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1 Introduction

We consider Euler’'s equations
. . d
(11) (8t+vk8k)vj =—8jp, J =1 ....,ninD, wherej = W,

describing the motion of a perfect incompressible fluid in vacuum:
(1.2) divv = 90X =0 inD

wherev = (v1,...,v,) andD c [0, T] x R" are to be determined. Her& =

s¥vy; = vy, and we have used the summation convention that repeated upper and
lower indices are summed over. Given a simply connected bounded débgain

R" and initial datavy satisfying the constraint disy = 0, we want to find a set

D C [0, T] x R" and a vector field solving (1.1) and (1.2) and satisfying the
initial conditions

L3) {{x:(O,x)ei)}:i)o

v=uvy on{0} x Dg.

LetDy = {x € R": (t, x) € H}. We also require the boundary conditions on the
free boundang Dy,

(1.4)

p=0 ona Dy
vy =k ONJID:

for eacht, whereV is the exterior unit normal td Dy, vy = N'v;, andk is
the normal velocity obD;. The second condition can also be expresse@:as
V)50 € T(OD). We will prove a priori bounds for the initial value problem
(1.1)—(1.4) in Sobolev spaces under the assumption

(1.5) Vyp<—-g<0 0ondDd; whereVy = N'd,i .
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(1.5) is a naturaphysical conditiorsince the pressurp has to be positive in
the interior of the fluid. Itis essential for well-posedness in Sobolev spaces. Taking
the divergence of (1.1),

(1.6) —Ap= @) iInDy, p=00ndD.

In the irrotational case (1.5) always holds, as shownin [6, 16, 17]. Thetw);; =
div) — 91" = 0soAp < 0and hence > 0 and (1.5) holds by the strong maxi-
mum principle (see [11]).

The incompressible perfect fluid is to be thought of as an idealization of a liquid.
For small bodies like water drops, surface tension should help to hold the liquid
together; for a large dense body like a star, its own gravity should play a role. Here
we neglect the influence of such forces. Instead it is the incompressibility condition
that prevents the body from expanding, and it is the fact that the pressure is positive
that prevents the body from breaking up in the interior. Let us also point out that
from a physical point of view one can alternatively think of the pressure as being a
small positive constant on the boundary instead of vanishing. The aim of this paper
is to show that we have a priori bounds for the free boundary problem (1.1)—(1.5)
in any number of space dimensions. What makes this problem difficult is that the
regularity of the boundary enters to highest order. Roughly speaking, the velocity
tells the boundary where to move, and the boundary is the zero set of the pressure
that determines the acceleration.

It is generally possible to prove local existence for analytic data for a free in-
terface between two fluids with the same normal component of the velocity; see
[2] and [13] for the irrotational case. However, this type of problem might be sub-
ject to instability in Sobolev norms. The classical examples are Rayleigh-Taylor
instability, which occurs in a local linear analysis when a heavier fluid lies above a
lighter fluid in a gravitational field, and Kelvin-Helmholtz instability, which occurs
when the tangential velocities of the two fluids along the interface are different;
see, e.g., [1]. In our case it is the first kind of instability that we must exclude. No
gravitational fields are present in our problem; however, a uniform exterior gravi-
tational field would not make a difference because it can be transformed away by
going to an accelerated frame. It is condition (1.5) that excludes the possibility of
this kind of instability. In fact, without taking into account the sign condition (1.5),
the problem is actually ill-posed in Sobolev spaces; see [8].

Some existence results in Sobolev spaces are known in the irrotational case for
the closely related water wave problem that describes the motion of the surface
of the ocean under the influence of Earth’s gravity. In that problem, the gravita-
tional field can be considered as uniform, and as we remarked above, this problem
reduces to our problem by going to an accelerated frame. The damamun-
bounded for the water wave problem coinciding with a half space in the case of still
water. Nalimov [12] and Yosihara [18] proved local existence in Sobolev spaces in
two space dimensions for initial conditions sufficiently close to still water. Beale,
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Hou, and Lowengrab [3] have given an argument to show that that problem is lin-
early well posed in a weak sense in Sobolev spaces if a condition is assumed that
can be shown to be equivalent to (1.5). The condition (1.5) prevents the Rayleigh-
Taylor instability from occurring when the water wave turns over. Recently Wu
[16, 17] proved local existence in general in two and three dimensions for the wa-
ter wave problem. Wu showed that (1.5) holds for an unbounded domain in the
irrotational case. More importantly, Wu [17] is the first existence result in three
space dimensions in Sobolev spaces; going from two to three dimensions required
introduction of new techniques.

The method of proof in the above papers relies heavily on the assumption that
the velocity is curl-free and hence satisfies Laplace’s equation in the interior. This
makes it possible to reduce the problem to one involving the boundary alone. In
this reduction the Dirichlet-to-Neumann map enters, and it is estimated in frac-
tional Sobolev spaces on the boundary. In the general case, with nonvanishing
curl, no existence results in Sobolev spaces are known. However, recently Ebin [9]
announced a local existence result for the same equations but with the boundary
condition containing surface tension, which makes the problem more regular.

We prove a priori bounds in the case of nonvanishing vorticity in any number
of space dimensions. We also show that the Sobolev norms remain bounded es-
sentially as long as (1.5) holds, the second fundamental form of the free surface
is bounded, and the first-order derivatives of the velocity are bounded. The proof
works with lower regularity assumptions on initial data. This is partly due to the
fact that our result is in terms of norms in the Eulerian space coordinates and the
second fundamental form of the free surface. The norms are hence independent
of a parametrization of the boundary, so we do not have to be concerned with the
possibility of a parametrization becoming singular. On the other hand, it is more
difficult to put up an iteration in this approach. However, existence will follow
from analogous estimates and existence in the presence of surface tension, reduc-
ing to the estimates presented here in the limit of vanishing surface tension. Let us
also point out that an existence result even for infinitely differentiable data together
with the a priori bounds here imply existence and continuation for low regularity
data. This is in particular true in the irrotational case where existence is known.

Our approach is quite elementary and geometric in nature. We use a new type
of energy that controls the geometry of the free surface. The energy has a boundary
part and an interior part; this fact allows us to avoid the use of fractional Sobolev
spaces on the boundary. The boundary part controls the norms of the second fun-
damental form of the free surface, whereas the interior part controls the norms of
the velocity and hence the pressure. We show that the time derivative of the en-
ergy is controlled by the energy. A crucial point is that the time derivative of the
interior part will, after integrating by parts, contribute a boundary term that ex-
actly cancels the leading-order term in the time derivative of the boundary integral.
The equations look ill-posed at first sight, but if one differentiates them, one gets
a well-posed system for higher-order derivatives of the velocity and the pressure.
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Our energy contains the components of this higher-order system. In the interior it
contains most components and on the boundary only the tangential components.
Due to the fact that the pressure vanishes on the boundary, the tangential compo-
nents of this higher-order system are more regular. Another crucial point is then
to estimate the projection of a tensor to the tangent space of the boundary, which
involves the second fundamental form.

Let us first introducd.agrangian coordinatesin these coordinates the bound-
ary is fixed. LetQ be a domain inR", and letf, : Q — Dy be a diffeo-
morphism that is volume preserving, (#fy/0y) = 1. Assume thab(t, x) and
p(t, x), (t, X) € D, are given satisfying (1.1)—(1.4). The Lagrangian coordinates
X = X(t, y) = fi(y) are given by solving

dx

1.7) g = vxty), X0, y) = fo(y), y € Q.

Then f; : @ — Dy is a volume-preserving diffeomorphism, since div 0, and
the boundary becomes fixed in the ngwoordinates. Let us introduce the notation

B d 0
(1.8) D = — =— + ok —
ot y=constant ot X=constant 9X
for the material derivative and
d ay® 9
(1.9) ==
ox! ax' oy?

Sometimes it is convenient to work in the Eulerian coordinétes), and some-
times it is easier to work in the Lagrangian coordinatey). In the Lagrangian
picture the partial derivative with respect to the time coordinate has more direct
significance than the partial derivative with respect to the time coordinate in the
Eulerian picture. However, this is not true for the partial derivatives with respect to
the space coordinates. The notion of space derivative that plays a more significant
role in the Lagrangian picture is that of covariant differentiation with respect to the
metric gan(t, y) = &;3x' /ay? ax] /dyP, the pullback byf; of the Eulerian metric
§ij on Oy C R". The covariant space derivatives of the Lagrangian picture are
simply and directly related to the partial derivatives with respect to the Cartesian
space coordinates of the Eulerian picture. We will work mostly in the Lagrangian
coordinates in this paper. However, our statements are coordinate independent, and
to simplify the exposition we will present the results in the Eulerian picture in the
introduction.

In the notation of (1.8) and (1.9), Euler's equations (1.1) become
(1.10) Divi = —0 p.
Note that the commutator satisfies

(1.11) [Dy, 81 = —(3v)d.
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By (1.10) we obtain the second-order equation for the velocity
(1.12) DZvi — (kp)divk = —3 Dip.

Our estimates make use of (1.12) restricted to the boundary together with the
boundary condition

(1.13) p=0 onddH; = Dip=0 onoDHx.

In the interior we will make use of the equation obtained by taking the curl of
(1.10), using (1.11),

(1.14) Dy (curlv)ij = — (@05 (curlv)yj 4 (305 (curlv)yi
together with
(1.15) divo =0 inD;.

If we take take the divergence of (1.10) and (1.12), respectively, by using (1.11)
and (1.15), we get the elliptic equations

(1.16) Ap = —(3v")on ind;, p=00ndD;,
(1.17) AD(p = (p)AVK+ G(dv, 8%p) inD;, Dip=00ndDy,

whereG(dv, 3%p) = 48" (3;v%)9; 9 p + 2(3;v1)(3;v¥)dkv'. Equation (1.16) gains
regularity; neglecting the problem with the boundary regularity, one derivative of
in the interior gives two derivatives gf, which gives a gain of one time derivative
of v in (1.10). If curlv = 0, thenAv = 0, so then the equation f@ p is as good
as the equation fop.

To see the importance of the conditidnyp < —e < 0, let us look at a
simplified linear model problem: Since = Dip = 0 on 3%y, it follows that
dip= N Vypandd Dip = N;V,yD;pthere, so by (1.12)

(1.18) D2vi — (Vyp)NKd v = —(V4Dyp)N;  0ndD;.

We linearize by takingd; = @ andx(t, y) = y independently of. In the irro-
tational case N 3 vk = NKdvi = Vv andAv = (Sjkaj v = 81Ky, Ojvk =
9; divv = 0. Let us therefore consider the equations

(1.19) DZvi + v 'Vyu = F ondQ, Ay =0ing,

for a vector fieldv on Q depending ort, wherev and F; are given functions on

Q and D; = &. To simplify further, let us assume that! = ¢ is constant,

F = 0, andQ is the unit disc inR?. Then the solutions oAv = 0 are given

in polar coordinates by(t,r,8) = > c(t)rKiek?. The boundary condition in
(1.19) implies thaty (t) + ¢|k|ck(t) = 0, with solutionsc(t) = ¢ e + ¢ e,

M = +/—¢]K]|, so the high frequencies remain boundedtfos O if ¢ > 0, but

they are exponentially increasingdf < 0. Note that if data are analytic, i.e.,

¢ = o(e~*K), 8 > 0, then the solution exists independently of the sign condition.
The model problem is related to Enbin’s counterexample. By linearizing around a
rigid rotationv = (X, —X1), he gets an equation for the variation similar to (1.19)
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with v = —Vyp = —1. (1.19) is also up to terms of lower order the equation
Wu [17] uses. Furthermore, a similar model problem shows up in [6] when one
studies the equation for the derivatives of the velocity (1.24)—(1.25).

The model problem also suggests a candidate for an energy:

(1.20) E(t)=/|8v|2dx+/|Dtv|2vdS, v >0.
Q Q2

If we differentiate below the integral sign and integrate by parts, we get a bound
for the energy:

dE
(1.21) at =2/8v8Dtvdx+2/Dtv thvvdS+/|Dtv|2DtvdS
02

Q Q2

= —Z/Av Dtvdx+2/ Dtv(thv-l—v*th,vv)vdS
Q a0

+/|Dtv|2DtvdS
R

1/2 -1
< 2|IF I 290.0a9 EY? + IV DevllLepe) E -

An easy modification gives (1.21) with an extra terftCRw|| 2, E*/? also for

a divergence-free vector field, div= 0, with curlv = o satisfying DZv; +
v~INKgve = F on the boundary. This estimate, however, is not by itself good
enough to deal with (1.12), since we cannot expect a bounbfof p|l 25, from

a bound for|dv|| 2, due to the loss of regularity in (1.17) in the irrotational case.
One derivative ob in the interior gives only one derivative &f; p in the interior,
and restricting to the boundary we lose half a derivative.

An additional idea is required that has to do with exploiting our special bound-
ary conditionsD;p = 0. If we modify our energy so it contains only tangential
components on and close to the boundary, then only the projection onto the tan-
gential components of (1.12) on the boundary will occur in the energy estimate,
and the tangential componentsadd; p vanish. The components we lose control
over in the energy can then be gotten back by elliptic estimates. Although the pres-
sure and the regularity of the boundary did not enter in the above simplified model,
they will enter once we go to higher-order energies, which are needed to close the
argument. We will now develop these higher-order energies.

One can think of (1.10) and (1.12) as a system of equations famd v =
Div = —ap:

(1.22) Divi = -9 p,
(1.23) D19 p + (3 p)divk = 8 Dy p.
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To see better what goes on, let us differentiate once more with respect to the spatial
coordinates

(1.24) Didivj = —9; p— (3v)dk; ,
(1.25) D39y p+ Bp)didjv* = 39, Dep — (3099 p — (v .,

where we used (1.11).

