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Abstract

This paper presents a variational and multisymplectic formulation of both compressible and
incompressible models of continuum mechanics on general Riemannian manifolds. A general for-
malism is developed for non-relativistic first-order multisymplectic field theories with constraints,
such as the incompressibility constraint. The results obtained in this paper set the stage for multisym-
plectic reduction and for the further development of Veselov-type multisymplectic discretizations
and numerical algorithms. The latter will be the subject of a companion paper. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to give a variational multisymplectic formulation of contin-
uum mechanics from a point of view that will facilitate the development of a corresponding
discrete theory, as in the PDE Veselov formulation due to Marsden et al. [20]. This discrete
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theory and its relation to finite element methods will be the subject of a companion paper
[21].

In this paper, we restrict our attention to non-relativistic theories, but on general Rie-
mannian manifolds. The relativistic case was considered in [13], where the authors take an
alternative approach of inverse fields, effectively exchanging the base and fiber spaces, see
also [8-10].7

Two main applications of our theory are considered — fluid dynamics and elasticity —
each specified by aparticular choice of the Lagrangian density. The resulting Euler—Lagrange
equations can be written in a well-known form by introducing the pressure function P and
the Piola—Kirchhoff stress tensor P (Egs. (2.18) and (2.21), respectively).

We only consider ideal, that is non-viscous, fluid dynamics in this paper, both com-
pressible and incompressible cases. In the compressible case, we work out the details for
barotropic fluids for which the stored energy is a function of the density. These results can
be trivially extended to isentropic (compressible) fluids, when the stored energy depends
also on the entropy. Both the density and the entropy are assumed to be some given func-
tions in material representation, so that our formalism naturally includes inhomogeneous
ideal fluids. However, in our discussion of symmetries and corresponding conservation
laws considered in Section 5, we restrict ourselves, for simplicity only, to fluids that are
homogeneous in the reference configuration. We elaborate on this point below.

For the theory of elasticity we restrict our attention to hyperelastic materials, that is
to materials whose constitutive law is derived from a stored energy function. Similarly,
we assume that the material density is some given function which describes a possibly
heterogeneous hyperelastic material.

A general formalism for treating constrained multisymplectic theories is developed in
Section 3. Often, constraints that are treated in the multisymplectic context are dynamically
invariant as with the constraint div E = 0 in electromagnetism (see, e.g., [9]), or divE = p
for electromagnetism interacting with charged matter. Our main example of a constraint in
this paper is the incompressibility constraint in fluids, which, when viewed in the standard
Eulerian, or spatial view of fluid mechanics is often considered to be a non-local constraint
(because the pressure is determined by an elliptic equation and, correspondingly, the sound
speed is infinite), so it is interesting how it is handled in the multisymplectic context, which
is, by nature, a local formalism.

In the current work, we restrict our attention to first-order theories, in which both the
Lagrangian and the constraints depend only on first derivatives of the fields. Moreover, we
assume that time derivatives do not enter the constraints, which corresponds, using a chosen
space—time splitting, to holonomic constraints on the corresponding infinite-dimensional
configuration manifold in material representation. We briefly discuss the issues related to

5 There are a number of reasons, both functional analytic and geometric for motivating a formulation in terms of
direct particle placement fields rather than on inverse fields. For example, in the infinite-dimensional context, this is
the setting in which one has the deeper geometric and analytical properties of the Euler equations and related field
theories as in [1,7,22,26]. Moreover, the relativistic approach adopted in [13] cannot describe an incompressible
fluid or elasticity because the notion of incompressibility is not defined in the relativistic context.
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extending this approach to non-holonomic constraints and to space—time covariant field
theories in the last section.

Symmetries and corresponding momentum maps and conservation theorems are con-
sidered in a separate section (Section 5) since they are very different for different models
of a continuous media, e.g. homogeneous fluid dynamics has a huge symmetry, namely
the particle relabeling symmetry, while standard elasticity (usually assumed to be inho-
mogeneous) has much smaller symmetry groups, such as rotations and translations in the
Euclidean case. We emphasize that although the rest of the paper describes general het-
erogeneous continuous media, the results of Section 5.1 only apply to fluid dynamics that
is homogeneous in the reference configuration (e.g., the fluid starts out, but need not re-
main, homogeneous), where the symmetry group is the full group of volume-preserving
diffeomorphisms D,,. However, these results can be generalized to inhomogeneous fluids,
in which case the symmetry group is a subgroup DZ C D,, that preserves the level sets
of the material density for barotropic fluids, or a subgroup Dﬁ’em C D, that preserves
the level sets of the material density and entropy for isentropic fluids. This puts us in the
realm of a multisymplectic version of the Euler—Poincaré theory — one needs to introduce
additional advected quantities as basic fields to handle this situation (see the discussion
on symmetry and reduction in Section 6). We remark also that all continuum mechanics
models should satisfy material frame indifference principle, which, as is well known, can
be readily accomplished by requiring the stored energy function to be a function of the
Cauchy—Green tensor alone (see, e.g. [17,19]).

We finally remark on the notation. The reader is probably aware that typical fluids and
elasticity literatures adhere to completely different sets of notations, which both differ
substantially from those adopted in multisymplectic theories. In our notations, we follow
[9]. The companion paper [21] uses primarily notation from Marsden and Hughes [19] and
concentrates on models of continuum mechanics in Euclidean spaces and their variational
discretizations.

2. Compressible continuum mechanics

To describe the multisymplectic framework of continuum mechanics, we must first spec-
ify the covariant configuration and phase spaces. Once we obtain a better understanding of
the geometry of these manifolds we can consider the dynamics determined by a particular
covariant Lagrangian.

2.1. Configuration and phase spaces

2.1.1. The jet bundle

We shall set up a formalism in which a continuous medium is described using sections
of a fiber bundle Y over X; here X is the base manifold and Y consists of fibers Y, at each
point x € X. Sections of the bundle wxy : Y — X represent configurations, e.g. particle
placement fields or deformations.
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Let (B, G) be a smooth n-dimensional compact oriented Riemannian manifold with a
smooth boundary and let (M, g) be a smooth N-dimensional compact oriented Riemannian
manifold. For the non-relativistic case, the base manifold can be chosen to be a space—time
manifold represented by the product X = B x R of the manifold B together with time;
(x,1) € X. Let us set x° = 7, so that x* = (x',x% = (x',7), with u = 0,...,n,
i = 1,...,n, denote coordinates on the (n + 1)-dimensional manifold X. Construct a
trivial bundle Y over X with M being a fiber at each point; ie., Y = X x M > (x,¢t,y)
with y € M —the fiber coordinate. This bundle,

nxy Y — X, (x,t,y) = (x,1)

with mxy being the projection on the first factor, is the covariant configuration manifold for
our theory. Let C = C®°(Y) be the set of smooth sections of Y. Then, a section ¢ of C
represents a time dependent configuration.

Let y¢,i = 1,..., N denote fiber coordinates so that a section ¢ has a coordinate
representation ¢(x) = (x*, $%(x)) = (x*, y?). The first jet bundle J'Y is the affine
bundle over Y whose fiber above y € Y, consists of those linear maps y : Ty X — T,Y
satisfying Tmxy o y = Id7, x. Coordinates on J'Y are denoted y = (x*, y*,v%). For a
section ¢, its tangent map at x € X, denoted T ¢, is an element of J 1 Y4 (x)- Thus, the map
x > Ty is alocal section of J!Y regarded as a bundle over X. This section is denoted j !¢
and is called the first jet extension of ¢. In coordinates, j!¢ is given by (x*, ¢%(x), 0,.0%),
where dy¢? = 9,¢“ and 0 ¢p? = 9,4 P“.

Notice that we have introduced fwo different Riemannian structures on the configuration
bundle. The internal metric on the spatial part B of the base manifold X is denoted by G
and the fiber, or field, metric on M is denoted by g. There are two main cases, which we
consider in this paper:

1. fluid dynamics on a fixed background with fixed boundaries, when B and M are the
same and the fiber metric g coincides with the base metric G; a special case of this is
fluid dynamics on a region in Euclidean space;

2. elasticity on a fixed background, when the metric spaces (B, G) and (M, g) are essen-
tially different.

Both approaches result in background theories. The case of relativistic fluid and elasticity
was considered by Kijowski (see, e.g. [13]).
Define the following function on the first jet bundle:

det[g(y)] =,
J(x,1,y,v) = det[v] m :J'Y > R 2.1
We shall see later that its pull-back by a section ¢ has the interpretation of the Jacobian of
the linear transformation D¢y .
A very important remark here is that even though in fluid dynamics metrics g and G
coincide, i.e. on each fiber Y, g is a copy of G, there is no cancellation because the
metric tensors are evaluated at different points. For instance, in (2.1) g(y) does not coincide
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with G(x) unless y = x or both metrics are constant. Hence, only for fluid dynamics in
Euclidean spaces, can one trivially raise and lower indices and drop all metric determinants
and derivatives in the expressions in the next sections.

