prescribed to elements of TeGs, and let
Vr
η = {u ◦ η : u ∈ Vr}.
Proposition 5. Let L = −2Def∗Def and define L by

Lη = TRη ◦ L ◦ TRη−1 .

Then, for s > (n/2) + 1, the bundle maps

(1− L) : Vs
η ↓ Gs → Hs−2

η (TM) ↓ Gs,

(1− L)−1 : Hs−2
η (TM) ↓ Gs → Vs

η ↓ Gs

are C∞.

Proof. By the L2 orthogonal Hodge decomposition,

Hs(Λk) = d(Hs+1(Λk−1))⊕ δ(Hs+1(Λk+1))⊕Hs,k
fields,

where Hs,k
fields = {α ∈ Hs(Λk) | dα = 0 and δα = 0} denotes the Har-

monic fields.
Hence,

[ker(d)]⊥ = δ
(
Hs+1(Λk+1)

)
and [ker(δ)]⊥ = d

(
Hs+1(Λk−1)

)
.

(10.1)

Let π denote the L2 orthogonal projection ofHs−1(Λk+1) ontoHs−1,k+1
fields ,

and let p = π|d(Hs(Λk)) denote the restriction of π to d(Hs(Λk)), so
p : d(Hs(Λk)) → Hs−1,k+1

fields . Since Hs−1,k+1
fields is a finite dimensional sub-

space of Hs−1(Λk+1) consisting of C∞ elements, Lemma 7 asserts that
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p is a smooth bundle map, and that im(p) and hence im(1 − p) is a
subbundle. We may thus form the following exact sequence

Hs
η(Λ

k) ↓ Ds d→ im(1− p) d→ Hs−2
η (Λk+2) ↓ Ds.

Since d is a C∞ bundle map, this shows that ker(d) and im(d) are
subbundles.2

Now let

p2 : δ(Hs(Λk)) ⊂ Hs−1(Λk−1) → Hs−1,k+1
fields

be the restricted orthogonal projector. Then by the same argument p2
is a smooth bundle map and im(1− p2) is a subbundle. Hence, we may
form the exact sequence

Hs
η(Λ

k) ↓ Ds δ→ im(1− p2)
δ→ Hs−2

η (Λk−2) ↓ Ds,

and thus obtain that ker(δ) and im(δ) are subbundles.
Using (10.1), we may restrict the domain and range to ensure that

the maps d : δ(Hs+1(Λk+1)) → d(Hs(Λk)) and δ : d(Hs+1(Λk−1)) →
δ(Hs(Λk)) are isomorphisms.

To find the inverse of d between these vector spaces, first let ω = δβ.
Then

dω = dδβ =⇒ δdω = δd(δβ) = (dδ + δd)(δβ) = −�δβ = −�ω;

therefore, ω = (−�)−1δdω = δ(−�)−1dω, so that δ(−�)−1 is the in-
verse of d. Similarly, we find that d(−�)−1 is the inverse of δ.

Next, let

p3 : kerδ = δ(Hs+1(Λk+1))⊕Hs,k
fields → Hs,k

fields

so
(1− p3) : kerδ → δ(Hs+1(Λk+1)).

Now p3 is a smooth bundle map by Lemma 7, and since ker(δ) is a
subbundle, we may form the exact sequence

ker(δ)
p3→ Hs,k

fields
0→ 0.

2That ker(d) and im(d) are subbundles is the statement of Lemma A.4 in [13]; we
have supplied a short proof simply to correct some typographical errors and provide
some needed clarification.
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Thus, the im(p3) is a subbundle from which it follows that

im(1− p3) = δ(Hs+1(Λk+1))

is a subbundle, so that it makes sense to define

d : δ(Hs+1(Λk+1)) → im(d)

as a smooth bundle isomorphism. A similar argument allows us to define

δ : d(Hs+1(Λk−1)) → im(δ)

as smooth bundle isomorphism.
We have shown that the bundle map δ(−�)−1 covering the iden-

tity is the inverse of d which is smooth; hence, by the inverse function
theorem, the bundle map δ(−�)−1 is also smooth. On the other hand,
d(−�)−1 is the inverse of δ, and by the same argument is smooth. Since
d and δ are C∞, then (−�)−1 is C∞ on im(d)⊕ im(δ), and hence −�
is C∞ on Hs,k

fields

⊥
again by the inverse function theorem.