We want to project (1.25) to the tangent space of the boundary. The orthogonal
projectionIT to the tangent space of the boundary @0ar) tensore is defined to
be the projection of each component along the normal:

(1.26) (M., = M- Ty, wherell] =5 — M.

Letd; = I'Iij d; be a tangential derivative. &f = 0 ond Dy, it follows thatd;q = 0
there and

(1.27) (T82q)i; = 6:jV.yq whereg; = 9; N,
is the second fundamental form &@. In fact,
0="2;9;q =811 8pq = I T/ 339 — @ N)N*aq — N; 3 ¥8q
= ([18%q)ij — 6i; Vv q

SinCEngi de = 5i (NkJVk)/Z =0.

Our energy for the second-order equation (1.25) will be a modification of (1.20)
that contains only the tangential componefD,v = —I132p on the boundary
and(I13%)v in the interior, wherdT is an extension of the projection to the interior.
Taking the time derivative of this energy and integrating by parts as in (1.21), we
get a boundary term that involves the projection of (1.25). Becal@&dD;p =
0V D¢ p, this can be controlled by one less derivatiM®; p. The energy together
with elliptic estimates controls two derivatives ofn the interior, so (1.17) gives
us two derivatives oD, p in the interior and hence one derivative on the boundary.
In our discussion so far we have neglected the problem of boundary regularity,
which comes in to highest order. However, our energy also controls the second
fundamental form. By (1.27) an® . p| > ¢ > 0, the boundary part of the energy,
ITT9%p|2 > |6]%|VupI? = |0]%€?, gives an estimate for the second fundamental
formé6.

The energies we propose are of the form

E; (1) =f5m”Q(afvm, afvn)dx+/|af—1cur|v|2dx
Dt

(1.28) o

+ f Q@ p, 9 pvds,
Dy

wherev = (=Vyp)~t. Here Q is a positive definite quadratic form which,
when restricted to the boundary, is the inner product of the tangential components
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Q(a, B) = (Ila, T1B), and in the interioQ(«, ) increases to the norma|?. To
be more specific, we define

(1.29) Qe, B) =g g aiy i By,
where
(1.30) g¥ =68 — 2N N, dx) =dist(x, D), N =—819d.

Heren is a smooth cutoff function satisfying & n(d) < 1, n(d) = 1 when

d < do/4 andn(d) = 0 whend > dy/2. dy is a fixed number that is smaller than
the injectivity radius of the normal exponential map defined to be the largest
number, such that the map

(1.31) 0D x (—tg, o) — {X € R": dist(x, 9D;) < 1o}
given by
X,0) > X=X+ 1N(X)
is an injection. These energies, in fact, control all component$ @fd" p, and
9" 20; see (1.41)—(1.42).

We prove an energy estimate implying that the energies are bounded as long
as certain a priori assumptions are true. More specifically, we prove that there are
continuous function€, such that
dE (1)

dt

(1.32)

1
‘ <c <K, ~,L, M, Vol D, E,*_l(t)> EX(),
&

whereE;(t) = Z Es(t),

s=0
ifO<r <4orr >n/2+ 3/2, provided that

(1.33) 6] < K, % <K, ondd,
(1.34) —Vuyp > 2 >0 onoD; ,
(1.35) 0°p| + |VaDipl <L 0nddx,
(1.36) [ov] 4+ [op| <M in Dy.

The bounds (1.33) give us control of the geometry of the free suéfaceA bound
for the second fundamental forfngives a bound for the curvature 8D, and a
lower bound for the injectivity radius of the normal exponential mpmeasures
how far off the surface is from self-intersecting.

Now, the lowest-order energy and the volume are in fact conserved:

(2.37) Eot) = /(Sm”umvndx = Eo(0), Vol Dy = / dx = Vol Dy .
501 :Dt
Recursively it follows from (1.32) and (1.37):
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THEOREM 1.1 Let n < 7. Then there are continuous functioffs,r =0, 1, ...,

with % |(—o = 1 such that any smooth solution of the free boundary problem for
Euler's equationg1.1)—(1.5)for 0 < t < T that satisfy the a priori assumptions
(1.33)—(1.36RlIso satisfy the energy bound

1
(1.38) Er*(t)fﬂ(t,K,—,L,M,Er*1(0),V0I:DO>E;“(O), 0o<t<T.
&

Most of the a priori bounds (1.33)—(1.36) can be obtained from the energy
through (1.41) and (1.42) below using Sobolev's lemma & (n — 1)/2 + 2.
However, the lower bounds ferand.o cannot be obtained in this way; instead one
has to try to get evolution equations for these.

Let K(0) ande(0) be the minimum and maximum values, respectively, such
that (1.33) and (1.34) hold when= 0.

THEOREM1.2 Let ry be the smallest integer such thagt¥ n/2+ 3/2. Then there

are continuous function® > 0,r =rg,rg+ 1, ..., such that if
1

1.39 T <7 K(), —, E*(0), Vol Dq | ,

(139 < 7 (KO, -5 £4.0) Vol 20)

then any smooth solution of the free boundary problem for Euler’s equgtlohs-
(1.5)for0 <t < T satisfies

(1.40) E/(t) <2E/(0, 0<t<T.

Remark.The restrictionn < 7 in Theorem 1.1, i.e., the restriction for (1.32) to
hold, is just a result of the proof becoming simpler in this case. The assumption
that Vol Dy < oo is just used to get ah? estimate forp, so it can be omitted if we

add [ p?dx to the energy. We need only a lower bound for the interior radius of

injectivity of the normal exponential map in (1.31) for the energy estimates to hold.
The bound for the exterior one is to prevent the surface from self-intersecting.

Let us first point out that since div= 0 and—Ap = (3v¥)d', one can
useelliptic estimatego control all components df v anda" p from the tangential
componentg$1d" p in the energy:

(1.41) 00120, + 10" 0lZ20 00 + 19" Pl 200, + 10" Pl g, <
C(K, M, Vol Do) E; .

A bound for the energy also implies a bound for the second fundamental form of
the free boundary

_ 1
(1.42) 18201 2., < C(K, L. M, = By, Vol :ot) Ef
that controls the regularity. In fact, we prove higher-order versions of the projection
formula (1.27):
(1.43) T18'q=(0""20)Vyq+ OO 1q)+ 0@ 30 ifq=00n3D;.
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Since|Vy p| > ¢ > 0, it follows from (1.43) that
|8 ~%6] < CIMd" p| + O p) + 0@ ~%6)

where the lower-order terms can be bounded using (1.41) and (1.42) for smaller
so0 (1.42) follows inductively.

Once we have the bound (1.42) for the second fundamental form, we can get es-
timates for any solution of the Dirichlet problem. In particular, siiz satisfies
the elliptic equation (1.17), we get

(1.44) 3" Deplfayp, + 18" DiPlIf2gp,, <
1
C(K, L, M, =, E 4, Vol ;ot) E’.
&

This follows from the elliptic estimates, used to prove (1.41), and (1.43) applied to
D, p, whered' —2¢ is now bounded by (1.42) aréd 1D, p is lower order.I13" D, p
shows up in the energy estimate when we take the time derivative of the boundary
part of the energy19' p. Although a bound for the energy implies bounds for

all components o' p, we cannot bound the time derivative of the nontangential
components on the boundary in the case of nonvanishing curl, since the elliptic
estimates give control of only the tangential compon&HisD; p in (1.44) because

of the term withAv in (1.17).

Let us now outline the proof of Theorems 1.1 and 1.2. First, we explain the
proof of the energy estimate (1.32), which uses integration by parts as in the model
problem. Then we give the main elliptic estimates and the projection formula used
in proving (1.41)—(1.44). Finally, we discuss how to control the geometry of the
free surface and the a priori bounds (1.33)—(1.36), the time evolutionasfde,
and other geometric quantities that control the Sobolev constants that are needed
for Theorem 1.2.

1.1 Energy Estimates (Sections 5 and 7)

We will now outline the proof of the energy estimate (1.32). In order to take the
time derivative of the energy (1.28), we make use of the fact thatsfan arbitrary
function on®D; depending o, then

d d
a/fdx:/thdx and a/ de:/(th—(vaw)f)dS
Dy 9Dy 9D,

Dt

since divw = 0 (this can be seen, e.g., using the Lagrangian coordinates). We have

d
(1.45) d& _ D; (8™Q(8" vm, 8" vp) + 18" L eurlv|?)dx
dt
Dr

+ / D((Q(" p. 8" P)v) — Q@' p. 3" PvVyvy dS

9Dt
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The derivatives of the coefficients §f and the measures can bounded by the con-
stants in (1.33)—(1.36):

(1.46) D@ <CM, [3q7| <CK, |Vyuy|<CM;

see Section 3. The time derivative of the higher-order tenaranda’ p can be
obtained from (1.22) and (1.23) by repeated use of (1.11),

(1.47) Did" v =—3"hp+ D Csr(8) 9" Ovy,
O<s<r-1

(1.48) Did" p+ (BP)d' v =" Dip+ Y ds (3 ) 9" p,
O<s<r-2

where the symmetrized dot product is defined in Lemma 2.4. Now
(1.49) [|(3%tv) - 3" vl L2 <
CK)Iv Loy Z 9%v]lL2(py, O<s<r—1.
s<r
This is clear fors = 0,r — 1, and follows in general by interpolation. Hence by
(1.45)—(1.48) and (1.41),

dE,

(150) —

—2/8"‘”Q(8rvm, dnd" p)dx
Dy
+2/ Q(0" p, D1d" p)v d S+ lower-order terms
EEY

where “lower-order term” means something that is controlled by the ert&rgynd
by K, L, M, and Y¢ so it can be bounded by the right-hand side of (1.32).
If we integrate by parts in the first term, we get

(1.51) %—Et' = zfam”Q(afanvm, 3" p)dx

Dy

+2 / Q(af p, Did" p — vfldvmarvm)v d S+ lower-order term.
9Dy

The first term vanishes since div= 0. Since—v—!N;, = 9P, the second is the
inner product ofl13" p and

(1.52) M(Did"p+ (Omp)d™v™) = (3" Dyp) + Z ds TT((3%"0) - 3" ~°p)

O<s<r-2
by (1.48). Herd1d" D p is under control by (1.44), and we really need to use the
projection since in the case of nonvanishing curl we cannot control all components
of 3" Dy p on the boundary. The other terms in (1.52) are bounded by the a priori
assumptions times (1.41). This is clear o= 0,r = 2, but dealing with the
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intermediate terms is the most involved part of the manuscript. This is because the
interpolation has to be done on the boundary and the expression involves nontan-
gential components. Note that if9r < 2, then the boundary terms simplify and

the lower-order terms are easily bounded by (1.32). The boundary terms vanish
if r = 0,1, and ifr = 2 thenQ(d2%p, 32p) = |T18%p|?> = |0|?|Vn p|?, Where

IV PI = & > 0andQ(3°Dy p, 3°Dip) = |01*|Vn Dy pl*.

1.2 Elliptic Estimates Using the Energy Bound (Section 5)
The bound (1.41) follows from

(1.53) 10"v]? < C(8™Q(3" vn, 3" vm) + 13" divu]® + 3" curlv|?)

(1.54) 118" PliZ2p, + 19" PIZ2c0 <
C(K. Vol D)y (I8 pliZ2( 0, + 1057 APIIZ2 )

s<r

In fact, using that the measure in the boundary part of the erergjy » p||[olod S
we get from (1.16) and (1.49), respectively,

||Har p||2|_2(3@1) S ||8p||L°°(8th) EI’ and

(1.55) -
19" APIF 2y < ClIBVIE g, Er -

(1.53) follows because curlis the antisymmetric part dgfv, so only the sym-
metric part ofd" v needs to be estimated; moreover, the first term in the right con-
tains one normal component while, sind€" N "9mvn = —q™"0mvn + 8™ Omun,
two normal components can be expressed in terms of tangential components and
the divergence. (1.54) follows inductively from the following inequalities:

(1.56) 118" PlI 2050, < CITIO" PlIZ2 (50,

+C(I19"*ApllLacy + K13 PllLzon) 18" PllLzcoy »
(1.57) 119" Plf2py < 19" PlL2op 19" PllLzgmy + 119" 24Pl 2 g,
(1.58) IPlL2(y < COVOI DYV APl L2,y if P=00ndD.

Estimate (1.56) follows from repeated use of the fact that the square of the normal
derivative minus the square of the tangential one behaves better on the boundary:
Let Q be any quadratic form acting af, r) tensors constructed fros¥ andq'/,

and letW = n(d)N be an extension of the normal to the interior; see (1.30).
Let Tj = 2Q(a, dja) — 8;8™Q(0mer, dnr). Thendi T = 2Q(A, dja) +

28" (3 Q) (Bmar, 3j) — 8™(3; Q) (dmax, dncx), SO

/(Nidvj—qij)é(aia’aj“)d = /avwiTud

3D‘Dt ao@t
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Dy
5/2|Aa||8a|+CK|8a|2dx
Dr

by the divergence theorem. (1.57) results from integration by parts twice. (1.58) is
the product of applying the Faber-Krahns theorem; see [14].

1.3 The Projection Formula and Estimate for the Second Fundamental
Form (Section 4)

We prove an estimate for the projection:glif= 0 ondDy, then form = 0, 1
and0<r <4orr >(n—1)/2+ 2,

(1.59)  [T3"q — (V)3 0]l 2

< el Vaall = 113" 2012 + CellOll = 19" a2

+C(||9||Loo><||9||Loo+ 3 ||550||Lz> > 1e%all

S<r—2—-m S<r—24+m

foranys > 0, whereLP = LP(3D;) andd is the second fundamental form. The
bound (1.42) for the second fundamental farfollows from (1.41) and (1.59) by
using the a priori bountV y p| > €|V pll > /2.