2.1.2. The dual jet bundle

Recall that the dual jet bundle J ' Y* is an affine bundle over ¥ whose fiber at y € Y, is the
set of affine maps from J!'Y to A" X, where A”*!X denotes the bundle of (n 4 1)-forms
on X. A smooth section of J!Y* is an affine bundle map of J'¥ to A"T!X covering myy.
Fiber coordinates on J!Y* are (11, p,*), which correspond to the affine map given in
coordinates by v} = (IT + pg"vf)) d"tly.

To define canonical forms on J'Y *, another description of the dual bundle is convenient.
Let A = A™*1Y denote the bundle of (n + 1)-forms on Y, with fiber over y € Y denoted
by A, and with projection 7y 4 : A — Y. Let Z be its “vertically invariant” subbundle
whose fiber is given by

Zy={ze AylvJwlz=0 forall v,w e V,Y},

where V,Y = {v € T, Y|Trmxy - v = 0} is a vertical subbundle. Elements of Z can be
written uniquely as

z=Md""x + p, dy? Ad"xy,

where d"x;, = 9, d"tlx, so that (x*, y4, I, p,*) give coordinates on Z.
Equating the coordinates (x*, y¢, I1, p,**) of Z and of J ly* defines a vector bundle
isomorphism Z <> J'Y*. This isomorphism can also be defined intrinsically (see [9]).
Define the canonical (n + 1)-form ®4 on A by ®4(z) = (wy ,2), where z € A. The
canonical (n+2)-formis givenby 24 = —d®4.1fi sz : Z — A denotes the inclusion, the
corresponding canonical forms on Z are given by & = i% 04 and 2 = —dO® =i’ ,84.
In coordinates they have the following representation:

O = patdy? Ad"x, + ITd"x, Q2 =dy" Adp,* Ad"x, —dIT Ad"F iy

2.1.3. Ideal fluid

We now recall the classical material and spatial descriptions of ideal (i.e., non-viscous)
fluids moving in a fixed region, i.e., with fixed boundary conditions. We set B = M and
call it the reference fluid container. A fluid flow is given by a family of diffeomorphisms
n: : M — M with no = Id, where n; (M) is the fluid configuration at some later time ¢. Let
Xx € M denote the original position of a fluid particle, then y = n;(x) € M is its position
at time ¢; x and y are called material and spatial points, respectively. The material velocity
is defined by V(x, ) = (3/9t)n;(x). The same velocity viewed as a function of (y, ) is
called the spatial velocity. It is denoted by u;i.e.,u(y,t) = V(x(y), t), where x = nfl ),
so that u = VOTlfl =ﬁonf1.

Thus, in the bundle picture above, the spatial part of the base manifold B C X has the in-
terpretation of the reference configuration, while an extra dimension of X corresponds to the
time evolution. All later configurations of the fluid are captured by a section ¢ of the bundle
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Y, which gets the interpretation of a particle placement field. Pointwise this implies that x
in the base point (x, t) represents the material point, while y € Y(y ) represents the spatial
point and corresponds to a position y = ¢ (x, t) = n,(x) of the fluid particle x at time .

2.1.4. Elasticity

For the theory of elasticity (as well as for fluids with a free boundary), the base and fiber
spaces are generally different; (B, G) is traditionally called the reference configuration,
while (M, g) denotes the ambient space. For classical two- or three-dimensional elasticity,
M and B have the same dimension, while for rods and shells models the dimension of the
reference configuration B is less than that of the ambient space.

For a fixed time ¢, sections of the bundle Y, denoted by ¢, play the role of deformations;
they map reference configuration B into spatial configuration M. Upon restriction to the
space of first jets, the fiber coordinates v of y = (x, y, v) € J!Y become partial derivatives
d¢®/dx*; they consist of the time derivative of the deformation ¢ and the deformation gra-
dient, Fi" = d¢p?/ 9x'. The first jetof a section ¢ then has the following local representation
Jlo = ((x,0),¢(x, 1), p(x, 1), F(x, 1)) : X — JIY.

Using the map ¢, one can pull-back and push-forward metrics on the base and fiber
manifolds. In particular, a pull-back of the field metric g on M to B C X defines the Green
deformation tensor (also called the right Cauchy—Green tensor) C by C” = ¢/ (g), while
a push-forward of the base metric G on B C X to M defines the inverse of the Finger
deformation tensor b (also called the left Cauchy—Green tensor): ¢ = b~ = (¢)«(G). In
coordinates,

Cij(x. 1) = g FAFP(x. 1), cap(y) = Gy(F ™)L (F~)H (). (22)

where F~! is thought of as a function of y. We remark that C is defined whether or not the
deformation is regular, while b and c rely on the regularity of ¢,;. Another important remark
is that operations flat b and sharp f are taken with respect to the corresponding metrics on
the space, so that, e.g. (¢7g)" # ¢7*(g%).

Notice that J restricted to the first jets of sections is the Jacobian of D¢, i.e., the
determinant of the linear transformation D¢y ; it is given in coordinates by

. detg]
J(jl¢) = det[F] | —2= ‘X —> R
(j ¢) = det[F] det[G](] ¢$): X —
Itis a scalar function of x and ¢, invariant under coordinate transformations. Notice, also that
J(x,t) > 0 for regular deformations with ¢ (x, 0) = x, F(x, 0) = Id because J (x,0) = 1.

2.2. Lagrangian dynamics

To obtain the Euler—Lagrange equations for a particular model of a continuous medium,
one needs to specify a Lagrangian density £. Naturally, it should contain terms correspond-
ing to the kinetic energy and to the potential energy of the medium. Such terms depend on
material properties such as mass density p as well as on the constitutive relation. The latter
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is determined by the form of the potential energy of the material. We remark that such an
approach excludes from our consideration non-hyperelastic materials whose constitutive
laws cannot be obtained from a potential energy function.

2.2.1. Lagrangian density

Let the mass density p : B — R be given for a particular model of continuum mechanics.
The Lagrangian density £: J'Y — A"*!X for a multisymplectic model of continuum
mechanics is a smooth bundle map

Ly) =Ly)d"tx=K-P= %\/det[G]p(x)gabvgvg d"tlx
—/det[Glp(x)W(x, G(x), g(y), v?) d"tly, (2.3)

where y € J'Y and W is the stored energy function. The first term in (2.3) corresponds
to the kinetic energy of the matter when restricted to first jet extensions as v becomes the
time derivative d,¢“ of the section ¢. The second term reflects the potential energy and
depends on the spatial derivatives of the fields (upon restriction to first jet extensions), i.e.
on the deformation gradient F.

A choice of the stored energy function specifies a particular model of a continuous
medium. While different general functional forms distinguish various broad classes of
materials (elastic, fluid, etc.), the specific functional forms determine specific materials.
Typically, for elasticity, W depends on the field’s partial derivatives through the (Green)
deformation tensor C, while for Newtonian fluid dynamics, W is only a function of the
Jacobian J (2.1).

2.2.2. Legendpre transformations
The Lagrangian density (2.3) determines the Legendre transformation FL : J'Y —
J'Y*. The conjugate momenta are given by the following expressions:

oL : oL oW
pao = = pgabvg,/det[G], paj = = —p v det[G], 24)

a a a
vy avj ij

av-

oL 1 d
nm=1L- vZ: |:——gabv(“)vg—W+ =
J

ave 2 - vj } pV/dellGlL
Define the energy density e by

e = p"vy — L orequivalently ed"™'x = K+P, (2.5)
then

I = —pajv;f —/det[G]e.

2.2.3. The Cartan form
Using the Legendre transformation (2.4), we can pull-back the canonical (n + 1)-
form from the dual bundle. The resulting form on J!'Y is called the Cartan form and is
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given by
h\/; a n BW\/; a n
Or = pgapvyy/ det[G]dy* Ad"xo _pav‘f det[G]dy“ Ad"x;
J
1 ow
+ |:—§gahv8vé’ - W+ " vj:| py/det[G1d"Hx. (2.6)
J

We set 2, = —dO.

Theorem 2.1 provides a nicer method for obtaining the Cartan form via the Calculus of
Variations and remains entirely on the Lagrangian bundle J'Y. Moreover, the variational
approach is essential for the Veselov-type discretization of our multisymplectic theory. We
present it here for the benefit of the reader, but remark that it is not essential for our current
exposition and can be omitted on a first reading (see [20] for details).

2.2.4. Variational approach

To make the variational derivation of the equations of motion rigorous as well as that of
the geometric objects, such as the multisymplectic form and the Noether current, we need
to introduce some new notations (see [20]). These are generalizations of the notations used
in the rest of the paper. They only apply to the variational derivation described here and later
in Section 5.1 and do not influence the formalism and results in the rest of the paper. The
reason for such generalizations is very important yet subtle: one should allow for arbitrary
and not only vertical variations of the sections.