Thus far, we have been working with sections of differential k-forms
over the boundaryless manifold M̃ . We shall now restrict our attention
to Hs class sections of Λ1(M). Letting n denote the outward-pointing
normal vector field on ∂M , for r ≥ 2, we define the closed subspace of
Hr(Λ1(M)) by

Hr
A = {α ∈ Hr(Λ(M)) | n α = 0, (∇nα

�)tan + Sn(α�) = 0 on Γ2,
and α = 0 on Γ1},

and for 2 > r ≥ 1, set

Hr
A = {α ∈ Hr(Λ(M)) | n α = 0 on Γ2, and α = 0 on Γ1}.

Note that the restriction operator to these subspaces is a continuous
linear map. L is a self-adjoint linear unbounded nonnegative operator
on L2 with D(L) = H2

A, and L : H2
A → im(d)⊕im(δ) is an isomorphism.

It follows that (1− L) : H2
A → H1(Λ(M)) is an isomorphism. Since

L = −(�+ 2Ric + dδ),

and since we have proven that �η, dη, δη, and Ricη are C∞ bundle
maps, it follows that
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(1− L) : (Hr
A)η ↓ Gs → Hr−2

η (TM) ↓ Gs

is a C∞ bundle isomorphism covering the identity, so that by the inverse
function theorem,

(1− L)−1 : Hr−2
η (TM) ↓ Gs → (Hr

A)η ↓ Gs

is C∞ as well.
This proves the theorem in the case that Gs = Ds

mix. In the case
that Gs = Ds

N , simply set Γ1 = ∅, and for Gs = Ds
D, set Γ2 = ∅ in the

definition of Hr
A. q.e.d.
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Appendix A. The Euler-Poincaré variational principle

The reduction of geodesic flow on Ds
µ (or any of its subgroups) onto

the single fiber of TDs
µ over the identity e is an example of the Euler-

Poincaré theorem (see [22]) which we shall now state in the setting of
a topological group G which is a smooth manifold and admits smooth
right translation. For any element η of the group, we shall denote by
TRη the right translation map on TG, so that for example, when G is
either Ds

µ,D, Ds
µ,N , or Ds

µ,mix, then TRη−1 η̇ := η̇ ◦ η−1.
Proposition 6 (Euler-Poincaré). Let G be a topological group

which admits smooth manifold structure with smooth right translation,
and let L : TG → R be a right invariant Lagrangian. Let g denote the
fiber TeG, and let l : g → R be the restriction of L to g. For a curve
η(t) in G, let u(t) = TRη(t)−1 η̇(t). Then the following are equivalent:

a the curve η(t) satisfies the Euler-Lagrange equations on G;

b the curve η(t) is an extremum of the action function

S(η) =
∫
L(η(t), η̇(t))dt,

for variations δη with fixed endpoints;
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c the curve u(t) solves the Euler-Poincaré equations

d

dt

δl

δu
= −ad∗u

δl

δu
,

where the coadjoint action ad∗u is defined by

〈ad∗uv, w〉 = 〈v, [u,w]R〉,

for u, v, w in g, and where 〈·, ·〉 is the metric on g and [·, ·]R is the
right bracket;

d the curve u(t) is an extremum of the reduced action function

s(u) =
∫
l(u(t))dt,

for variations of the form

δu = ẇ + [w, u]R,(A.1)

where w = TRη−1δη vanishes at the endpoints.

See Chapter 13 in [22] for a detailed development of the theory of La-
grangian reduction as well as a proof of the Euler-Poincaré theorem.
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