Let us now briefly discuss the proof of (1.59). In Section 4 we derive a formula
for the projection:

(1.60) TI8'q =

r—2
30+ Vyqd' %0 + (L) @ 20RO V)
(=1
+ > 8ro-remC™(3116® - - - ®3™0B3"°V,q) ,
ro+ry+--+rg+€=r—k
k—¢=m=0 mod 2 k>¢>0, k>2
wheref = 3.V is the second fundamental form, stands for some partial sym-
metrization of the tensor product, a@f" stands for contraction oven pairs of
indices; see Section 4. Note that in (1.60) the total number of derivatives decreases
by 1 as the number of factors éfincreases by 1. Therefore, since we have as-
sumed that we have control §f ||, ~, the terms on the second row will be lower
order. (1.60) follows by expressing tangential derivatives of normal derivatives as
projections onto tangential and normal components. The general form of the terms
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in (1.60) follows from the fact that the projections are defined in terms of the nor-
mal, and each time a derivative falls on the normal we get a factérapid at the
same time the total number of derivatives decreases by 1.

One way to obtain the leading-order terms is to expgumdthe distance to the
boundaryd(x) = dist(x, 3D;). To highest ordef1d"q ~ 3'q. To calculate the
next terms, let us assume tlipt= 0 onaD;. Thenqg/d = V,,q on 3 Dx, and since
d =TId = 0 and9 = Vd on 3Dy, we have

(1.61) Mo’ q = naf(d%)

r—2
— Z(L)n(af—z—@)énaf(%)
£=0
r—2 r
= Z <£) (0" "29)R(3° V.4 q) + lower-order terms
(=0

where “lower-order terms” means terms that contain at least one more faéor of
In the appendix we give interpolation inequalities to deal with the products on the
first row of (1.60)

(1.62) [10°Vaql 10" 201| 2y0 <

ar—2 ar—2
elVaaliLe@onlld" 0l 2@y + CellOllLe@oy 10"Vl 2.0 -

The lower-order terms on the second row of (1.60) are estimated by interpolation
and Sobolev’s lemma.

1.4 Elliptic Estimates Using the Bound for the Second Fundamental
Form (Section 5)

Ifg=0o0ndaHyand0<r < 4orr > (n—1)/2+ 2, then we obtain the
following estimate from (1.59) and (1.54):

(1.63) 113" MdllL2py < C(K, VOl Dy, 101l L2005 - - - » 13" 20l L20p))
(”VNQHL“(BQ) + Y ||VSAQ||L2<&>)-
s<r—2

If, in addition,r > (n—1)/2+ 2, then it follows from (1.59), (1.54), and Sobolev’s
lemma that

(1.64) ||8r_1q||L2(61)t) + 19q]lLe@oy <
C(K. VOl D, [8]lzpyy. - - - 13 26ll2m0) D IVEAQI L2y -

s<r—2

(1.63) together with (1.42) now gives a bound f@* 1D, PliLzpo, fors <,
since, by (1.17)[352AD;pll 2py = 10(3°p) + O(8%v)l| 2o, is bounded by
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(1.41) fors < r and sincé|V y D pll L~ .0, iS bounded by the a priori assumptions.
The bound for||a5~1D; PllL2@p, for s < r together with (1.59) and (1.42) gives
(1.44). This suffices to prove the energy estimate. However, in order to prove
Theorem 1.2, we also need to get back bounds for the a priori assumptions, which
is where (1.64) will be used.

1.5 Bounds for the Geometry and the A Priori Assumptions
(Sections 3 and 7)

We need to control the Sobolev constants for the surface and the derivatives of
the coefficients of the quadratic for@. These are easily controlled by an upper
bound for the second fundamental foehrand a lower bound for the injectivity
radius of the normal exponential mag This proves Theorem 1.1. To prove
Theorem 1.2, we also need to control the time evolution of the a priori assumptions
(1.33)—(1.36). However, there is a difficulty with (1.33) because we do not have
an evolution equation farp and the evolution equation fér loses regularity, so
we have to control these in an indirect way. It turns out that in order to control
the Sobolev constants for the interior as well as for the boundary (see Lemma A.4
and Lemma A.2, respectively), the constant in the elliptic estimate (1.41), and the
constant in the interpolation inequality (1.49), it suffices to have an upper bound
1/t < Ky instead of (1.33), wherg = 11(¢1) is defined to be the largest number
such that

(1.65) [N (X)) — N(X2)| <e1 WhenevelX; — Xz| <3 andXy, Xo € 9D,

for some fixed number & ¢, < 2.

To prove this, one makes a partition of unity into neighborhoods where (1.65)
holds. An upper bound fatr and a lower bound far; then implies a lower bound
for io:

. L1 1
(1.66) to > min (—, ) .
° 2" 161~

In fact, suppose that* = X — ((N(X), X € 3Dy, is a point inD; such that

the interior normal exponential map 6fD; fails to be injective just beyond*

along the normal line. — X — AN(X), while dist(x*, 30) = g, the injectivity

radius. Then eithex* is a focal point, i.e.f has an eigenvalue/d, or the line

A — X—AN(X) is contained inD; for all A € (0, 2,o) and intersect8 H; normally

atA = 2, in which case (1.65) cannot be true for the two endpoints. Since a

similar argument holds for the exterior normal exponential map, (1.66) follows.
The bounds (1.35) and (1.36) are easily controlled by the energy using (1.41),

whereK can be replaced bi{; > 1/t;, and Sobolev's lemmaif > rg > n/2 +

3/2: By Sobolev's lemma (Lemma A.4) and (1.53),

fo

(1.67)  [0lfwimy + 1001y < CKDD [18%0]122 4, < C(KDE, .
s=0




MOTION OF FREE SURFACE OF LIQUID 1551

The proof of the fact that we can replaseby K; in (1.54), however, requires
some work; see Lemma 5.7. By (1.54), (1.55) (note thanters quadratically in
the left and linearly in the right), (1.67), and Sobolev's lemma (Lemma A.4 and
Lemma A.2),

2 2ANn2 *
(1.68) 19PIE g, + 18Pl 50, < C(K1, VoIl Do, Ef;) .
Since the evolution equation férloses regularity, and since the estimate fol

depends on th&* estimate, we will control it in an indirect way. By (1.27) and
(1.68),

161l < ENTI82P]lLox (a0
< € [[0°pllL~@oy < C(K1, Vol Do. €. E;Y)
(1.70) whereg(t) = (V. p(t, ) ey -

(1.69)

The estimate fof| V ; D; p|| L0, follows from (1.64).

It remains to control the evolution &; andé&. The bound foK; follows since
we can control the time evolution of the boundary in the Lagrangian coordinates
X(t, y) and of the normalv (x(t, y))

(1.71) Dix=v and DN = —(@iv)N,

where the right-hand sides are bounded by (1.67). We also have evolution equa-
tions for& andE;,

(o5

(1.72) ‘a < IVaDipll ~ &% < C(Ky, &, E;:. Vol Do),
dEr * *

(1.73) | = €K & Earyrs VOl DOE;

Assuming (1.65), the energy bound (1.40), and the bofiig < 2&(0), inte-
gration of (1.71)—(1.73) gives back slightly better bounds # 7 (K1(0), &(0),

E/; (0), Vol (Dy)) is sufficiently small, so Theorem 1.2 follows. In fact, integrat-
ing (1.71) by using (1.67), we see that the chang#/iandx are under control if

t < 7 is small. Hence we get back the bound (1.65) if it is true witl2 and 2;
initially.

2 Transformation of the Free Boundary to a Fixed Boundary:
Lagrangian Coordinates, the Metric, and Covariant Differentiation
in the Interior

Assume that we are given a velocity vector field, x) defined in a setD C
[0, T] x R" such that the boundary ab; = {x : (t,X) € D} moves with the
velocity, i.e.,(1, v) € T(3D). We will now introduce Lagrangian or comoving co-
ordinates, i.e., coordinates that are constant along the integral curves of the velocity
vector field so that the boundary becomes fixed in these coordinates.
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Letx = fi(y) be the change of variables given by

d .
@2.1) d—)t( —u(t, Xt y), X0 y) = fo(y) if (t,y) € [0, T] x Q.

Initially, whent = 0, we can start with either the Euclidean coordinate® ia Do
or some other coordinatdsg : 2 — Do where fy is a diffeomorphism in which the
domain$2 becomes simple. For eathwe will then have a change of coordinates
fi: Q@ = Dy = {X: (1, X) € D}, takingy — X(t, y). The Euclidean metrig;; in
D then induces a metric

ax' 9x!
oy ayp
in Q for each fixedt. We will use covariant differentiation i with respect to
the metricgan(t, y), since it corresponds to differentiationd under the change
of coordinates? > y — x(t,y) € D, and we will work in both coordinate
systems. This also avoids possible singularities in the change of coordinates. We

will denote covariant differentiation in thg,-coordinates byw,, a = 0,...,n,
and differentiation in the;-coordinates by;,i =1,...,n.

Covariant DifferentiationThe covariant differentiation of @, r) tensoik(t, y)
is the(0, r + 1) tensor given by

0Ka, ...
(23) Vakal...a( == a;aar
where the Christoffel symbolsgb are given by

¢ 0% /30bd  30ad  9Gab aye 92!
(2.4) ab= "5 | 7. b~ avd | = 5 gvagyd’
2 \ dy oy Yy ax! 9yaday
whereg® is the inverse ofjap. If w(t, X) is the (0, r) tensor expressed in the
coordinates, then the same tenkdr, y) expressed in thg-coordinates is given

by

(2.2) Gan(t,y) =4

d d
T, Kaa — o — T Kay

axit X
8ya1 "'ﬁwil'"ir(t’x)’ X = X(t,Y),

and by the transformation properties for tensors,

(2.5) Kay ..o (L, Y) =

ax axit X' dwy,..,
(26) Vakal...ar = — LR Il. : .
dya gy gyx  9x
Covariant differentiation is constructed so the norms of tensors are invariant under
changes of coordinates,

2.7) galbl g br Kay..a Koy by = sl ... il Wigooiy Wgenijy -
Furthermore, expressed in tiiecoordinates,
ad ay? 0
2.8) B, =

T o ax gy’
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Since the curvature vanishes in tkecoordinates, it must do so in thecoordi-
nates, and hence

(2.9) [Va, Vb] = 0.

ant differentiation commutes with lowering and rising indic&g®Vakp..e.q =
Va0%ky..e..q- Let us also introduce a notation for the material derivative:

d ad ad
(2.10) Di = — = — +ok—.

ot y=const ot x=const IX
In this section, indicea, b, ¢, .. ., will refer to quantities in the/-coordinates, and
indicesi, j, k, ..., will refer to quantities in thex-coordinates.

It is now important to be able to compute time derivatives of the change of
coordinates and commutators between time derivatives and space derivatives.

LEMMA 2.1 Let x = fi(y) be the change of variables given {&:1), and let gy,
be the metric given b2.2). Letv; = §;;v! =v', and set

(2.11) Ua(t, Y) = vi(t, X)aX'/dy?, U = g*®up,
hab = DtGab, heb = gacgbdhcd .
Then
(2.12) ta_wza_ﬂ%’ Y0y oue
gya  dya axk X IXK 9
(2.13) DiGab = Valp + VblUa, Dyg?* = —h2", Didug = gemhaizbdu“g ’

(2.14) DiI'5p, = VaVpu©,
where duq is the Riemannian volume element@rin the metric g.
PROOF. We have
ax'  aDX' gy 0x* vy
Yoya T aya  gya  gyagxk’
which proves the first part of (2.12). Furthermore,

ayP ax/ ayP\ axl ay? _ ax
0=Di{| ——)=|Di— ) —+ —Di—.
t(ax' ayb> < Yaxi ) ayb + axi ' ayb
Multiplying by ay?/dx} and using the first part of (2.12) now gives the second
part. To prove the first part of (2.13), we note that that by (2@, is the sum

overi of
ax axi axi\ ax  ax axi
D (22 ) = (D2 ) &2 4 2% (p, 22
t<i93/a8yb> <t8y3>8yb+8ya( ayb>

CoxK o x| axt axk oy
Cay2axkayb  gya gyb gxk

Vaub + Vbua
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by (2.6). The second part of (2.13) follows from the first since @;(g2°gyc) =
Dt(9%®)Gbc + 97Dt (Gbe), S0 Dg?* = —g®™g?*Digpe. The last part of (2.13) fol-
lows since in local coordinatety.y = /detg dy and D; detg = detg g?°D; Jap.
It follows from (2.4) and (2.13) that

cd
Dils, = g7(Va DtGbd + VoDt Gad — VaDtGab) = §°VaVily .

LEMMA 2.2 Letwj,..i, (t, X) be an arbitrary(0O, r) tensor, and let

axit X
(2.15) Kay...a (£, Y) = wi,., (L, X)ﬁ e By where x= f(t,y).
Let Dt = |, ongian@nd v’ (t, X) = 3 f(t, y). Then
vt vt axit  axir
Dtkal“.ar = (thilu.ir + Wy...i; ﬁ R Wiyl axif > ayal cee aya(
(2.16) . .
ax" ax'r
= (0t|,_eoneis-ir + (<,cvw)i1.._ir)ﬁ oy

and.£, is the Lie derivative.