Vertical variations are confined to the vertical subbundle VY C 7Y, V,Y = {V €
T,Y|Trxy - V = 0}; this allows only for fiber-preserving variations, i.e., if ¢(X) € Y,
and q~5 1S a new section, then d; € Y,. In general, one should allow for arbitrary variations
in TY, when ¢ € Y; for some ¥ # x. Introducing a splitting of the tangent bundle into a
vertical and a horizontal parts, T, Y = V)Y & H,Y (H,Y is not uniquely defined), one can
decompose a general variation into a vertical and horizontal components, respectively.

Explicit calculations show (see [21]) that while both vertical and arbitrary variations
result in the same Euler-Lagrange equations, the Cartan form obtained from the vertical
variations only is missing one term (corresponding to the d**!x form on X); the horizontal
variations account precisely for this extra term and make the Cartan form complete.

One can account for general variations either by introducing new “tilted sections”, or by
introducing some true new sections that compensate for the horizontal variation. The later
can be implemented in the following way. Let U C X be a smooth manifold with smooth
closed boundary. Define the set of smooth maps

C={p:U — Y|nxyop:U — X isanembedding}.

For each ¢ € C, set px = mxy o ¢ and Uy = mxy o ¢(U), so that px : U — Uy is a
diffeomorphism and ¢ o go}l is a section of Y. The tangent space to the manifold C at a
point ¢ is the set T,C defined by

(Ve C®WX,TY)|nyryoV =¢ and TrxyoV = Vx, avectorfieldon X}.
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Arbitrary (i.e., including both vertical and horizontal) variations of sections of ¥ can be
induced by a family of maps ¢ defined through the action of some Lie group. Let G be a Lie
group of mwxy bundle automorphisms ny covering diffeomorphisms nx. Define the action
of G on C by composition: ny - ¢ = ny o ¢. Hence, while ¢ o %—(1 is a section of 7wy y,
Ny - ¢ induces a section ny o (¢ - cp;I) o n;(l of Ty wy),Y-

A one parameter family of variations can be obtain in the following way. Let & = nj, be
an arbitrary smooth path in G with 77(;)/ =e,andlet V e T,C be given by

Define the action function
S() =f LG 9oy :C—R,
Ux
and call ¢ a critical point (extremum) of S if

d
()-V de

S(ny -¢) = 0.
e=0
The Euler—Lagrange equations and the Cartan form can be obtained by analyzing this
condition. We summarize the results in the following theorem from Marsden et al. [20]
which illustrates the application of the variational principle to multisymplectic field theory.

Theorem 2.1. Given a smooth Lagrangian density £ : J'Y — A"TL(X), there exist a
unique smooth section Dgp L € C®(Y", A"T(X) ® T*Y) (Y” being the space of second
jets of sections) and a unique differential form Oy € A" (J'Y) such that foranyV e T4C,
and any open subset Uy such that Ux N X = 0,

dS(p) -V = DEL£<j2<wo¢;1>>.v+/ iNgoex) it desl. @)
Ux aUx
Furthermore,
DeL L2 (g ooy -V = j 9oy ) i'OWV)I2.] in Ux. (2.8)

In coordinates, the action of the Euler-Lagrange derivative Dgr L on Y" is given by

0 ('1(§0 <P_x1))—
@]
aya J

DeLL(j(p 0 o)) = [ Glwopyh)

Bxﬂavﬁ
2
dybova
2

(Gl @oex - (@oexh?,

—urpor U @owx (o so;l){’,w] dy? A d
v 0

(2.9)
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while the form © p matches the definition of the Cartan form obtained via Legendre trans-
formation and has the coordinate expression

aL aL
Op = S dy* Ad"x, + (L e uz) d" . (2.10)
® ®

Corollary 2.1. The (n + 1)-form ©p defined by the variational principle satisfies the
relationship

LG)=3"0r
for all holonomic sections 3 € C*®(my jiy).

Another important general theorem, which we quote from Marsden et al. [20], is the
so-called multisymplectic form formula

Theorem 2.2. If ¢ is a solution of the Euler—Lagrange equation (2.9), then
/ ('@ opg ) [jIVJjIWJ.Qc] —0 @.11)
L 105%

for any V, W which solve the first variation equations of the Euler—Lagrange equations,
i.e. any tangent vectors to the space of solutions of (2.9).

This result is the multisymplectic analog of the fact that the time r map of a mechanical
system consists of canonical transformations, see [20] for the proofs.

Finally, we remark that in order to obtain vertical variations we can require ¢x (and,
hence, go;l) to be the identity map on X. Then, ¢ = ¢ o (p}l becomes a true section of the
bundle Y.

2.2.5. Euler-Lagrange equations
Treating (J'Y, £27) as a multisymplectic manifold, the Euler-Lagrange equations can
be derived from the following condition on a section ¢ of the bundle Y:

Gle)y*ovder) =0

for any vector field W on J ly (see [9] for the proof). This translates to the following
familiar expression in coordinates:

L gy — 2 (2L gy} =0 (2.12)
By“](p dxH 8va]¢ 7 '

which is equivalent to Eq. (2.9).
Substituting the Lagrangian density (2.3) into Eq. (2.12), we obtain the following Euler—
Lagrange equation for a continuous medium:

ow oW 0gpe .
; u<jl¢>\/det[G]) = —p 8 iy,
k

( ' )b 1 ( Y
ab Dt ./det[G] axk v 88176 0
(2.13)
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where
. b . b
Dg¢ = ¢ —‘r)/a(lsb(bc
Dt at be

is the covariant time derivative, which corresponds to material acceleration, with

¢ 1 ca(08a | 98ba  98ab
Yab = 38 ayb " aye  ayd )°

being the Christoffel symbols associated with the ‘field’ metric g. We remark that all terms
in this equation are functions of x and ¢ and hence have the interpretation of material
quantities.

Eq. (2.13) is a PDE to be solved for a section ¢ (x, t) for a given type of potential energy
W. As the gravity here is treated parametrically, the term on the right-hand side of (2.13) can
be thought of as a derivative with respect to a parameter, and we can define a multisymplectic
analog of the Cauchy stress tensor o as follows:

a“b=2—paw(j1¢):x—>R, (2.14)
J 0gap
where J = det[F]./det[g]/det[G] is the Jacobian. Eq. (2.14) is known in the elasticity
literature as the Doyle—Ericksen formula (recall that our p corresponds to pref, so that the
Jacobian J in the denominator disappears).
Another important remark is that the balance of moment of momentum

g =0

follows from definition (2.14) and the symmetry of the metric tensor g.
Finally, in the case of Euclidean manifolds with constant metrics g and G, Eq. (2.13)
simplifies to

8%, ] (
P = Y

a2 oxk

oW
3 a(jlfb)). (2.15)
U

2.2.6. Barotropic fluid

For standard models of barotropic fluids, the potential energy of a fluid depends only
on the Jacobian of the fluid’s “deformation”, so that W = W (J(g, G, v)). For a general
inhomogeneous barotropic fluid, the material density is a given function p(x). In material
representation, this formalism also includes the case of isentropic fluids in which there is a
possible dependence on entropy. Since, in that case, entropy is advected, this dependency
in the material representation is subsumed by the dependency of the stored energy function
on the deformation gradient. ©

6 In spatial representation, of course one has to introduce the entropy as an independent variable, but this naturally
happens viareduction. See [11] for related results from the point of view of the Euler—Poincaré theory with advected
quantities.
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The Legendre transformation can be thought of as defining the pressure function P.
Notice that

Pa = —pﬂwet[c] = —pﬂﬂwetm] = —pﬂf(v”)a‘\/det[c;],

vy aJ ovf aJ
and define the pressure function to be
P(¢,x) = —p(x)W(J $(x)):CxX —>R (2.16)

Then for a given section ¢, P(¢) : X — R has the interpretation of the material pressure
which is a function of the material density. In this case, the Cauchy stress tensor defined by
(2.14) is proportional to the metric with the coefficient being minus the pressure itself:

= (') = —2—Pflg“"<j‘¢> =—Px)g(y(x))
J 3J dgaw J 2 ’

We remark that this can be a defining equation for the pressure from which (2.16) would
follow. With this notation the left-hand side of the Euler—Lagrange equations (2.13) becomes

N -1\ k
Dy I 3
pg“”( D1 ) "~ /det[G] axF 43]((5) )a Vv det[G]

B D¢\’ ap ( (09 N\ pdet(9g/0x) a_¢>‘ “ detle]
=r8ar \ ) g <8x a+ JaetG] ax) ] ot

. b 1\ k
D,é P 1) P, 3gh
D+ D) = 57 — (= — Jghe 5% 2.17
+(@ + dD pgab(Dt> +oF <<8x> ) +3J8 Bya (2.17)
a

where terms (I) and (II) arise from differentiating det[v] and (v~ ,* and cancel each other.
The right-hand side of (2.13) is given by

ow ngc W aJ agbc PJ bcagbc

TP 0y 0T gpe 0y 278 Ty
Notice that the last term in (2.17) and in the equation above coincide, so that the Euler—
Lagrange equations for the barotropic fluid have the following form:

. b 1\ K
Dg¢ apP ¢
=P =g (=2 , 2.18
pgab(Dt ) ™ <<8x) ) (2.18)
a
where the pressure depends on the section ¢ and the density p and is defined by (2.16).
Both the metric g, and the Christoffel symbols %, in the covariant derivative are evaluated
aty = ¢(x,t).
One can re-write (2.18) introducing the spatial density psp = p/J and defining the spatial
pressure p(y) by the relation P(x) = p(y(x)) = p(¢;(x)). This yields
De

Vv 1
_()C,t)z__ rad O¢(~x’t)a
o oy 4P
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where V = ¢. Compare this to the equations for incompressible ideal hydrodynamics in
Section 4.