PROOF. Note that if the tensor and the velocity depend onlytdahroughx,
then this would just be the definition of the Lie derivative. Now

5 axit  axir
—_— w|1|, (t9 X) a e ar
at y=const gy ay
(a (t,x) +(d )(t X)8X£> o
= t Wi ENFALT ¢ Wi ~eir ’ ot o
xeconst w ot ) gy oy
82Xi1 8Xir 8Xil 82Xir

Sincev‘(t, x) = dx*/at, we see that

9%t oxir Jv't X"

Wiy...i, (T, X) = wj,..i, (t, X)

gtoya  gya

By

dvt axit X

oxit gya  gya

and similarly for the other terms. This proves (2.16), since by definition
v’ v’

(Low)iyiy = v (@eWiyiy ) + we-, P + 4 Wiyt 3o -

’
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We will now calculate commutators between the material derivaliveand
space derivativeg in Lemma 2.3 and covariant derivativeg in Lemma 2.4. In
order to calculate commutators betwdenand higher-order derivatives, - - - 9;,
or Vg, --- Vg, , we will introduce some notation incorporating that these commutators
are symmetric under permutations of the indi¢gs...,i;) and(ay, ..., &), re-
spectively. Le{d");,..., = a{lmir =3, -0, and(V")g..q = V;lma( = Vg - Va.

In particular, it is convenient to introduce the symmetric dot product in (2.19) and
(2.24):

LEMMA 2.3 Letd; be given by2.8). Then
(2.17) [Did] = —(3iv")ok.

Furthermore,
r-1

(2.18) [Dr, "] :Z—(SLJ(BHSU)'E’”’

s=0
where the symmetric dot product is defined to be in components
1
(2.19) (@) 8°), ;=5 > (00r%, V)R i

i1 r! loglogys
oEY,

PrROOF The proof of (2.17) follows from (2.8) and (2.12). In the notation of
(2.18), we can write (2.17) as

[Dt,d] =—(@v)- 9.
Using this repeatedly, we obtain

|_\

r—

[Dy, 8 ZafD 9]t == " 9h@v) -9
(=0
r-1 ¢
( ) al+$v) . al’fs'

£=0 s=0
Since}, ¢ () = (4},), this proves (2.18). O
LEMMA 2.4 Let T,,..o, be a(0,r) tensor. We have
(220) [Dt, Va]Tal...a‘, - —(V31Vaud)Tdaza( — (Var Vaud)Tal...af_ld .
If A = g®V,Vq4 and q is a function, we have
(2.21) [Dr, g%°Va]To = —hV, Ty — (AU Te,
(2.22) [Dy, A]g = —h®*V, Vg — (AU®)Veq.
Furthermore,

r—1

2.23 [D:, V (V) . v q,
(229) : (o) v

S=
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where the symmetric dot product is defined to be in components

1
(2.24) (V) vig), == (ngl?,,agsﬂud)vga‘;s_,,amq.

rt
oEX:

PROOF (2.20) is a consequence of (2.13) since in components the covariant
derlvative IS glven l:)>WaTal...ar == aTalar /8ya - FglaTana — Fg{aTal..‘a{ild.
Now

[Dr, 0°Va]To = (Dig™) VaTs + g°°[ Dy, Va] To,

and (2.21) follows from (2.12) and (2.20). (2.22) follows from (2.21) applied to
To = Vb, sinceDy Vg = 3:90(t, ¥)/3y® = VbDiq.

In the notation of (2.24), we have by (2.20)
(2.25) [Dy, V]V®q = —s(V?U) - Voq.

Using this repeatedly, we get

=

r—

[Di, V' ]g=>_ VD V]V g
¢=0

r—1

=—> Vo —t—D(V?u)- Vg
£=0
r-2 ¢ )

=— r—+¢— 1)( )(VS+2u) -V —s1g.
=0 s=0 S

SinceY ;2 — ¢ — 1)({) = (4. ,), this proves (2.23). O

Notice that the difference between (2.18) and (2.23) is that in (2.23) the term
with s = 0 is absent, which is the advantage of going to covariant differentiation.

3 The Geometry and Regularity of the Boundary:
The Second Fundamental Form and Extension
of the Normal to the Interior

In this section we will deal with the geometry and regularity of the boundary.
The regularity is measured by the regularity of the normal, in particular by the
first space derivative, i.e., the second fundamental form. We also need to control
how far off the boundary is from self-intersecting since we want to foliate the
domain close the boundary into surfaces that do not self-intersect. This can be
achieved by the level sets of the distance function to the boundary. This gives
an extension of the normal to the interior, which we need to prove our estimates.
The size of the neighborhood in which the level sets are well-defined and smooth
determines the size of the derivatives of our extension of the normal to a vector
field defined everywhere in the interior. We also want to control the time evolution
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of the boundary, which can be measured by the time derivative of the normal in the
Lagrangian coordinates.

We will use both the Eulerian coordinates and the Lagrangian coordinates.
When we calculate time derivatives, it is of course most convenient to do so in
the Lagrangian coordinates, whereas the Eulerian coordinates are more convenient
to use when we measure how the surface lies in space, since we want to be able
to compare the normal at different points. In this section we will also define the
projection of a tensor to the boundary that we will use to define covariant differen-
tiation on the boundary. The projection will play an important role in our estimates,
and we will discuss it in detail in Section 4.

DEFINITION 3.1 LetN2 denote be the unit normal &2,
(3.1) 0auNANP =1, gupN3TP =0 if T € T(3Q),

and letN, = gapNP denote the unit conormad®®N, Ny = 1. The induced metric
y on the tangent space to the bounda@ry2) extended to be 0 on the orthogonal
complement iril (2) is then given by

(3.2) Yab = Gab — NaNp, 3 =g — N&NP.

The orthogonal projection of am, s) tensorSto the boundary is given by

5. d ds oC1-+-
where
(3.4) ys =68: — NaN® and & =482 — NN..

Covariant differentiation on the boundaWis given by

(3.5) VS=TIVS.

The second fundamental form of the boundary is given by
(3.6) Oab = (ITVN)ap = ¥, VcNp .

Note first thatV is invariantly defined since the projection and the covariant
derivative are. Note also th&tindeed corresponds to the intrinsic covariant deriv-
ative ¥ of the boundary:

LEMMA 3.2 Suppose that the coordinates are chosen so that locally the boundary
is given byaQ2 = {y : y" = 0} and parameterized bgy*, ..., y"1). Let¥ denote
covariant differentiation o <. Then

YaTP fora,b=1,...,n—1

ifT"=0.
0 fora=norb=n

(3.7) VATP =
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PROOF The conormal ifN; = §an/4/Q™, and the normal iN?® = g2°N, =
02"/./g™. The induced metric is given by, = gap fora,b=1,...,n—1, and

its inverse is given by = g2® — NaNP fora,b=1,...,n — 1. Note also that
Ya=vys=y"=y3=0 whena<n
ye=yb=14b whena < n
Y2 =y = —g"/gmn whenb < n.

Let us at this point use the notatioit = g2°Vy, V2@ = g2°V,, and¥2 = y2°W,,
where the last sumis only ovbr=1, ..., n— 1. To prove (3.7), we first note that
VATP = y3ybva TV = yava TP = 0 wheni = n orb = nsincey)) = 0. On the
other hand, if I< a,b < n —1, then

va-l—b __ .,anaad” aTb bb(’l—w T¢) =
- ya’g aya// + g a’b’c - y

andifl<a,b,c<n-—1,then

az 0TP
oy?

+ y2 P TS,

1 /00 00ac 00ab 1 (0¥0c 0%Yac 0%ab
1—‘abc:_ b c = A a b c :rabc
2\ gy? ay ay' 2\ 9y ay ay'
gives the intrinsic connection, so (3.7) follows. O

It follows that any invariant quantities formed from either side of (3.7) have to
be equal. If the coordinates are chosery%e= 0 ond<2, then the curvature dfQ
is related to the second fundamental form by Gauss equations

—d
(3.8) Reap = Oacl — Opc0? .

Recall also that ifl is tangential,

(39) [Va, vb]Talar - _ﬁingcar — ﬁirabTal“-C .

We also need to extend the normal to a neighborhood of the boundary. The exact
extension of the normal to the interior is not so important at this point. Basically
we want to have control of the supremum norm of the time and space derivatives
of the normal in the interior. One way to define an extension of the normal in the
interior is to consider a foliation a2 close t0d 2,

(3.10) S ={yeQ:dit,y)y=21}, d>0inQ2, d=00naQ.
The unit conormal t&g, is then given by
(3.11) Ny = %d

T /o, dacd

It is natural to taked(t,y) = disty(y, 92) to be the geodesic distance to the
boundary, which is the same as the Euclidean distance ix-treiables. Ifd
is the geodesic distance in the metgcthen the conormal itN, = V.d and
® = VN = V2d = [1V2d, and the normal derivative of the normal vanishes
VnN = 0. Sincet = ITV2d = V?2d, it follows thatVe = ITVIIV2d = [TV3d is
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symmetric as well V26, however, is not symmetric, but the antisymmetric part is
lower order. By Gauss equations (3.8)—(3.9),

(3-12) vavbecd - vbva@cd = [vaa vb]gcd = _ﬁiabeed - ﬁgabgde-

Furthermore, sincé\ - N = 1, we getN - V2N + (VN) - (VN) = 0; in other
words,

(3.13) Vnbab = —656ch ,

so the second fundamental forms for the surfagefor small . are as regular as
for 2. We will discuss this and the regularity of the extension of the normal to
the interior further in Lemma 3.10.

Let us now discuss two definitions to control the geometry and regularity of the
boundary. Let us express our surface inxheariablesd D; c R" using the metric
there.

DEeFINITION 3.3 Let N (X) be the outward unit normal tdD; atX € 0D;. Let
dist(xq, Xo) = |X1 — X»| denote the Euclidean distancel#fi, and forXy, Xo € 4D
let dist o, (X1, X2) denote the geodesic distance on the boundary. LeixdisD;)
be the Euclidean distance froxo the boundary.

DEFINITION 3.4 Letig be the injectivity radius of the normal exponential map of
0Dy, i.e., the largest number such that the map

(3.14) 0D x (—tg, o) — {X € R": dist(x, 9.D;) < 1o}
given by(X, 1) - X =X + (N (X)
is an injection.

Note thatiy > 1/|0|L~@u0,), for along the normal line fronx € 9Dy, the
first focal point is at a distance/[B(X)|, where|6(X)| = sup, —; |0(X) - v| is the
greatest eigenvalue in magnitude. Instead of using the injectivity raglivse
can use a radius that, in conjunction with a bound for the second fundamental
form, is comparable. The radiusworks equally well for controlling the Sobolev
constants, and it is easier to control the time evolution off.

DEFINITION 3.5 Let 0< &1 < 2 be a fixed number, and lat = ¢1(¢;) the largest
number such that

(315) |¢N(Y1) — N(72)| <& WheneveﬂY1 —Xo| <11, X1, X € 0D .

Remark.Note that Definition 3.5 also says that the intersectigh N B(t1, Xo)

of the surface with an open ball of radiuscentered at any poirXy € 9D is
connected, and it can be written as a graph over the plane orthogonal to the normal
N (Xp) at the centeky. In fact, we claim that the line segment By(:1, Xp) along

the exterior normalV (Xp) from any pointX; in the same component 6fD; as

Xo is completely contained in the complemdi®; (and the line segment in the
opposite direction is completely containeddn). In fact, if not, then there would

be a poinix, € 0D; where it would enter the regiof; again, and at that point the
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exterior normalV (X2) would have to make an angle of at leas® with & (Xp),
contradicting the condition in Definition 3.5.

LEMMA 3.6 Suppose tha| < K, and letig and(; be as in Definition$.4 and
3.5. Then

(11 1 ) £
(3.16) to > min (51 R) and 1 > min (2[0, %) .
PrOOF Let

l3 = min X —7Z|.
distyp; (X, 2)>7/K

13 11 . . 3 1
lp=—>—= |if mln(L0,§> < —

We claim that

272 - K
By Definition 3.4 there ar&; # X, on the boundary such that
X1 +aN(X1) =X, + bN(Xy) forsomelal <, |b] <.
If 1o < 1/K, then by Lemma 3.7 dish, (X1, X2) > 7/K, and hence

13 = dismrg‘izrgzﬂ/K X —Z] < |X1 —Xo| < 29 < % .
If 13 < 2/K, it follows from Lemma 3.7 that the minima above are attained at
some, possibly different(Xs, Xs) € 0D x 9D with distyp, (X3, Xa) > /K.
HencedD; x 0D > (X,Z) — |X — Z| has a local minimum afXs, X4), so the
normals./V (X3) and .V (X4) are parallel to the line betweéiy andX,. From this
it follows thatiy < 13/2, and it also contradicts the condition in Definition 3.5 so
we conclude thats = |X3 — X4| > (1. This proves the first part of (3.16), and the
second part follows in a similar way; if dis, (X1, X2) < 7/K, then by Lemma 3.7

|V (K1) — N (X2)| < Zsin(K disty o, X1 X2)

2
. X1 —X
if |X1 —Xz2| < &12/Kx. If, on the other hand, digp, (X1, X2) > 7/K, then|X; —
Xo| > 13, and ifiz < 2/K, theniz = 219 SO|X1 — X3| > min(2/K, 2up). O

LEMMA 3.7 Suppose thap| < K and0 < distyp, (X1, X2) < /K. Then
1 1
(3.17) X1+aN (X)) #Xz+bN(Xz) forfal < . bl < .
Furthermore, if|f| < K anddist)p, (X1, X2) < /K, then
2dist p, (X1, X2)
T
N (Xp) - N (X2) > cos(K distyp, (X1, X2)) -

(3.18) X1 — Xa| > and
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PROOF. Letu(s) be a geodesic ia2 parameterized by arc lengtla,(s)| = 1,
with a(s) = Xj. Letsy = (s — 1+ s,)/2. To simplify notation, we assume that
S = 0 anda(0) = 0 and sewx(0) = 7. Let N (S) be the normal tax(s), and
k(s) = 6(a(s), a(s)) be the (normal) curvature of(s), i.e.,@(s) = £K(S)N (S).
We will show that7 - (x(s) + awN(s)) > 0 for |a] < K and thatT - a(s) >
sin(Ks)/K provided that 0< s < 7/2K. Since the same result is true in the
negative direction, this would prove the lemma.

Let ¢ (s) be the angle thak(s) makes with7™; i.e.,a(s) - T = cos¢(s). Then
|¢3(s)| <Kso0< ¢(s) < Ks. Letx(s) = a(s)- T andr (s) = |a(S) — T (x(S) -
7)]. Thenx(s) = cos¢(s) > cos(Ks) and|f(s)| < sing(s) < sin(Ks). Hence
x(s) > sin(Ks)/K andr(s) < (1 — cos(Ks))/K. FurthermoreJg - N(S) >
cos(¢(s) + m/2) = —sing(s) > — sin(K's), which proves the lemma. O

Note that it follows from the remark after Definition 3.5 that in a neighborhood
of Xo € 0D, we can write the boundary as a graph. We can now make a patrtition
of unity into coordinate neighborhoods where this is true, which will be used to
control the Sobolev constants:

LEMMA 3.8 Suppose thaD; ¢ R" with the boundary satisfying the condition in
Definition3.5with (; > 1/K;. Then there arg; € C*(R"), i = 1,2,..., such
that

a . 1
319) DY xi=1. Y 19“xl = CuKy, diam(supr)) < 1.
p p

and for each xe R" there are at mosB2" i such thaty; (x) # 0. Furthermore,
eithersuppxi) N 9D, is empty or is part of a graph contained éDy, which after
a rotation is given by
(3.20) X"=fix), X, xH)eR", X -x|<u,

[0fi| <&, X €dDy, N(X)=(,...,01).

PROOF. Let B(r, x) denote the ball of radius centered ak. Let p; = 11/16,
and let{B(2p1, X;)} be a cover oR" such thaf B(p1, X)} are disjoint. We define

X (X = Xi|/411)
Do x (X = Xi]/4u)
wherey e Cg° satisfy 0< x < 1, x(s) = 1 whens < 0 andx(s) = 0 when
s > 2. The number of disjoint balls of radiyg that can be contained in a ball of

radius 16, is 16'. Since suppy;) is contained in a ball of radiuse, this proves
that for eachx € R" there are at most 8 such thaty; (x) # O. O

Xi(X) =

We will now estimate first-order derivatives of the extension of the normal to
the interior. In Lemma 3.9 we estimate the time derivatives on the boundary. It is
now natural to work in the Lagrangian coordinates. In Lemma 3.10 we estimate the
geodesic extension of the normal to the interior in a neighborhood of the boundary.
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LEMMA 3.9 Let N be the unit normal t6<2, and let hy, = Dygap/2. On[0, T] x
02 we have

(3.21) DiNa = hynNa, D¢N® = —2hSN? 4 hynyN©,
(3.22) Diy®® = —2y**heg.
The volume element @12 satisfies

(3.23) Didu, = (trh —hyn)du, = (tréu- N + 2V, tp)du, .

PrROOFE Since the right-hand sides of (3.21) restricte@orl ] x 92 are inde-
pendent of the extension of the normal to the interior, we may choose the foliation

Na = __GU wheredQ ={y:u(y) =0}, u<0in.
NCRERTET
Then
DiNa = —%Na(Dth%NcNd = hnnNa
and

DiN? = D;g?¥Ng = (D1g?¥)Ng + gD Ng = —2h?¥Ng + hynN?,
which proves (3.21). (3.22) follows from
Diy® = Di(g* — N*N”)
= Dg® — (D{N?)NP — N3D;NP
= —2h? 4+ 2h@NCNP + 2hBNIN? — 2h NN NENP
= (53 — N®Ng) (85 — NPNg)h? = —2y2yPhed

Introducing coordinates, we hade, = /detg dy and D;./detg = /detgtrh.
Now du, = /detg(}_ N2)~Y/2dS wheredSis the Euclidean surface measure,

andD;(}° NA) 12 = —(3)(3- N?)~¥/23" 2N, D Ny. But D¢ Ny = hyn Ny, which
proves thaD;du, = (trh—hyn)du, . Now trh—hyn = ¥3Vau, = 2V, (Npv-
N) + y2OV 4y, O

We will now extend the normal to a vector field defined and regular everywhere
in the interior such that whed(t, y) < /4, it is the normal to the setfy :
(t, y) = do}, and in the interior it drops off to 0.

LEMMA 3.10 Let g be as in Definitior8.4, and let dy) = disty(y, 0%2) be the
geodesic distance in the metric g from yotQ. Then the conormal B= Vd to the
sets §=0{y € Q : d(y) = a} satisfies

L
(3.24) |Vn| <28|L~@pe and |Din(t,y)| < 6lh| L~ whendy) < EO-
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ProoOFE Now sincen-n = 1, it follows thatn- Vn = 0 and hencé&Vn) - Vn+
n-Vv2n = 0; sinced = Vn, we getVyo = —0 - 6. It follows that|Vy|0]| < |02
If d(y) = disty(y, 322) < 1o, then there is a uniqug € 92 such thad(y,y) =
disty(y, 9€2). Hence we can introdu@kandy as new variables so that= y(d, y).
In these coordinate8y = d/9d, so with f (d) = |6(d, y)| we get the inequality
| f/(d)| < f(d)?for each fixedy. It's easy to see that(d) < 2f (0) if2df(0) < 1,
and hencéd(d, ¥)| < 2|0| =g if 2d|6|L~@e) < 1, which proves the first part of
(3.24). We claim that
(325) VnDid =hyn, VnO4+0-n=0-h-nifh=Din—h-n.
In fact, sinceg®N;N, = 1, we have

0 = 2g%°N, Dy Np + (Dt g?®)NaNp = 2V Did — 2h3° N, N,
and the first equation in (3.25) follows. Since
Vehnn = Ve(N*NPhap) = N2N°Vchap + hapVe(N*NP)
= N&NPV,hep + hap(NPO2 4+ N39P)

by differentiating the first equation in (3.25) we get

VN Dt Nc + Qth Ne == VCNevEDtd == vChNN

= VN (thNb) + QghebNb + QgNahab .

With ne = D¢N; — hepNP, we getVyne + 68ne = 6°N2h,p, which proves the
second part of (3.25),

(3.26) VNI < 101In] + 16][h] < K[n[ + KTh] if K =2/0]L~@e) -

Thus using the coordinatgs= y(d, y), we get
dt

.Y)
In(t, y)l sed<“y>*<|h(t,7)|+/ edtY=9KK |hids

0
< &“K(Int, )l + Kd(t, ylhli=g)

wherey e 9Q satisfiesd(t, y) = disty(y, ¥). SinceKdp < % we getjn(t, y)| <
2In(t, )| + |h|Le@ Whend(t, y) < do. SinceDin(t, y) = hyn(t, Y)N(t, y) and
n = Din —h-n, we get|Din(t, y)| < 6|h|L~(g). O

LEmMMA 3.11 Letio be the reduced injectivity radius of the normal exponential map
of 02, and let @ be a fixed number such tha/16 < dy < 19/2. Letn € C*(R)

be such tha(s) = 1 when|s| < 1/2, n(s) = Owhen|s| > 3/4,0 < n(s) < 1,
and|n’(s)| < 4. Then the pseudo-Riemannian mejrigiven by

(3.27) Yab = Gap — Aaflp, 3 =g® — N®NP, N2 = g,

d
wheref; = n (d—>Vcd
0
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satisfies
1

(3.28) |Vyli=() < 256(|9|L°O(as2) + L—) and [Dyy(t, y)| < 64h| =) .
0

PROOF. We haveV i, = —n(d/dg) VcNg — 1'(d/do) NaNe/dg, which in view
of (3.27) proves thadtVy| < 2|Vn|+16/dy, so the first inequality in (3.28) follows.
Sinceyap = gap — Nahp, Whereny, = n(d/dg) Ny, we haveD; iy, = n(d/do) Dt Np +
n'(d/dg)NpDd/dg. Integrating the first equation in (3.25) givedd(t, y)| <
Ihnn L@ d(t, ¥), and sinced /dy < 1 in the support ofy(d/dp), this proves the
second part of (3.28). O

Note that in a neighborhood @2, y is just the induced metric on the surfaces
S. ={y eR":d(y, 92) = A}, and in the interioy is just the interior metrig.

4 Estimates for the Projection of a Tensor to the Tangent Space
of the Boundary

DEFINITION 4.1 LetN be the unit normal t&dQ2, and letVy = NjV,- be the
normal derivative. Letl(t, y) = disty(y, 0Q2) be the geodesic distance froyro

0%2, and letN; = Vid be the geodesic extension of the normal to the interior. Let
6 = ViN; = V;V;d be the second fundamental formast. Lety,! = 8/ —N;NJ,

and ifI = (ig,...,ir) andJ = (jg, ..., jr) are multi-indices of lengthl | =,
sety) = y'...y" andN' = N'*...N_ If gis a(0,r) tensor inQ, define
the projectionI1g to a tensor ordQ to be (I1B), = y,’B;. Let VB = VA
denote the tangential covariant derivative. This is the intrinsic covariant derivative
of 92 if B is already tangential t6<2, i.e., if Bi,..i,...i, NK=0,k=1,...,r; see
Lemma 3.2. Furthermore, 181" andV' be the operators that in components are
given byV! =V ---V; andV| = V;, --- V; , respectively.

DEFINITION 4.2 Leta be a(0, s) tensor angs a (0, r) tensor. We will Ieb@ﬁ de-

note some partial symmetrization of the tensor produ®s, i.e., a sum over some
subset of the permutations of the indices divided by the number of permutations in
that subset. In each situation there is of course a specific subset, but in our esti-
mates it does not matter which one, so to simplify the exposition we do not write
out the exact permutations. Similarly, we ¢€18 denote a partial symmetrization

of the dot product - 8, which in turn is defined to be a contraction of the last index
of & with the firstindex off: (& - B)i iy s » = 9" tiyeic_1i Biisir o o-

The simple observation that will help us is thatjit= 0 ond <2, then the projec-
tion of the tensof2q to the boundary will only contain first-order derivativesopf
and will contain all components of the second fundamental form. In fact,

(4.1) [1V2q = V2q + 6Vn(,
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where the tangential derivativ8gq = 0 on the boundary. To prove (4.1) we note
that
(4.2) )/jkvi Ve = —yjkVi(NkNl) = —yjkﬁik N' — yjkaQil = —6;N',

o)
(43) V,qu = yii/)/jj Vi/yjj/ Vj//q = ]/ii/)/jj )/]J/ Vi/Vjuq + )/ii,)/j] (Vi/yjj, )Vj”q
=%y ViViq—6;Vna.

We now want to find a higher-order version of (4.1). One way to understand
why there should be such a formulagjit= 0 0na <2 is to expand) in a Taylor series
in the geodesic distanckfrom the boundary. 1§ = 0 ond 2, thenq/d ~ Vnq is
a well-defined function in a neighborhoodaf®, and hence we can write

nv'gq=nv' (dg) — ; <rs)n(vfsd)e§>nvs (%) .

Since, howeverd = I1Vd = 0 ond andVad = 6, we obtain

r—2
r EPIPSRPN q
4.4 nvig= V' 2 @TVS (—) .
(4.4) q=)_ (S) II( Ve (
s=0
PrROPOSITION4.3 On o2 we have
r—2
_ _ r\ — ~ —
(4.5) |MVH—V'q—VnaV 20 - > (S) (V' ™7%0)®(VSVN) | <
s=1
C > V1] - - V6| VoV q|
ro+ri+--+rg+€=r—k
k—¢=0 mod2 k>¢>0, k>2
and
46)  [VoVial=C Y [Vl [VRO|Voq|
fo+f1+-+Fk=ro+£—k
4.7) [V'egl < C > V7] - V6| VoVl ,
Fo+l+F14--+fk=ro—k
where the sums are over all positive integerer0, f; > 0, and k £ > 0.
ProrPoOsITION4.4 We have
(4.8) (ITV"),q =
> Ckea 101 (D (V20)1,® - - ®(V'0),, ®V° (V) ,

ro+Hry+-+re+e=r—kK
where the sum is over positive integergkm > 0,k — ¢ =2m > 0, r; > 0, and
all permutationg(lg, 14, ..., Ix) of (J,iy, ..., i2m). Here

(4.9) Ch131g--1 (@) = Ghemaig.. @112 - - - gom-om
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denotes contractions over m indices. Furthermore,
r—2
~ r\ — o
(4.10) (MV"Hg=V'q+ Z (S> (V' #%9)®(V°VNQ) + F,
s=0

where F is of the form in the right-hand side @F.8) but with k> 2 in the sum.

Remark. Propositions 4.1 and 4.2 apply to the functigrbeing replaced by the
(0, s) tensora as well if the projections and tangential and normal derivatives are
correctly interpreted: Only the first indices should be projected. This will be
explained later in this section; see Proposition 4.11.

The proof of Propositions 4.3 and 4.4 consists of turning projections onto the
tangential and normal components into tangential derivatives of normal derivatives.
The basic idea is that any derivati¥ of orderr can be expressed as a sum of
combinations of tangential derivative8sand normal derivative¥y of total order
at mosts < r, and similarly any combination of normal and tangential derivatives
of total orderr can be expressed as a sum of derivativVésfor s < r. Since
the coefficients of both the normal derivative and of the projection involved in the
tangential derivative are made up out of the normal, it follows that the coefficients
in expressing a derivativ€" in terms of normaVy and tangentiaV derivatives
will consist of derivatives of the normal, i.e., derivatives of the second fundamental
form 6. Whenever a derivative in, say (4.5)—(4.8), falls on the normal, it produces
a new factop. At the same time, the total number of derivatives involved has gone
down by 1, so the total number of derivatives in expressions (4.5)—(4.8) goes down
by 1 for each new factor @f. This simple observation will be used to prove (4.6),
(4.7), and (4.8). The more detailed information in (4.5) and (4.10) formally follows
from (4.4) and the above argument.