2.2.7. Elasticity

The Legendre transformation defines the first Piola—Kirchhoff stress tensor P,. It is
given, up to the multiple of —1/+/det[G] by the matrix of the partial derivatives of the
Lagrangian with respect to the deformation gradient:

aw

—(j'p(x)), (2.19)

Pa'(p, x) = P07
Y;

and for a given section ¢, Pai is a stress tensor defined on X.

Notice that the first Piola—Kirchhoff stress tensor is proportional to the spatial momenta,
P, = —p,' /+/det[G]. The coefficient +/det[G] arises from the difference in the volume
forms used in standard and multisymplectic elasticity. In the former, the Lagrangian density
is integrated over a space area using the volume form ug = J/det[G] d"x associated with
the metric G, while in the latter, the integration is done over the space—time using d"*'x =
dr A d"x. We also remark that though traditionally the first Piola—Kirchhoff stress tensor
is normally taken with both indices up, our choice is more natural in the sense that it arise
from the Lagrange transformation (2.19) which relates P, with the spatial momenta.

Using definitions (2.14) and (2.19), we can re-write Eq. (2.13) in the following form:

ng’ ’ i b j c dc
P8ab (D_t> = Pa|; + Vac(Pp’ Fj — Jgpao ™), (2.20)

where we have introduced a covariant divergence according to

]
af; = DIVP = % +Pu’ T — Pyl v Ff.
Here I“J;{ are the Christoffel symbols corresponding to the base metric G on B C X (see,
e.g., [19] for an exposition on covariant derivatives of two-point tensors).

We emphasize that in (2.20) there is no a priori relationship between the first Piola—
Kirchhoff stress tensor and the Cauchy stress tensor, i.e., W has the most general form
W(x, G, g, v). Such a relationship can, however, be derived from the fact that for standard
models of elasticity the stored energy function W depends on the deformation gradient F
(i.e. on v) and on the field metric g only via the Green deformation tensor C given by (2.2),
ie. W = W(C(v, g)). Thus, the partial derivatives of W with respect to g and v are related,
and the following equation:

Pai = J(UF_I)ai

follows from definitions (2.14) and (2.19). This relation immediately follows from the form
of the stored energy function; it recovers the Piola transformation law, which in conven-
tional elasticity relates the first Piola—Kirchhoff stress tensor and the Cauchy stress tensor.
Substituting this relation in (2.20) one easily notices that the last term on the right-hand
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side cancels, so that the Euler—Lagrange equation for the standard elasticity model can be
written in the following covariant form:
D,V

p=L= =DIVP, (2.21)

where V = ¢. For elasticity in a Euclidean space, this equation simplifies and takes a
well-known form

Ve aPY

ar  axt

0

3. Constrained multisymplectic field theories

Multisymplectic field theory is a formalism for the construction of Lagrangian field
theories. This is to be contrasted with the formalism in which one takes the view of
infinite-dimensional manifolds of fields as configuration spaces. The multisymplectic view
makes explicit use of the fact that many Lagrangian field theories are local theories, that is,
the Lagrangian depends only pointwise on the values of the fields and their derivatives. In
formulating a constrained multisymplectic theory, we will therefore only be concerned with
the imposition of pointwise constraints @ (y), y € J!Y, depending on point values of the
fields and their derivatives. In the current work we also restrict our attention to first-order
theories, in which only first derivatives of the fields are considered.

Despite the pointwise nature of the Lagrangian £(y), y € J'Y, the variational principle
assumes variations of local sections over some region U C X, i.e., it is the action S(¢) =
/; v LG 1¢) as a function of sections that is being minimized. In order to use the theory of
Lagrange multipliers to impose the constraints, it is therefore necessary to form a function
W (¢) of local sections which is defined through point values of the constraint @ (j'¢)
evaluated at the first jets of sections. It is then possible, however, to use the pointwise
nature of the Lagrangian and the constraint function to derive a purely local condition, the
Euler-Lagrange equations, for the constrained field variables. We will make these ideas
precise in Section 3.2.

For holonomic constraints it is well known that Hamilton’s principle constrained to the
space of allowable configurations gives the correct equations of motion. Hamilton’s princi-
ple can be naturally extended by either extremizing over the space of motions satisfying the
constraints (so-called vakonomic mechanics), which is appropriate for optimal control, but
not for dynamics, or by requiring stationarity of the action with respect to variations which
satisfy the constraints (the Lagrange—d’ Alembert or virtual work principle). The equations
of motion derived in each case are, however, different.

Derivations from balance laws [12], evidence from experiments [16] and comparison to
Gauss’ principle of least constraint and the Gibbs—Appell equations [15] indicates that it
is the Lagrange—d’ Alembert principle which gives the correct equations of motion; see [3]
for further discussion and references.
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While the subject of linear and affine non-holonomic constraints is relatively well under-
stood (see [4]), itis less clear how to proceed for non-linear non-holonomic constraints. Part
of the problem lies in the lack of examples for which the correct equations are clear from
physical grounds. In the context of constrained field theories, however, there are many cases
where non-linear constraints involving spatial derivatives of the fields need to be applied,
such as incompressibility in fluid mechanics, and it is clear what the physically correct equa-
tions should be. Here, we deliberately avoid the use of the term non-holonomic to avoid
confusion with its standard meaning in the ODE context, where it applies only to time
derivatives. Other examples of non-linearly constrained field theories include constrained
director models of elastic rods and shells.

The fact that the constraints involve only spatial and not time derivatives means that
imposing the constraints is equivalent to restricting the infinite-dimensional configuration
manifold used to formulate the theory as a traditional Hamiltonian or Lagrangian field
theory. In this case, the constraint is simply a holonomic or configuration constraint and it is
known that restricting Hamilton’s principle to the constraint submanifold gives the correct
equations for the system.

3.1. Lagrange multipliers

The Lagrange multiplier theorem naturally makes use of the dual of the space of con-
straints. In a finite-dimensional setting this is a well-defined object, with all definitions
being equivalent. When considering infinite-dimensional constraint spaces, however, the
issue of what is being used as the dual becomes less clear and more important.

We shall consider constrained multisymplectic field theories for which the constraint
space is the space of smooth sections of a particular vector bundle. In the case of the
incompressibility constraint, the vector space is one-dimensional and the constraint bun-
dle is, effectively, the space of real valued functions on the base space X. A dual of the
constraint space is then defined with respect to an inner product structure on the vec-
tor bundle. This is made explicit in the following statement of the Lagrange multiplier
theorem where we assume that fields and Lagrange multipliers are sufficiently regular
(see [18]).

Theorem 3.1 (Lagrange multiplier theorem). Let maq e : € — M be an inner product
bundle over a smooth manifold M, ¥ a smooth section of w pmq g, and h : M — R a smooth
function. Setting N' = W ~1(0), the following are equivalent:

1. ¢ € N is an extremum of h|s,
2. there exists an extremum ¢ € £ of h : € — R such that wp.£(§) = @,

where h(¢) = h(Tp.£(9)) — (@, ¥ (Ta.£(@)))s.

If £ is atrivial bundle over M, then in coordinates of the trivialization we have ¢ = (¢, A),
where A : M — £/ M is a Lagrange multiplier function.

In the next section we shall use this theorem to relate the constrained Hamilton’s principle
with the extremum of the augmented action integral which contains the constraint paired
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with a Lagrange multiplier. Both of them result in constrained Euler-Lagrange equations.
We shall furthermore demonstrate that using the trivialization coordinates, these equations
can be equivalently obtained from a Lagrangian defined on an extended configuration bun-
dle. In this picture, the Lagrange multiplier corresponds to a new field, which extends the
dimension of the fiber space, and the augmented Lagrangian contains an additional part
corresponding to the pairing of this field with the constraint. The Euler—Lagrange equations
of motion then follow from unconstrained Hamilton’s principle in a standard way.

3.2. Multisymplectic field theories

In the setting above, the configuration bundle is a fiber bundle mxy : ¥ — X and
Ty iy * J 'Y — Y is the corresponding first jet bundle with x* and y* being a local
coordinate system on X and Y, respectively, and vy, the fiber coordinates on J ly.

Choose the configuration manifold M to be the space C of smooth sections ¢ of wx y.
Recall that for a Lagrangian density £ : J'Y — A"t X, asection ¢ € M is said to satisfy
Hamilton’s principle if ¢ is an extremum of the action function S(¢) = f LG o) : M —
R. Choose the & above to be the action function S and use § instead of /.

To apply the Lagrange multiplier theorem we need to define constraints as a section
of some bundle £ — M (below called the constraint bundle). As mentioned above, we
restrict our attention to constraints @ which depend only on point values of the fields and
their derivatives. Using such constraints we can construct induced constraints ¥ according
to (3.1). This is made precise below. We point out, however, that our treatment excludes
inherently global constraints, such as those on the inverse Laplacian of the field, which
cannot be derived from pointwise values.

On the other hand, we also exclude from the consideration a (simple) case when the
constrained subbundle of J!Y can be trivially realized as the first jet of some subbundle of
Y.

Define an inner product vector bundle 7y ), : V — X with the inner product denoted by
(-, -)y whose fibers are isomorphic to R”. Let C*° (V) be the inner product space of smooth
sections of 7y 1) with the inner product given by

(a,b) = / (a(x), b(x))y d"'x.
X

The constraint function is an R”-valued function on J'Y:
®:J'Y - R
We say that a point y € J!'Y satisfies the constraint if @ (y) = 0. By restricting @ to the

space of first jets of sections ¢ of Y, we can define the induced constraint function ¥ from
@ by setting

¥ ($)(x) = D((j'$)(x)) (3.1)

for all € M and x € X. By construction, ¥ is a map from the space M of sections
of Y to the space C*°(V) of sections of V, hence it can be thought of as a smooth section
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¥ : M — & of the constraint bundle €. This bundle is the trivial inner product bundle given
by M x C*°(V) over M. Then, a configuration ¢ € M is said to satisfy the constraints if
@((j'¢)(x)) = Oforallx € X,i.e., the section ¥ (¢) must be a zero function on X . This im-
plies that the space of configurations which satisfy the constraints is given by A" = ¥ ~1(0).

The constrained Hamilton’s principle now seeks a ¢ € N which is an extremum of S|s.
The Lagrange multiplier theorem given in the previous section can be applied to conclude
that this is equivalent to the existence of ¢ € £ with 7 M, £(¢) = ¢ which is an extremum
of S. Using the coordinates of the trivialization of £ we can write ¢ = (¢, 1), where
¢ = nMyg(q_S) is the base point, i.e. section ¢ of Y, and A is thought of as a section of the
bundle x y, i.e. an R"-valued function on X. Then S : £ — Ris given by

S(@) = S(¢) — (A, W (p))e = /X L((j'¢)(x))d" Ty — fx (A(x), (o))
d"tly = /X [L((G'9)(x) — (A(x), (') (x)))p]d" T x.

In the next section, we demonstrate these constructions for the incompressibility constraint
for continuum theories.

The requirement that S be stationary with respect to variations in A at the point ¢ implies
that

d3S -
0= 8—/\(05) <O = f [—(B1(x), D((j ) (0)))pld"x
X

for all variations dA, and thus that @ ((j'¢)(x)) = 0 for all x € X. This therefore recovers
the condition that ¢ must satisfy the constraints.

Stationarity of S with respect to variations in ¢ can be used to derive the constrained
Euler—Lagrange equations, which have the form

i oL _ oL L
Py (av;((] ¢)(x))) By ((J ) (x)) +</\(x), oy ((J ¢)(x))>
d Gl B
o <A(x), aus (G ¢)(x))> =0. (32)

Alternatively, one can handle the constraints by introducing another bundle, denoted by E,
which is a product bundle over X with fibers diffeomorphicto Y, x V,. One can think of E as a
configuration bundle of the corresponding unconstrained system whose Lagrangian contains
an additional part corresponding to the pairing of the constraint with the Lagrange multiplier:

Lo =L+ (A, ®)y.

The Euler-Lagrange equations of motion then follow from unconstrained Hamilton’s prin-
ciple in a standard way and coincide with (3.2). We work out the details for the incompress-
ibility constraint in the next section.
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4. Incompressible continuum mechanics

In this section, we shall consider the incompressibility constraint using the multisym-
plectic description of continuum mechanics. The main issue is a proper interpretation of
the constraint using the Lagrange multiplier formalism developed in the previous section.

4.1. Configuration and phase spaces

Here, we briefly summarize the results. See the analogous parts of Section 2 for more
details.

4.1.1. Extended covariant configuration bundle

The fibers of V in this case are one-dimensional and sections ¢ = (¢, A) of E contain
both the deformation field and the Lagrange multiplier, i.e., E denotes a bundle over X
whose fibers are diffeomorphic to the product manifold M x R with the projection map

nxg i E — X, (x,t,y, L) — (x,1).

Here, A is a section of the trivial bundle X x R over X, which can be thought of as a
function A(x, ) on X. The phase space is then the first jet bundle J!'E with coordinates
y = (xH*, y4, A, UZ, B.u); the first jet extension of a section (]3 = (¢, 1) has the following
coordinate representation (x*, y*, A, 9,¢%, 9,1).

4.1.2. The dual jet bundle

We can consider the affine dual bundle J!E* as a “vertically invariant” subbundle Z of
the bundle A = A"*!E of all (n 4 1)-forms on E. Elements of Z can be written uniquely
as

2= d" "y + p,*dy® Adx, + 7 dr Ad"xy,

where d"x;, = 9, d"*tlx, so that (x*, y4, A, I, pg*, mH) give coordinates on Z.
The canonical (n + 1)-form is constructed in a standard manner and in the above coor-
dinates has the following representation:

O = pody* Ad"x, + " dr A dx, + Td x,

We set 2 = —dO.

The primary constraint manifold € is a subbundle of the dual jet bundle and corresponds
to the incompressibility constraint. The pull-back of the inclusion map iy : € — J!E*
defines a degenerate (n + 2)-form £2¢ on €. We shall discuss the explicit form of the
constraint in the next section.

4.1.3. Incompressibility constraint
Recall that such a constraint in, e.g. compressible fluid dynamics, is a reflection of the
divergence-free property of the Eulerian fluid velocity and, hence, has a pointwise character.
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The divergence-free character of the velocity field arises from the requirement that the
particle placement map be volume-preserving at each instant of time. Then, according to
the general theory of constrained multisymplectic fields outlined above, it can be obtained
from a pointwise constraint @ defined on the first jet bundle J'Y.

Fory = (x", y*,v})) € J'Y we impose the constraint @ () = 0 on the Jacobian of the
deformation, where

@:J'Y > R, y > J(y)—1, J(y)=det[v] /%, (4.1)

where we have used the definition of J given in (2.1). Restricting @ to the first jet of a
section ¢ results in a constraint on the matrix of spatial partial derivatives 9;¢“.
For the Lagrange multiplier itself, we choose the following ansatz

A(x) = +/det[G]P(x) : X — R, 4.2)

where P will be shown later to have the interpretation of the material pressure. Eq. (4.2)
guarantees that A transforms like a density under the transformations of the base manifold X,
so that the pairing of A and @, defined by integrating over X, has the correct transformation
law.

4.2. Lagrangian dynamics

As we have already mentioned, the main distinguishing feature of incompressible models
of continuum mechanics is the presence of the constraint (4.1). We shall now explain how this
modification to the Lagrangian alters the Legendre transform as well as the Euler-Lagrange
equations.

4.2.1. The Lagrangian density
The Lagrangian density £ : J'E — A"*1X for the multisymplectic model of incom-
pressible continuum mechanics is a smooth bundle map defined by

Lo7)=LG)+r - ®(y))dHTx=K-—P+2xr -&d" "y, (4.3)

where L (i.e. K and PP) is given by (2.3) and depends on the choice of the stored energy
function W.