The key to turn tangential and normal components into tangential derivatives of
normal components is Lemma 4.5 below. In Lemma 4.6 it is then expressed in a
form that is more directly adapted to the situation in Propositions 4.3 and 4.4.

LEMMA 4.5 Suppose that S is@, r 4+ ¢+ s) tensor that is symmetric with respect
to the first r+ ¢ indices. Let

£ s — j ir jr jr . . .
(411) 1ir+s = (Hr es)il'“iwrs - yljll T VI: NJ e N] H %1'"Jr+l|r+1'"|r+s
be the projection of the first indices onto r tangential ahdormal components.
Then

(412) Hr+l,0Vl—[I’,lS: HI’Jrl,lvs_ r eénl’fl,@%»ls_i_ 00 . Hr+1’6718
where

1 r
=7 Z Oigip, M HHES) i s

p=1
(4.14) (9 Tty = 0) (Y 18) g -

iOil"'irirJrl"'ir-¢—s

(4.13) (oM tts)

foix--irir1-+ir4s
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where |, = (i1, ..., 1p-1,ipt1, ..., 0r).
PROOF OFLEMMA 4.5: To simplify notation, we assume theat= 0. Now

Lo INY _ .0 Jr N1 e
=y N Sy =wpp -y N NG

1oy
wherel = (iy,...,iy) andJ = (ji,..., Jr) are multi-indices of length, and
J" = (jr41, - .-, Jree) is @a multi-index of lengtif. Now

Vioﬁ'f.ir = ViéOMLVjo(VLJ NY'Sy5)
= yiéole NJ VjOSJ J —|— )/iéo)/ll' (VjoyI:])NJ SJ J —|— )/iéoj/lJ (VJONJ )SJJ/ .

By (4.2)
r
3
Y Vior? = — ZGioip)ﬁppN'p,

p=1
Wherelp == (Il, oy ip_]_, |p+1, ooy |r) ande = (Jl, cony jp_l, Jp+1, ooy Jr) FUI’-
thermore,

r+¢

VieNT = " GrN%
p=r+1

vyhereJF/, = (_jr+1, [ .jP‘l’ jpfl, ey drae)- If_We now assume thad is symmet-
ric, the notation simplifies a bit and we obtain the lemma. O

Now we want to apply Lemma 4.5 ®= V'*‘q. Since in geodesic coordinates
VnN = 0, it follows that

(4.15) [VN, TT1 =0, Vi =Nt!...N'V, ...V, .

LEMMA 4.6 Let

(4.16) St=m"v'tq =V IIV'q.

Then

(4.17) SH = VS 4ro®S M —pp . gL

Furthermore,
r—2

(4.18) StV P = Z?f*%k((k +1IGSEH — gp . SH2Yy
k=0

and

r—

Z (r )(vme)évr 727m80,(+l
m

m=0

(4.19) St -V

r—

> e(r N 1) (VMe) v -mghi-1
m

m=0
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T Z A,k (VO)B(V20) RV —4T1rekghtr2
++1 Z brlrzk(vrle)g(ﬁfzg)7vr—2—r1_r2_kskj
+ 03 Cu(V0) (Vr20) GV -2 ek

F L= 1) i (V1) T (V120) TV 1Tk g2,

where the sums are over all integersrrp, k > 0 such that all exponents of differ-
entiation also are> 0.

PROOF. (4.17) follows from (4.12). Now by repeated use of (4.17)
St=VS 4 (r-1ox8 2 _ygt-1

=V(VS™ +(r —208S > —tg. S+

+ @ —1)6xS 2 _yg. gt
r—2
— .. = vr SO,Z + Zvr—Z—k((k + l)eésk,e-i-l — 06 - Sk+2,€—l) ,
k=0
which proves (4.18). To proceed further, we must use (4.18) twice. In the right-
hand side of (4.18) we use (4.18) to wrie‘*! asV¥S“‘*! plus terms involving
one factor of9, and write St%¢~1 asVk+2s%¢-1 plus terms involving one factor
of 6.
Let us first calculate the term involving one factoréof By Leibniz’ rule we
have
r—2

Zvr—Z—k((k + 1)9®vk50,5+1 — 00 . ngO,Z—l)

k=0
r—2r—2—k r—o_
— Z ( )(k +1) (vme)évr—Z—mSO,iJrl
k=0 m=0
r—2r—2—k
.y Z (r 2 k) (vme) jvr—Z—mSO,e—l
k=0 m=0

Il
M1
N
N
3 -
N———"
<
3
2
N
<
P
3
08
<
=
|
~
3 -
ML
-
=
[EY
N————"
<
3
2
1
<
|
3
o8
AN
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since} o "k+D) ("2 = (D andY (5™ (27F) = (*Y). This explains the

terms involving one factor df in the first row of (4n.119). Using (4.18) and Leibniz’

rule, it is easy to see that the term involving two factorg difas to be of the form
in (4.19). O

PROOF OFPROPOSITIONS4.3AND 4.4: The proof is just an application of
Lemma 4.6: (4.5) follows from (4.8). (4.8) follows by induction from (4.17), notic-
ing that the total order of the tensor goes down by 1 for each new factor(4f10)
follows from (4.19). (4.6) and (4.7) follow from the same argument. O

Using (4.17) and (4.18), one can show that

(4.20) TIV?q = V2q+6VNq,

(4.21) TIV3q = V3q - 200(0°VQ) + (VO) VNG + 39RVVNT,

(4.22) Vg = V'q - 68(5(V0)~Va+897V3q) — 2(VO)R(B~VQ)
+ (V20)Vng + 4(VORVVn] + 608V2Vnq
—39R(070)Vng + 39RHVE].

SinceVy = N -V, IIVN = VN = 6, [1V2N = [1V# = IIVIIP = V6, and
VnO =TIN - V2q = —TI(VN) - (VN) = —6 - 6 (see (4.51)), we get

(4.23) Vq=TI1Vvq,

(4.24) VVng =TIN - V2q+6 - Vq,
(4.25) Via=N-(N- V%),

(4.26) V?q =TV?q—6N - Vq,
(4.27) V2Vng =TIN - V3q + 207 TIV?q

+ (V) -TIVqg—6-6N - Vg —6N - (N - V3q),
where in (4.27) we used th&?Vyq = [1V2Vnqg — VZQ.

PROPOSITION4.7 Suppose thatg= Oonda2and0 <r <4orr > (n—1)/2+2.
Let LP = LP(9), and suppose that > 1/Kq, wherer; is as in Definition3.4.
Then for m= 0, 1 and anye > 0, we have

(4.28) IV — (VNa)V' 20

r—1
< e[ VNGllLx [V 202 + C(1/e) D 101K~V " all2
k=1

+C(K1,1/8,|I9||Loo)(IIGIILoo-i- Z IIV59||L2>
0<s<r—2-m
> Ivealle

0<s<r—2+m
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where the second line drops out its 4.

PROOF OFPROPOSITION4.7FORT < 4: We want to prove (4.28) far = 4,
since the proof for < 3 is simpler and follows in the same way. By (4.22) we
have, ifg = 0 ona g,

NVg = (V?0)Vng + 4(V0)®V VNG + BB VZVN(
— 309 - 0)Vng + 39®OVEQ.
The only problematic term can be controlled by Lemma A.1 (lhete= LP(3Q2)):
[1VO1IVVNal | 2 < IVOILal VNGl La

12 /< 1/2 1/2 < 1/2
< ClO1IL=IV0 1 IVNaI= 1 V2VNal

< C27 Y| VNGl V20l L2 + C2 2 7|01 L= [ VZVNTl L2
foranye > 0.

By (4.27), sincd1vVq = 00no2,
IV2Vnallz < 1IV3llz + 3l101L< IVl + 1012 1Vall L2 -
]

The basic inequalities that we will use on the boundary for the proof of Theo-
rem 4.5 in general can be summarized in the following:

LEMMA 4.8 Let LP = LP(@Q)andlett=r — 2. Thenift—m > s,

(4.29) IVoall zism < Cllallan IV a72™, m=>0,t-m>s,

(4.30) Vol a/s-m <
t+m n—1
C(Ky Y IVialz iftz—= s-m=z0 t+mz=s,

{=s

where K is a constant such that > 1/K; andt; is as in Definition3.4. Further-
more,

(4.31)  [I[V"0] - [V™ O]l < ClOISH IV 0o,
(4.32) VSOl zrsim < CIOI 0w ™ IV ™0™, m>0.
Furthermore, we have for evegy> 0if L <s <t
(4.33) [[V'%0|IV°Vnal| 2 <
ellVNGIlL= V'Ol L2 + Ce™ /%160l | V' Vnall L2,
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andif0<m<s<t—m,

(4.34) 1IV'=®011veal|

< IV'"%0]| L2/a—s+m || V3Q]| L 2t/¢s-m)
t+m
1-(t—s+m)/t , ot— (t—s+my/t ?
< CKDIONm ™ IV 55 ™ " [ VEql e

t=s

PROOF OFLEMMA 4.8: Equations (4.29) and (4.31)—(4.33) are just the inter-
polation inequality (A.4) in Lemma A.1. For the proof of (4.31), one first uses
Holder’s inequality. (4.30), on the other hand, is a special case of Sobolev’s lemma,
Lemma A.2, which by the remark after the lemma holds with the covariant differ-
entiation of the interior restricted to the boundary. By Hoélder's inequality and
(4.29) withm = O:

HIV'=201IVeVNal | 2 < V%0l 2ve-s [ VEVNQ Lavs

L Lt —

< ClOIT~ IV OIS I VNall = IV Vg,

< el[VNllL= V'Ol L2 + Ce™ 9510 L V' VNGl L2
foranye > 0,

which proves (4.33). (4.34) follows from Hdélder’s inequality and (4.30) applied to
a = qand (4.32). O

PROOF OFPROPOSITION4.7 IN THE CASETr > 5: The proof is an application
of Proposition 4.3 and Lemma 4.8. Singe= 0, the termV'q = 0 on the left of
(4.5) and the terms on the right with= 0 vanishes as well sb > 2 in the right
sum. Each term in the sum on the left of (4.5) can be estimated using (4.33). Then
we can use (4.6) to estimalfé|| || V' 2Vnq|l 2 by 18]~ ||V ~1q]| 2 plus a sum
of terms of the form
(4.35) [6]lL=]|IV"26]---V™*0|[Vql],.,

ro+ro+---+re=r —Kk, k>2.

Similarly, if we use (4.6), we can estimate the terms in the right of (4.5) (the second
line of (4.5)) by

(4.36)  [IVO]---IV*O[IVQl|| o, To+Ti+---+rc=r—k k>2.
Now a typical term looks like
101l [V =2%011Val | .,

which can be estimated by (4.34) with = 0, 1. The general term is not much
harder: Using Hoélder's inequality and (4.31), we see that we must estimate

(4.37) 101KV Ol llVoqll . fot+r1 =71 —k k=2,
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for some ¥p + 1/p’ = 1/2, which are to be determined. rif = 0, then we can

takep = co, SO we may assume thdt> 1. Similarly, we may assume thgt> 2,

since ifro = 1, we can takg’ = oco. We pick
_20r =2

2(r — 2
4.38 = = =
( ) P r'+m P r—2—r’'—m

and use (4.34) witm =0, 1. O

Note that Propositions 4.3 and 4.4 applgtbeing replaced by th¢, t) tensor
a as well if the projections and tangential and normal derivatives are correctly
interpreted. Only the firstindices should be projected; i.e., all indices referring to
6 should be projected as well as the ones referring to differentiation bt the
ones referring tar itself should not. So we should replafEv" by I1"°V", and

we should replac&" when applied tcm_by%r = "oV —10v ... 120Vt oy,
(One should keep the old definition 8 6, since all these indices are projected
over.) In components, this means the following:

DEFINITION 4.9 Let
(4'39) (Hriovr)i1~~irair+1~“i+t = Villl T Vi:r le T vjrair+l"~ir+t ,

k
VNig.iy = N*Viai, ..,

and

(4.40) (?f)_ iy iy =

iq-ir
j i k ke Np. Ne_g. Ne
Vill .. yir' le(]/jzz Y, sz(. .. mrrfzzymrr,llym, Ve,
Or—1_,0
(yN;—in: vol’fl(yoﬁ')r vpr air+1~-'ir+t)) tee )) .

In fact, with this modification the proofs of Lemmas 4.5 and 4.6 go through.
Also, the interpolation inequality in Lemma A.1 remains true. One just has to
modify the proof to work with mixed tangential and full inner products:

i1j isjs ~i j i j
(4.41) (o, B)yg = y'Ht- . ylslegisrtlsnt. . gisttlsntgy G icn Binisisr s -

Hence we obtain the following version of the interpolation inequality:

LEMMA 4.10 Suppose that is a (0, t) tensor, and leV® be defined as i4.40)
Thenifs<r —2
(442) ||€Sa H L20r=2)/s = C ||Ol ”i;S/(I’*Z) ||€r _Za ||S|_/2(r 2 .