4.2.2. The Legendre transformation

For the above choice of the Lagrangian, the Legendre transform thought of as a fiber-
preserving bundle map FLg : J'E — J!E* over E is degenerate due to the constrained
character of the dynamics. Indeed, the Lagrange multiplier A is a cyclic variable as the
Lagrangian (4.3) does not depend on its derivatives, B,,. Hence, the conjugate momentum to
A is identically zero: m* = 0L /9B, = 0. The set {w# = 0} defines the primary constraint
set as a subset of the dual bundle J! E* to which we restrict the Legendre transformation to
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make it non-degenerate. The rest of the momenta are given by the following expressions:

Lo . 0L _ ow
P’ = =pgapvy/det[G],  p.’ = (PJ( Nel —p

a a a
81)0 8vj ov V5

) v det[G],

1 AW

= |:—p§gabvgvg SoaVi = pW = PU (= 1) + 1)} det[G]. (4.4)
ve
J

4.2.3. Euler-Lagrange equations

Using the trivialization (¢, 1), we now consider the Euler-Lagrange equations for a
section ¢ of E, both with respect to the deformation ¢ and with respect to the Lagrange
multiplier 1. The former can be written in coordinates as follows:

L ) =0. (4.5)

The Euler-Lagrange equation for A trivially recovers the constraint @ = 0 itself restricted
to the first jet:

dLge <8L¢

TR o) — — (=26 ¢>> =o(l¢)d" Iy = U('e) - Had"x =0.
B

(4.6)

These two equations are to be solved for the Lagrange multiplier A (equivalently, for the
pressure P) and for the section ¢.

Substituting Lagrangian (4.3) into (4.5), we obtain the Euler-Lagrange equation (2.13)
modified by the pressure term:

P8ab \ oy detlG] axk Py
= Bg b By G'¢) - ox k(U )a* I (). 4.7

Notice that in the case of parameterized non-constant metrics, the extra pressure term in
(4.4) gives rise to the term

% ,,((PJ(v—l)a Vdet[G])(j' ¢>>)—

which follows from the chain rule applied to 9,;g(y(x)). This term exactly cancels an-
other term coming from differentiating the constraint with respect to y again due to the
composition g = g(y):

ad P, dgp
AT L gghe 28 JaeGl,

ay? 2 ay“

and other cancellations occur as in Eq. (2.17).
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In the case of Euclidean manifolds with constant metrics g and G, the Euler—Lagrange
equations simplify to
8%, ] < oW

P72 = axk \Paug

. P _ )
(Jl¢)> S AR D) (4.8)
together with the constraint (4.6).
4.3. Incompressible ideal hydrodynamics

For fluid dynamics, the stored energy term in the Lagrangian is a constant function
precisely because of the incompressibility constraint. Indeed, as we have mentioned above,
W in ideal fluid models is a function of the Jacobian J, but the latter is constrained to be
1. For simplicity, consider an ideal homogeneous incompressible fluid, so that the material
density p is constant, and we can set p = 1 (for inhomogeneous fluids the dependence of
material density on the point x is implicit in the pressure function P).

The Lagrangian is given by (4.3) with P = const. Hence, two terms in Eq. (4.7) which
correspond to the derivatives of W vanish, so that the dynamics of an incompressible ideal
fluid is described by

b ik
Dot _ 9P ,( (29
8ab (F) o axk / (<8x> )a ' )

together with the constraint

VaetG o9l <%)> (x. 1)
Jdet[G] dx ’

where we have used the fact that g = G.

Compare (4.9) with (2.18) and notice that the incompressibility constraint J (j 1(;’)) =1
implies that the spatial density ps, = p/J is constant, e.g., 1. Introducing the spatial
pressure p = P o ¢, ! the above equation can be written as

D¢
Dt

uﬂ@=( 1, (4.10)

(x,1) = —grad p o ¢ (x, 1), @.11)

where we have set pgp = 1. We remark again that the covariant derivative is evaluated at

y=0¢x,n.

4.3.1. A new look at the pressure

Here, we shall demonstrate that the same equations of motion are obtained if the potential
energy in the Lagrangian (4.3) is not set to a constant, but rather is treated as a function of
the Jacobian, W = W (J). This will also clarify the relation between the two definitions of
pressure that we have thus far examined.

Recall the definition of the pressure function for barotropic fluids given by (2.16) as a
partial derivative of the stored energy function W with respect to the Jacobian J. Compare
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this to the definition (4.2) of the pressure as a Lagrange multiplier corresponding to the
incompressibility constraint (4.1) (modulo a 4/det[G] term). In this section, we shall denote
these objects by Py and P, respectively:

aw 1

. P=———.
a7 * T Jdet[G]

The resulting Euler—Lagrange equations can be obtained by combining (2.18) with (4.9)
and are given by

o\ b Tk
Dg¢ __3(Pw+PA)J <a_¢>
fab\ ", ) T axk ox h

together with the constraint (4.10). We can define a new pressure function

Py = —p

P = Py + P,. 4.12)

Notice that when the constraint J = 1 is enforced by the Euler—Lagrange equation (4.6),
Pw(J) = const., so that P = P, + const. This is equivalent to a re-definition of the
Lagrange multiplier 1. At the same time, the above Euler—Lagrange equation coincides
with (4.9) because 9y P = 9; P;.
4.3.2. Relation to standard ideal hydrodynamics

Recall the Lie—Poisson description of fluid dynamics as a right invariant system on the
group D, (M) of volume-preserving diffeomorphisms of a Riemannian manifold (M, G).
Here, we follow [2,23], using our notations. The Lie algebra of D, (M) is the algebra of
divergence-free vector fields on M tangential to the boundary with minus the Jacobi—Lie
bracket. The L? inner product on this algebra is given by

(M,U)LZ :/ (u(x),v(x))(;,u,
M

where u is the Riemannian volume form on M.

We extend this metric by right invariance to the entire group. The resulting Riemannian
manifold with right invariant L? metric, denoted by (D, (M), L?), is the configuration
space for the Lie—Poisson or Euler—Poincaré model of ideal hydrodynamics. Its tangent
bundle is the phase space, so that (#;, 7;) are the basic “coordinates”; here n; € D, (M)
is a diffeomorphism that transforms the reference fluid configuration to its configuration at
time 7. Then, using the kinetic energy of fluid particles as a Lagrangian, one obtains the
following covariant equations of motion:

Dpn

E(X) = —grad p o n(x), (4.13)
where

Dy . .

E=U+Fn(ﬁ,ﬂ),

denotes covariant material time derivative with respect to the metric (I, denotes the connec-
tion associated to the metric) and p is the spatial pressure. Notice that covariant derivative
is evaluated at n(x).
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Now define 7,(x) = n(z, x) to be the flow of the time dependent vector field u(z, x),
so that d,;n(t, x) = u(t, n(¢, x)). Then composing (4.13) on the right with n! gives the
classical Eulerian description of incompressible ideal fluids:

ou(t,x)+ (u-Vyu = —grad p, divu = 0.
Taking the divergence of both sides of this expression yields the equation for the pressure
Ap = —div((u - V)u). “4.14)

One readily notices that Egs. (4.11) and (4.13) coincide provided n;(x) = ¢ (x, t). Upon
this identification, the Euler—Lagrange equations for the multisymplectic model of incom-
pressible ideal hydrodynamics recover the well-known evolution of fluid diffeomorphisms
(4.13). Similarly, taking the divergence of both sides of (4.11) results in the Poisson equation
on the pressure (4.14).

4.4. Incompressible elasticity

In a manner similar to the previous section, we modify the elasticity Lagrangian by
the constraint and extend the phase space to include the Lagrange multiplier. Recall that
the stored energy is a function of the Green deformation tensor W = W (C) and use the
definition of the first Piola—Kirchhoff stress tensor P, (2.19) to write down the equations
of motion:

b -1\ ¥
D,¢ . dP ¢
— | =P ——J || — ,
pg“”( Dr ) ali T gxk ((8x> )
a
together with the constraint (4.6). The above equation can be written in a fully covariant
form
D,V
p% =DIVP —grad p o ¢,

where V = ¢ is the velocity vector field, P the first Piola—Kirchhoff stress tensor, and p
the spatial pressure.

5. Symmetries, momentum maps and Noether’s theorem

We already mentioned in Section 1 that homogeneous fluid dynamics has a huge symme-
try, namely the particle relabeling symmetry, while standard elasticity (usually assumed to
be inhomogeneous) has much smaller symmetry groups, such as rotations and translations
in the Euclidean case. While inhomogeneous fluids (especially the compressible ones) are
of great interest, the results worked out in Section 5.1 only apply to homogeneous fluid dy-
namics, when the symmetry group is the full group of volume-preserving diffeomorphisms
D,.. However, these results can be generalized to inhomogeneous fluids, in which case the
symmetry group is a subgroup Dﬁ C D, that preserves the level sets of the material density
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for barotropic fluids, or a subgroup Dﬁ’em C D,, that preserves the level sets of the material
density and entropy for isentropic fluids.

A general model of continuum mechanics will have the metric g isometry as its symmetry.
In particular, the group of rotations and translations is a symmetry for models of fluid
dynamics and elasticity in Euclidean spaces. The later is treated in [21], where the overall
emphasis is on continuum mechanics in Euclidean spaces.