In order to deal with some lower-order terms, the following is useful:
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PROPOSITION4.11 Suppose that is a (0, 1) tensor, and lef15°vs and V° be
defined as irf4.39)and (4.40) Lett=r — 2. Then

(4.43)  |IT°Va —Via|<C > [V V||Vl

ro+ri+--+rg=s—k
k>1, ro>1

Here %roiis defined by projecting over only the first r components aglifa0),
whereasV' 6 is defined as before by projecting over alr2 components. If s< t

(4.44)  (T1PVSall ass <

1-s/t | = t
Cllaell ="V ]|,

L2 -1
+C(Kp(A1+ ||9||L°°)S(”9”L°° + ”vt@”LZ)S/tZ”VZO[”LZ,
=0

where K is a constant such that > 1/K; andt; is as in Definition3.4. Further-
more,
(4.45) [V'allz < -

ClIViallz + C(K)@+ [10/=) (10l + IIVtGIILz)ZIIVZaIILz

¢=0
and

(4.46) [(I120V®)a || (IT2OV 98] |

= [ @OV s

(l—[t—S,Ovt—S)ﬂ H L2t/(t—s)

t—1
< C(Ky) <||a||Loo +3 ||v‘a||Lz) IV'BllLe

=0

t—1
+C(Ky) (nﬂuw +3 Wﬂan) IV ]l 2

=0
+ C(K) @+ [18]lL) (10l + IVl 2)
t—1 t—-1
(nauLoo +y ||vfa||Lz> (nmm +y ||vf/3||Lz> .
=0 =0

PrROOF (4.43) follows from Lemma 4.5. Andif' =ry+--- +r, ' +rg=
s — k, then by Hoélder’s inequality, (4.32) witlh = 0 and (4.30) withm = —Kk,
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respectively,
(4.47) [IV726] -+ - [V 6]V 0| | s

1, =y
< CIOIZHV" Ol 2 V00t 2010

t—k
k— / J— ’
< CKDIOIL " IV'OIS > IV el

l=rg
t—k
< C(KD)(L+ 1811L=) (161> + 170112) " D Vel 2.
l=rg
If s =t this proves (4.45). (4.44) follows from (4.43), (4.42), and (4.47). (4.46)

follows from (4.44), (4.45), and our usual convexity inequadify!b'~5t < a +
b. O

Let us now derive some properties of the projection. Siite= ¥l + N'NJ,
we have

(4.48) l'I(S-R):H(S)-H(R)+H(S-N)€§)H(N- R).
Note also that
(4.49) [V, [1]S=0, [V,I1]1S=0,

[VN,V]S= —6-VS, [VN,V]S=-6-VS,

where we have used th@fy, V] = [Vn, [IVII] = I[1[Vy, V]II. SinceN - VX9 =
0, we get

r—1 r—1
_ _ _ r _ _
4. VN, VT1S= ) VIV, VIV T fs= — VKg) . V'K
(4.50) [Vn,V1S=) V[V, V] S Z(k+1>( 6) - V' s,
=0 k=0
where we used tha¥, 5 () = (,},) andV((TTR) - 11S) = (VIIR) - IS +

(TIR) - VIIS. Furthermore, G&= V(N - N) = 2N - V2N + 2(VN) - VN and thus
VnbO = —6 - 6, so (4.50) applied t& = 6 gives

(4.51) VnV'o = — Z ((k—rr 1) + (rk)) (V¥0) - V' kg .

k=0
5 Elliptic Estimates and Energy Estimates for the Boundary Problem

Most of the results here will be stated in a coordinate-independent way. We
can, however, take advantage of the fact that we have a transfornfaticn —
Dy c R" such that the metric is Euclidean ;. Also, since we are looking
for a short time existence, our metric expressed inyte@ordinates ir2 g;; (t, y)
is equivalent to the metric dt = 0, g;; (0, y). Similarly, the induced metric on
92 ¥ij (1,y) is equivalent toy;; (0,y). Throughout this sectiony will refer to
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covariant differentiation with respect to the metgg in €, andV will refer to
covariant differentiation o2 with respect to the induced metrijg; on 92 as
defined in the beginning of Section 3.

We will assume that the norm&l to 42 is extended to a vector field in the
interior of © satisfyinggi; N'N/ < 1 there such that, in a neighborhoodass,
N is the unit normal to the se@2, = {y : dis(y, 92) = p} andN has the
regularity described by Lemmas 3.10 and 3.11. Then= gj; — N;N; where
Ni = gi; N/ is a positive, semidefinite, pseudo-Riemannian metrie.itJsing the
decomposition into normal and tangential componegtts= N'N! + 'l we can
write

(5.1) 0" g"ViBviB = (N'NIgH + g NKN' + o)
— NINKNIN' 4 K yikyjl)viﬁkvjﬂl
(5.2) 9" g Visvig = (g1 + v g4 — (T = N'NENINY)
— I =y YD) ViAVIA -
The termgy *y ' — N'N¥NIN")V; BV B and(y'l ¥ — 'k y 1) Vi BV B are go-
ing to be lower order: the first one because it can be controlled by givg'¥ Vi B,
which we expect to be lower order, and the second one because the boundary
term vanishes if we integrate by parts using Green’s theorem. Hence (5.1) and
(5.2) say that we essentially can contf®lg|> = g g"'V; g V; A by the normal-

tangential componentg' NKN'V; 8,V; 8 and either the normal-normal compo-
nentsN'NIN*N'V; 8V, 6 or the tangential-tangential componentsy X' Vi 8V; .

DEFINITION 5.1 Letfx = Bik = Vjux whereV| = V;, ---Vj,uisa(0, 1) tensor,
and[V;, Vj] = 0. Letdivg = Vig' = V' divu, and let curB;; = Vipj; — Vi =
V'eurlu;.

LEMMA 5.2 Let 8 be as in Definitions.1, and let Q be a positive semidefinite
quadratic form QV; B, Vi) = q'Y (ViBik) Vj Bai. Then
(5.3) 910 Q(ViBi. ViA) < (2AN'NIg¥ + g N¥N') + 2g'* g
+ @ =y 1)) Qi B ViB)

(5.4)  g'd'QVkBi, ViB) < (n@’ ¥ + ¥ d") + 29" 9"") Q(Vi B, ViB)
and
(5.5) N'NIyMQ(ViB«. ViB) <

2N*N'Y T Q(Vi Bk, Vi B1) + NEN'y ! Q(eurl B, curl ;1) .

PrROOF. Sinceg = y'* + N'NK, we obtain

(5.6) Y Y I'Q(ViBk. ViB) < (299" + 2N'N*N'N') Q(Vi 8. Vi B1) .
(5.7) N'N*NIN'Q(ViB. Vi) < (209" + 2™y 1) Q(Vi . Vi) -
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Equations (5.3) and (5.4) follow from (5.6) and (5.7) and
(5.8) Y 1 Q(aik, o) = (N = Dy vy Qlarik, o) -

To prove (5.8), let tr(a) = y'*aik and letdix = aik — yiky Plopg/ (N — 1) be the
traceless part. Then

tr, (@) tr, (@) = (n — (¥ yMaioy — vy yMais;) .

Let us recall the Gauss formula ferando:
(5.9) fVm(,Bm)d,ug :meﬁmdMV and fﬁ?‘ du, =0
Q R R
if f is tangential t®dQ and N is the unit conormal té@2. The last part of (5.9)

follows since, by (3.8),?7i =Y, T is the intrinsic divergence odg2 if the coor-
dinates are chosen 8® is given byy" = 0.

LEMMA 5.3 Let RIK'Y pe any quadratic form i multiplied with (NKN'gl —
g NN or (gyll — ikgli). Then

(5.10) /Rijk”JVka|iVjﬂJ|d,u=
Q
/leijquanvjﬂald,uy _/(VkRijk“J)alivj,BJldMa
0Q Q

(5.11) /Rijk”JVkoz|iVjﬂJ|dM=
Q
—/N'yikq”vka.iﬂuduy—f(vj RIM') Vi By die.
Q2 Q
Moreover, if RIK'Y is any quadratic form ¢ multiplied with (yX'y1l — yiky 1y,
then

(5.12) f RIMY Vyaj Vi By dp = — /(VkRijk”J)Oln ViBiadu.
Q Q

PrRoOOF. Note that we have the following identities:
(5.13)  RMYIv Vi By = ViR i Vi B31) — (VR v, 815,
(5.14)  RMYIve VB = Vi(RMI Vyayi B31) — (Vi R Vi By
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Integrating (5.13) and (5.14) ovexby using Gauss formula (5.7), we get a bound-
ary term from the divergence. The lemma now follows from

Nk(Nkngij . gkiNINj) _ Nk(gklyij . yikglj) _ leij ,
(5.15) Nj(Nkngij _ gkiNI Nj) — Nj (gklyij _ J/ikglj) — _leik,
Ne(yMy'h —y*ylhy =0,

DErFINITIONS.4 If|I| =|J| =T, set

gl\]:glljlglfjr and yIJ :y|111y|rlr
If « andp are (0, r) tensors, leta, ) = gV« 85 and|«|? = («, ). If (TIB), =
y,’ By is the projection, thekilla, T18) = y'Jay B;. Let

1/2 1/2
I1BllL2) = (fﬁzdug) , 1Blzee = (/mzduy) ,
Q
1/2
ITIBl 200 = ( / IHﬂszy) ,
02

whered g is the Riemannian volume element@randdy,, is the induced surface
measure 0R 2.

LEMMA 5.5 Let B8 be as in Definitiorb.1 and ¢y be as in Definitior3.4. If |9] +
1/, < K, then

(5.16) VB2 < C(g"yMy" I ViBii ViBaj + Idiv BI + [curl B1?)
(5.17) /IVﬁIZdMS
Q

Cf(NiNigk'y”vkﬁnvlﬂJj +|div 812 + [curl 812 + K?|B1?)d e .
Q

ProoOF. The proof follows by induction from repeated use of Lemma 5.2.
1812 = g'? B B can be written as a sum of terms of the form

(5.18) NiTNIL... Niijsyis+ljs+l ... yirjr:Bil“-irﬂjr--jr .

If s = 0,1, then (5.18) is bounded by the right-hand side of (5.16). If we induc-
tively assume that we can bound the right-hand side of (5.18) forsy, then the
bound fors = s + 1 follows from (5.4)—(5.5) in Lemma 5.2. On the other hand,

if we control the right-hand side of (5.17), then we have a bound for the integral of
(5.18) fors = 1, 2. However, by (5.3) in Lemma 5.2 and (5.12) in Lemma 5.3, this
gives us the integral of (5.18) also fer= 0, but then we can use (5.16) to obtain
(5.17). O
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LEMMA 5.6 Let B8 be as in Definitiorb.1 and ¢y be as in Definitior8.4. If |8] +
1/ < K, then
(5.19) 118113250, < C(IVBIL2@ + KlIBlL2@)1BllL2e) »
(5.20) 1181725 < CITIBIZ 245,
+ C(||diV,3|||_2(sz) + [leurl Bl 2q) + K ||ﬁ|||_2(sz))||ﬂ|||_2(s2) .
and
(5.21) [IVBIf2q <
ClIVBILzplBlL2pe) + C(||diV,3||L2(Q) + ||CUV|,3||L2(Q))2-
Furthermore,
(5:22) VB2 < CITIVBIL2p0)ITIN - Bll20g)
+ C(lldiv Bll 20 + llcurl Bll 2y + K 1BllL2)
(5.23)  [IVBIZ2q < CITIN - VB 200 ITBllL200
+C(Il div Bll 2oy + I curl Bll 2y + KllBlliz)?
where N- 8, = N'8;; and N- VB¢ = N'Vig; .

PrRooE Let N be the extension of the normal to the interior as in Lemmas 3.10

and 3.11. Then
/Iﬂlzduy =/vk(Nk|ﬁ|2)du,
02

Q
and sincgVN| < K, by Lemmas 3.10 and 3.11, (5.19) follows. (5.20) follows by
induction as in the proof of Lemma 5.5 from

fq”(NiNj —yDHBi B du, | <
Q2

C(lidiv Bl 2y + llcurl Bll 2y + KlIBllLz@y) 1BllL2) »

if ' is any product of factorg'«ik of the formg'kik, y'kik or N'kN Ik, The left-
hand side is

/Vk(quU(NiNj — ¥y Bii Baj)du
Q
=2/ N g"? (N'NJ — 1) 81 VieBsj due
Q
+ [N (NN = )51

Q
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= —2/ N¥qg'7 1 Bii (ViBaj — VjBak)due

Q

+2fq'~’<NiNi 1)V, BNk de
Q

+ Zf Vi(a" Y N )Bii Bowdpe + /(VkN")q”(Ni N — )i Baj die.
@ Q

(5.21) is just integration by parts twice. (5.22) and (5.23) follow from Lemmas 5.5
and 5.3. 0

One can actually get away with a less regular boundary for some of the esti-
mates:

LEMMA 5.7 Let 8 be as in Definitiorb.1 Then there ig1(r) > 0 such that if the
condition in Definition3.5holds withe; < e1(r), we have with K> 1/i,

(5.24) ||,3||iz(3g) =< C(||V,3||L2(Q) + Kl BliLze) 1812 »
(5:25) 1817250, < CITIBIZ 250,
+ C(HdiV,BHLZ(Q) + lleurl Bl 2q) + KlHIBHLZ(Q))HIB”LZ(Q) .

PrRoOOF. We will prove (5.24) and (5.25) in the-coordinates
Qoy— x(t,y)e D CR".

Since the metric there is the induced metric fr®&%, we can then compare the
normal AV to 9D, at different points. Lety, be the partition of unity in Lemma
3.4, letN, = N (Xp) be the unit normal at some fixed poky € supp(xp) N 0D,
and letN be the unit normal té D;. Then

/xpmﬁwp, NjdS= [ Mo (xplB)ax.