The only symmetry which is universal for non-relativistic continuum mechanics is the
time translation invariance. This is due to the fact that the base manifold is a tensor product
of the spatial part and the time direction, rather than a space—time, so that all material
quantities, such as density p, metric G, etc. depend only on x € B C X. In this section,
we shall treat these symmetries separately. We start with the particle relabeling symmetry,
introducing the necessary notations.

5.1. Relabeling symmetry of ideal homogeneous hydrodynamics

In this section, we shall consider both the barotropic model and the incompressible model
of ideal homogeneous fluids with fixed boundaries at the same time. Their corresponding
Lagrangians differ only by the constraint term and both are equivariant with respect to the
action of the group of volume-preserving diffeomorphisms.

5.1.1. The group action

The action of the diffeomorphism group D,, (B) on the (spatial part of the) base manifold
B C X captures precisely the meaning of particle relabeling. For any n € D,,(B), denote
this action by nx : (x,t) — (n(x), t). The lifts of this action to the bundles ¥ and E are
givenby ny : (x,t,y) — (n(x),¢t,y)and ng : (x,t,y,A) — (n(x),t, y, A), respectively.
Both lifts are fiber-preserving and act on the fibers themselves by the identity transformation.
The coordinate expressions have the following form:

ny=Id-1,  uk=n'(x), ag=38" %= 1d ). (5.1)

5.1.2. Jet prolongations

The jet prolongations are natural lifts of automorphisms of Y to automorphisms of its
first jet J ly and can be viewed as covariant analogs of the tangent maps (see [9]).

Let y be an element of /'Y and 7 be a corresponding element of the extended phase space
JUE, in coordinates y = (x*, y¢, U;[i) and y = (x*, y%, A, UZ’ B..). The prolongation of
ny is defined by

npy() =TnyoyoTny',  npg(@) =TngoyoTlny. (5.2)

We shall henceforth consider 7 ;1 5, since it includes 1 ;1y as a special case. In coordinates,
we have

- 8 —1 m a -1 m
UJIE(V)= nk(x)st; th\; vgv Uf” <(£) ) ;:607 ﬁm (<£> ) .

J J
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If £ is a vector field on E whose flow is 7., then its prolongation j'£ is the vector field on
JVE whose flow is j'(ne), i.e. j'& o j1(ne) = (d/de)j' (ne). In particular, the vector field
£ corresponding to ng given by (5.1) has coordinates (¢, 0, 0, 0) and is divergence-free;
its prolongation j'&, which corresponds to the prolongation 7 J1g of ng, has the following
coordinate expression:

a 087 85’") . (5.3)

le i - 0 4> ) B >
,]E_(§50707050’ vmaxj50’ lgmax]

5.1.3. Noether’s theorem
Suppose the Lie group G acts on C and leaves the action S invariant. This is equivalent to
the Lagrangian density £ being equivariant withrespectto G, i.e.,forally € Gandy € J'Y,

Ly ) = g ) Ly,

where (n}l)*ﬁ(y) = (nx)«L(y) is a push-forward; this equality means equality of (n +
1)-forms at n(x). Denote the covariant momentum map on J'Y by Jr € L(g, AM(JY)).
It is defined by the following expression:

JNEI20 =dI @), (5.4)

and can be thought of as a Lie algebra valued n-form on J'Y.
Recall that ¢ is a solution of the Euler-Lagrange equations if and only if

Gloy*wler) =0

for any vector field W on J!Y. In particular, setting W = j!(£) and applying (j'¢)* to
(5.4), we obtain the following basic Noether conservation law.

Theorem 5.1. Assume that group G acts on Y by wxy-bundle automorphisms and that the
Lagrangian density L is equivariant with respect to this action for any y € J'Y. Then, for
each& € g

d((j'9)*Jc) =0 (5.5

for any section ¢ of xy satisfying the Euler—Lagrange equations. The quantity (j'¢)* J (&)
is called the Noether current.

See [9] for a proof.

5.1.4. The variational route to Noether’s theorem

The variational route to the covariant Noether’s theorem on J!Y was first presented in
[20, pp. 374-375]. We shall briefly describe this formulation now.

Recall the notations of the maps ¢ : U — Y and the corresponding induced local sections
@ o go;(l of Y from Section 2.2. Here again it is important to allow for both vertical and
horizontal variations of the sections. Vertical variations alone capture only fiber-preserving
symmetries (i.e., spatial symmetries), while taking arbitrary variations allows for both ma-
terial and spatial symmetries to be included.
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The invariance of the action S = |, Uy L under the Lie group action is formally represented
by the following expression:

Sy - ¢) = S(gp) forall ny € G. (5.6)

Eq. (5.6) implies that for each ny € G, ny - ¢ is a solution of the Euler-Lagrange equations,
whenever ¢ is a solution. We restrict the action of G to the space of solutions, and let &¢ be
the corresponding infinitesimal generator on C restricted to the space of solutions; then

0=<stdS)<<o>=/ jl(soo<p;l)*[jl(§u@u=/ i e ooxH it @) 12,1,

IUx Ux
since the Lie derivative £;1 ) @2 = 0 by (5.6) and Corollary 2.1.
Using (5.4), we find that fod[j Yo (p;I)*JL (£)] = 0, and since this holds for arbitrary

regions Uy, the integrand must also vanish. Recall that ¢ = ¢ o go;l is a true section of the
bundle Y, so that this is precisely a restatement of Theorem 5.1.

5.1.5. Covariant canonical transformations

The computations of the momentum map from definition (5.4) can be simplified signifi-
cantly in some special cases which we discuss here. A 7y ;1 -bundle map 5,1y : J'Y —
J'Y covering the diffeomorphism ny : X — X is called a covariant canonical trans-
formation if 77’; 1y$2c = 2. It is called a special covariant canonical transformation if
n}‘ly@ r = ©,. Recall that forms 2, and @, can be obtained either by variational argu-
ments or by pulling back canonical forms £2 and @ from the dual bundle using the Legendre
transformation FL.

From Gotay et al. [9], any 1 ;1 which is obtained by lifting some action ny on Y to J ly,
is automatically a special canonical transformation. In this case the momentum mapping is
given by

Je) = j'e ey, (5.7)

We remark that the validity of this expression does not rely on the way in which the Cartan
form was derived, i.e., for simplicity of the computations in concrete examples, one can
forgo the issues of vertical vs. arbitrary variations in the variational derivation and obtain
the Cartan form directly from the dual bundle by means of Legendre transformations. Then,
evaluating this form on the prolongation of a vector of an infinitesimal generator gives the
momentum #n-form.

5.1.6. Equivariance of the Lagrangian
To apply Theorem 5.1 to our case we need to establish equivariance of the fluid La-
grangians.

Proposition 5.1. The Lagrangian of an ideal homogeneous barotropic fluid (2.3) and the
Lagrangian of an ideal homogeneous incompressible fluid (4.3) are equivariant with respect
to the D, (B) action (5.1):

LOpp@) = mxH L)
forally € J'E.
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Proof. First observe that the material density of an ideal homogeneous (compressible or
incompressible) fluid is constant. Notice also that Lagrangians (2.3) and (4.3) differ only
in the potential energy terms. Both these terms are functions of the Jacobian, which is
equivariant with respect to the action of volume-preserving diffeomorphisms given by (5.3).
Indeed,

oyl [ /et (@)1 ntl
fUmpgy))d x_f< det[G]det(v)det o d""'x

= () (fU () d"x),

due to the fact that det 3;n/ = 1 for a volume-preserving diffeomorphism 7; here f can be
any function, e.g. the stored energy W or the constraint @.

For the same reason, and the fact that (5.3) acts trivially on vg, the kinetic part of both
Lagrangians is also equivariant. O

Proposition 5.1 enables us to use (5.7) for explicit computations of the momentum maps
for the relabeling symmetry of homogeneous hydrodynamics. We shall consider barotropic
and incompressible ideal fluids separately because their Lagrangians and, hence, their mo-
mentum mappings are different.

5.1.7. Barotropic fluid
Using (5.7), we can compute the Noether current corresponding to the relabeling sym-
metry of the Lagrangian (2.3) to be

JN @ I @) = (5pgad’” — pW — PI)y/det|GIE* d"x;
—(8av” d%) py/det[GIE" d"xq, (5.8)

where j'& is the prolongation of the vector field & and is given by (5.3).

The differential of this quantity restricted to the solutions of the Euler—Lagrange equation
isidentically zero according to Theorem 5.1. Conversely, requiring the differential of (5.8) to
be zero for arbitrary sections ¢ recovers the Euler—Lagrange equation. Indeed, computing the
exterior derivative and taking into account that the vector field £ is divergence-free, we obtain

) -1 k
Ded\ 9P, ((2¢
80\ Dy ) T Taxk dx '
a
which coincides with the Euler-Lagrange equation (2.18).

5.1.8. Incompressible ideal fluid

Similar computations using Lagrangian (4.3) with the potential energy set to a constant
give the following expression for the Noether current corresponding to the relabeling sym-
metry:

JH @ I E) = (Spgand?d’ — P)/det[GlEF d"xi
—(8av” 9% py/det[GIEF d"xq. (5.9)
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The assumptions of Theorem 5.1 are satisfied; hence the exterior differential of this Noether
current d(j1(¢)*J,(j1€)) is equal to zero for all section ¢ which are solutions of the
Euler-Lagrange equations.

Now consider the inverse statement. That is, let us analyze whether the Noether conserva-
tion law implies the Euler—Lagrange equations for incompressible ideal fluids. Computing
the exterior differential of (5.9) for an arbitrary section ¢ = (¢, A), we obtain

. b 1\ k
Dgp\" 9P ¢
80\ ) T "axk \\ox '
a
Here, we have used the fact that £ is a divergence-free vector field on X. This is precisely
the Euler-Lagrange equation (4.9) with the constraint J = 1 substituted in it. We point out
that the above equation is not equivalent to the Euler—Lagrange equations, i.e. the constraint

cannot be recovered from the Noether current. Notice, also that the Noether currents (5.8)
and (5.9) are different due to the difference in the corresponding Lagrangians.

5.2. Time translation invariance

Lagrangian densities (2.3) and (4.3) are equivariant with respect to the group R action on
Y, givenby ty : (x,t,y) — (x,t + t,y) for any 7 € R. This is because the Lagrangians
are explicitly time independent. One can readily compute the jet prolongation of the cor-
responding infinitesimal generator vector field ¢y = (0, ¢, 0), where T = exp ¢. Then, the
pull-back by j'¢ of the covariant momentum map corresponding to this symmetry, which
we denote by J 2 to distinguish it from expressions in the previous section, is given by the
following n-form on X:

GO IL©) = ¢(L('$)d"x0 — pa” (' $)d" d"x,)
= —(e(j' ) d"x0 + pa’ (j'$)$ d"x)(j '),
where, in the last equality, we have used the definition of the energy density e given by
(2.9).
Theorem 5.1 implies that the exterior derivative of this expression will be zero along

solutions of the Euler—Lagrange equations. Computing this divergence for an arbitrary ¢
recovers the energy continuity equation. For a barotropic fluid, it is given by

N
é = —/det[G] DIV PJ(<%> ) |,
0x .

while for standard elasticity the equation has the form

¢ = +/det[G] DIV(P,’ ¢%).

The expressions for an incompressible fluid and elastic medium are similar.
Alternatively, one can consider the inverse statement and require that d(J 2 (¢)) =0.This
forces the energy continuity equation to be satisfied for some arbitrary section ¢.
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6. Concluding remarks and future directions

In this section, we would like to comment on the work in progress and point out general
future directions of the multisymplectic program. Some of the aspects discussed here are
analyzed in detail in our companion paper [21].

6.1. Other models of continuum mechanics

The formalism set up in this paper naturally includes other models of three-dimensional
linear and non-linear elasticity and fluid dynamics, as well as rod and shell models. For
elasticity, the choice of the stored energy W determines a particular model with the corre-
sponding Euler—Lagrange equation given by (2.13); this is a PDE to be solved for the defor-
mation field ¢. Introducing the first Piola—Kirchhoff stress tensor P, the same equation can
be written in a compact fully covariant form (2.21). An explicit form of the Euler—Lagrange
equations and conservation laws for rod and shell models are not included in this paper but
can be easily derived by following the steps outlined above. The constrained director models
which are common in such models are handled well by the formulation of constraints that
we use in Section 3.

6.2. Constrained multisymplectic theories

The issue of holonomic vs. non-holonomic constraints in classical mechanics has a long
history in the literature. Though there are still many open questions, the subject of linear and
affine non-holonomic constraints is relatively well understood (see, e.g. [4]). We already
mentioned in Section 3 that this topic is wide open for multisymplectic field theories, partly
due to the fact that there is simply no well-defined notion of a non-holonomic constraint
for such theories — it appears that one needs to distinguish between time and space partial
derivatives.

As all of the examples under present consideration are non-relativistic and do not have
constraints involving time derivatives, we used the restriction of Hamilton’s principle to the
space of allowed configurations to derive the equations of motion. Note that this reduces
to vakonomic mechanics in the case of an ODE system with non-holonomic constraints,
and is thus incorrect. Of course a multisymplectic approach to non-holonomic field theories
(such as one elastic body rolling, while deforming, on another, such as a real automobile
tire on pavement), would be of considerable interest to develop.

6.3. Multisymplectic form formula and conservation laws

A very important aspect of any multisymplectic field theory is the existence of the mul-
tisymplectic form formula (2.11) which is the covariant analog of the fact that the flow of
conservative systems consists of symplectic maps. We deliberately avoid here any detailed
analysis of the implications of this formula to the multisymplectic continuum mechanics
and refer the reader to [21], where it is treated in the context of Euclidean spaces and
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discretization. Preliminary results indicate, however, that applications of the multisymplec-
tic form formula not only can be linked to some known principles in elasticity (such as
the Betti reciprocity principle), but also can produce some new interesting relations which
depend on the space—time direction of the first variations V, W in (2.11). An accurate and
consistent discretization of the model then results in so-called multisymplectic integrators
which preserve the discrete analogs of the multisymplectic form and the conservation laws.

6.4. Discretization

This is another very interesting and important part of our project which is addressed in
detail in our companion paper [21], where the approach of finite elements for models in
Euclidean spaces is adopted. It is shown that the finite element method for static elasticity is
a multisymplectic integrator. Moreover, based on the result in [21], it is shown that the finite
elements time-stepping with the Newmark algorithm is a multisymplectic discretization.

As we mentioned in the previous paragraph, a consistent discretization based on the
variational principle would preserve the discrete multisymplectic form formula together
with the discrete multimomentum maps corresponding to the symmetries of a particular
system. Then, the integral form of the discrete Noether’s theorem implies that a sum of
the values of the discrete momentum map over some set of nodes is zero. One implication
of this statement for incompressible fluid dynamics is a discrete version of the vorticity
preservation. Such discrete conservations are among the hot topics of the ongoing research.

6.5. Symmetry reduction

In the previous section, we discussed at length the particle relabeling symmetry of ideal
homogeneous hydrodynamics and its multisymplectic realization. Reduction by this sym-
metry takes us from the Lagrangian description in terms of material positions and velocities
to the Eulerian description in terms of spatial velocities. In the compressible case one only
reduces by the subgroup of the particle relabeling group that leaves the stored energy func-
tion invariant; e.g., if the stored energy function depends on the deformation only through
the density and entropy, then this means that one introduces them as dynamic fields in the
reduction process, as in Euler—Poincaré theory (see [11]).

In the unconstrained (i.e., defined on the extended jet bundle J!E) multisymplectic
description of ideal incompressible fluids, the multisymplectic reduced space is realized
as a fiber bundle 7 over X whose fiber coordinates include the Eulerian velocity u and
some extra field corresponding to compressibility. Then, the reduced Lagrangian density
determines, by means of a constrained variational principle, the Euler—Lagrange equations
which give the evolution of the spatial velocity field u(x) € 75 together with a condition of
u being divergence-free. A general Euler—Poincaré-type theorem relates this equation with
Eq. (4.11) by relating the corresponding variational principles.

Such a description is a particular example of a general procedure of multisymplectic
reduction. The case of a finite-dimensional vertical group action was first considered in [5].
More general cases of an infinite-dimensional group action such as that for incompressible
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ideal hydrodynamics, electro-magnetic fields and symmetries in complex fluids is planned
for a future publication. The reader is also referred to a related work by Fernandez et al. [8].

6.6. Vortex methods

One of our ultimate objectives is to further develop, using the multisymplectic approach,
some methods and techniques which were derived in the infinite-dimensional framework
and which proved to be very useful. One of them is the vortex blob method developed by
Chorin [6], which recently has been linked to the so-called averaged Euler equations of
ideal fluid (see [25]).

6.7. Higher-order theories

Constraints involving higher than first-order derivatives are beyond the current exposition
and should be treated in the context of higher-order multisymplectic field theories defined
on JXY, k > 1.

The averaged Euler equations (see [11,22] and references therein) provide an interesting
example of a higher-order fluid theory with constraints (depending only on first derivatives
of the field) to which the multisymplectic methods can presumably be applied by using the
techniques of Kouranbaeva and Shkoller [14]. It would be interesting to carry this out in
detail. In the long run, this promises to be an important computational model, so that its
formulation as a multisymplectic field theory and the multisymplectic discretization of this
theory is of considerable interest.

6.8. Covariant Hamiltonian description

Finally, another very interesting aspect of the project is developing the multi-Hamiltonian
description of continuum mechanics along the lines outlined in [24].
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