0Dt Dt

whereN is the unit normal t) Dy and(Np, N) = & Ny N1 > 3. Since|d xp| <
CKj, (5.24) follows.
To prove (5.25), we will use a similar estimate to the one in the proof of (5.20),
with & replaced byd,, ¥ = 8" — NN replaced by, = §' — N).A;, and
q'? replaced bygy’, a product of factors', y,', and.A} A . We will use the
identity
eerfak(Sij QpIJXp,BIi,BJj) — 251, (JVFIJ(quJXpﬂIk,BJj)
= —2N0p" xpBikd" 8 Baj + 287 NXOp" xp (i Bik — i) B
+ NE@xp) (87 " Bii Baj) — 28" (31 xp) (Mt BikBai) -
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Integrating this ovetD; by using the Gauss theorem, we get

/ ((Np. M8 — 20T M) 0" XpBii Baj dsl <

Dy

/ (2xp(1div 8] + [curl B) + 319 xp1181) B1dX.

Dy

We now assume thav' — Np| < &1 in the support of¢,, wheres; = £1(r) is to be
determined. WritingV' = a, + b7,, wherea = (N, M), b = V1 —a2 < ¢,
(Tp, Tp) = 1, and(Tp, Np) = 0, we get

(Np, M) — 2N TNy = a(yy) — NyN ) — 20N T .

Let Qp(Bi, Bj) = dp'? xpBii Byj, and letRy (B, B) = (a(yri,j - Ng)ﬂg) _ ZbNngj)
Qp(Bi, Bj). It follows that

S b
NoNg Qp(Bi, By) < (V («/\/”‘J + ”'«/V’)) Qp(Bi, Bj) + = Rp(ﬁ B)
. b/1+b_. . oo
=< ()/,'3] - E(T(fplﬁpj + ﬁﬂéﬂrf))(?p(ﬂi,ﬁj)
1
+ aRp(ﬂ, B)
<(i +LN'N')Q(/3' ﬁ')+}R(ﬂ B)
=\1-p"P Tagpoele ) ep AT R P

sinceTpi T3 Qp(Bi, Bj) = vp Qp(Bi, Bj) anda? = 1 — b2 Moving the term with
the normal component over to the other side, we obtain

8 Qp(Bi. B 575 QolBi By) 1 Rpw B).

)_1

Integrating this gives

y 2 )
/5”CIpIJXp5|iﬂdeS§ 1_81/)/,')Jqp'pr/3|iﬁdeS
0Dt 0Dy

+4f (xp(div B] + [curl B]) + |3 xpl1B1)18dX.
Dy
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Repeated use of this gives

(5.26) /5”5”Xp,3|i,331d5§

0Dy
Af 7y vo' xpBii Baj dS+ B/(Xp(ldivﬁl+ICUf|/3I)+|3XpIIﬂI)IﬁIdX
BED Dy

for some constantéd and B that depend only on the ordeiof the tensos.
We now claim that ifg'” is any positive definite quadratic form, then

(5.27) v ' xpBii Baj < v A" xpBii Baj + 080" xpBii By -
In fact, if Q(Bi, Bj) = a' xpBii Baj.
vy QBi. Bi) — v QB B))
= (NN = MNDHQ®. B)
= (%7, 7 — PNy N + ab(N,T) + Ty M) Q(Ai. B)

_ o 1+b . . _
< (bzfrp' T) — PNy N + ab<TN;Ng + 157 Tp‘>)Q(/3i B

+ | o

= b(My N + Ty TH QB B)
<bs"Q(B:, B)),

sincea? = 1 — b%. Using (5.27) now, we can replagg y,'? by 1! in (5.26)
with a small error that can be absorbed into the left-hand sibe<f ¢, is suffi-
ciently small. Finally, summing ovep by using) , xp = 1, >, [9xp| < CKqy,
and Holder’s inequality gives (5.25). O

Lemma 5.6 applied t¢ = V(q, whereq is a function, gives estimates for both
the Dirichlet problem and the Neumann problem. In factj i 0 on9€2, then
[1V2q = 6VnQ. Thus (5.22) and (5.20) give

1V201226, < CKIVNGIZ20, + C(IAGI2) + KIVAlL2@)
< C(I1Aallze) + KVl z@).
Similarly, if Vg = 0 0nd<, thenN'V; Vig = —6; V;q, and by (5.23) and (5.20),
1V20122q, < CKIVAIZ250, + C1AGN 2@ + KIVGllL2)”
< C(IAqllze) + KVl 2@).
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Similarly, we can get estimates for higher-order derivatives. More generally, we
have the following:

PROPOSITIONS.8 Letio and:y be as in Definition8.4and 3.5, and suppose that
0] + 1/10 < K and1/t; < Ky;. Then withK = min(K, K;) we have, for any
r >2ands > 0O,

(5.28) V' all200) + 1V All L2
< CIIV'qllLz@g) + C(K, Vol () D IV3Ad] L2

s<r—1

(5.29) IV a2 + ||Vr_1CI||L2(asz)
< 5||HVrQ||L2(aQ) + C(1/4, K, Vol (£2)) Z ”VSAqHLZ(Q) .

s<r—2

PROOF (5.28) with an extra lower-order ter@(K)| Vq|| L2(g) IN the right fol-
lows from (5.20) or (5.25) together with repeated use of (5.21) and (5.19) or (5.24).
The lower-order term can then be bounded by (5.17) in Lemma A.5. (5.29) with
the same extra lower-order term follows from (5.22) together with repeated use of
(5.19) and (5.21). d

Remark.One should be able to improve the results of Proposition 5.8 and replace

the sum in the right-hand side of (5.28) by the sum et O, % at least when

VNG| > ¢ > 0 0na2. However, then one has to make sense of fractional deriva-
tives.

PROPOSITION5S.9 Assume thad <r < 4orr > (n—1)/2+ 2. Suppose that
6] < K andi; > 1/K41, wheret, is as in Definition3.5. If ¢ = 0 on 92, then for
m=0,1,

(5.30) ||HVrQ||L2(asz) =
r-1

2V 720 | L2y | VNGllLx o) + C Y 101K a0 IV 0l 2o
k=1

+ C(K, Ky) <||9||L00(39) + > ||vk9||L2(asz)) Y IVMallzae

k<r—2-m k<r—2+m

andifr > (n—1)/2+ 2, then for anys > 0

(5.31) ||HvrilQ||L2(aQ) <
r—2

81V allLz@s) + Cs (K, Ka, 101lLzas), 1V *0llzes) Y IV¥AlL200) -
k=0
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If, in addition, |[Vnq| > & > 0and|Vnq| > 2¢]| VnGllL=@g), then
(5.32) IV 20l 2000 <

1 r—1 ~
C(g) (HHquanm) + ) 101 o V" kCI|||_2(aQ)>

k=1
1 —
+ C(K, Ky, E) (||9||L°°(as2) + Z ||Vk9||L2<asz)) Z IV¥allL2 0 -
k<r-3 k<r—-1

Furthermore, if r < 4, then the second line ¢b.30)and (5.32)drop out.

ProoF. (5.30) and (5.32) follow from Proposition 4.5. To prove (5.30) we can
takee = 1, and to prove (5.32) we taka = 1 in Proposition 4.5. (5.31) follows
from (5.30) and Sobolev’s lemma, (A.8). O

PROPOSITIONS5.10 Assume tha® < r < 4orr > (n— 1)/2 + 2 and that
0] +1/10 < K. Ifg =00nad%, then

(5.33) IV allz2pg) <

C(||vr739 L2 IVNGAllLe @) + ||Vr72Aq [ LZ(Q))

+ C(K, Vol (), 1]l .2pys - - - » IV 0l L2502))
(quanwm + > ||VSAq||Lz<Q>>.
s<r—-3
Ifr > (n—1)/2+ 2, then
(5.34) IVl 200 + 1VAllLeo
< CIV' 2Aq|l L2
+ C(K, Vol (), 0]z - - -+ IV 0l L2050
Z ||VSAQ||L2(Q)-
s<r—3

ProoOF (5.33) follows from (5.28) and (5.30) witim = 1 andr replaced
by r — 1. The estimate foff V' ~1q| 230, in (5.34) follows from (5.28), withr
replaced by — 1, and (5.31). The estimate fpV (||~ e In (5.34) follows from
the estimate fonVr—quLz(aQ) and Sobolev’s lemma, Lemma A.2. O

There are two possible energies, given in Proposition 5.11 and Proposition 5.12,
respectively.

PROPOSITION5.11 Let Q(&, @) = y Yy and hj = Dyg;j /2, and set

Et) = f Y Qai, aj)vdu, +fgij NEN'Q(Vi Bk, Vi B)dug
Q

02
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where0 < v < co. Let K be a constant such that
(5.35) lhf <K in[0, T]x Q,

1
(5.36) 0]+ = +|=| <K on[0,T]x Q.
Lo

Vt
v

Then

dE
(6.37) 4 = CVE(|T(Drar + vN VB | o + | DVB = Ve || 2 )
+ CKE+ C(lldivall 2, + llcurlall 2q) + Kllell 2

. 2
+ lldiv Bl L2 + llcurl Bl 2q) + K ”,BHLZ(SZ))

PrROOF Since by Lemma3.®; du, = (trh—hyn)du, andDy dp = trh du,
we obtain

dE o
6:38) G =2 [ v, D,

Q2

+ 2f 9" N*N'Q(Vi Bk, DtV B)dug
Q
+/ <Dt(J/iJJ/IJ) + (tfh —hyn + %)V”V'J>a|i agjvdu,
a2

+ / (De(@? N*N'y') + trh g NKN'y ') Vi Biic Vj B ditg -

Q
SinceD,y'l = —2y'Myinh,, the second line is bounded by the boundary term in
the energyE, and the third line is bounded Wﬂ||2|_2(9)- By Lemma 5.3

/9” NEN'y "I Vi V; Ba1 dig
Q

=/ IV”J/'JOanjﬂJldMy+/gikNjNIV'JVkanVJﬂudMg
Q
191

— [ VdGTNEN Y — gENIN ) Vs .
Q

The first term on the second line is bounded|lofv || 2o, IV BIlL2), and the
second byK ||| 2(q) I VBIIL2)- Recall now that by Lemma 5.5

, 2
||V/3||i2(9) <CE+ C(”d'Vﬂ”LZ(Q) + [leurl Bl L2 + K ||ﬂ||L2(sz)) .

This proves Proposition 5.11. 0
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PROPOSITION5.12 Let Q(e, ) = y Yy and hj = Dyg;j /2, and set

(539)  Et) = / Y1 Qs a)vd, + f 0"y QY . Vi B)disg

02
where0 < v < co. Let K be a constant such that
(5.40) Ihf <K in[0,T] x ,
1
(5.41) 6]+ =+ |2l <K on[0,T]x Q.
lo

Then
E

d
(5.42) a9t = CVE(|TT(Deex + vN*V ) ”LZ(aQ) + ID{VB — Vel 2q)

+ CKE + Clleurla|| 2V E + Cllall L2 IV div Bl L2q)
. 2
+ (K lallz) + Ildiv Bl L2q) + ||Cur|,3||L2(Q)) .

ProoOF. Since by Lemma 3.9 du, = (trh—hyn)du, andD;dp = trhdu,
we obtain

dE
a0 —Z/y Q(Dtotu,aj)vdMerZ/gkl " Q(DyVi . Vi ) dig
Q2
+/ <Dt(y”y”) + (trh —hun + f)y”y”)au asjvdu,
Q2
+/(D (@199 +1rh ¢y y9) VB V) Bor diag
Q
SinceD;y'l = —2y'Myinh,, the second line is bounded by the boundary term in

the energyE, and the third line is bounded Wﬁlle(Q) The second term on the
first line is bounded bycurl || 2+ E plus

/ gyl Yy Vi ViBaidig =

/le”y o VjﬂJ|dMy+/VikngV'JOl|i ViV By dug

Q2 Q

/Vk (v y") i ViBadpg,

Q
where we have used Lemma 5.3. The first term on the second line is bounded by
lall L2y IV div Bl 2, @and the second bl [l | 2o I VBl L2(q)- Recall now that
by Lemma 5.5

) 2
||V,3||Ez(9) <CE+ C(||d|V5||L2(sz) + ||Cur|ﬂ||L2(Q)) .
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This proves Proposition 5.12. 0

6 Euler’s Equations and Higher-Order Derived Equations

Recall Euler’'s equations

(6.1) D +3p=0, dv =0,
where
d d a oyt 9
6.2) D= — =g + o and g = =2 O
dt y=const dt X=const 9X aX ay

We now want to get higher-order versions of (6.1) in terms of higher-order tensors
d"v;. By Lemma 2.3

r—1

r
(6.3) D:d"v; + 9" p=-— Z (S+ 1) (81+sv) 29" Sy

s=0
In particular, ifr =1,
(64) Dy 0; vj + 0j 8,- p=—(5 vk)akvj .
We now want to change coordinates and calculafé'u. By Lemma 2.2,
(6.5) Dt Vg - -+ Va Ua
ax'it 9xir gx 5
dyaayx oyr
axit 9xir gx

Ty gya gya

vy

t'l'”'rv'+ﬁ'”'"U'+"'+8x—ir'1""”'
81)'8 3
3Xi O]

It follows from (6.4) and (6.5) that
(6.6) DiV'ua + V' Vap

r-1
r ) 1+s r—s N vil
== (VEU) - V' 5Uq + (Val®) V' U

r—2
_ r,c r 1+s r—s
= (VaUe — VeUa)V'U —Z(S+1 (Vsy) . vi—sy, .

s=1
In particular, ifr = 1, we get
(6-7) D¢ VaUp + VaVpp = (VaUC)VbUC s
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SO

The higher-order Euler’s equations (6.3) or (6.6) will be used in the interior
together with the facts that
(6.9) divv =0, D; curlv = O(Vv).

On the boundary we will instead use an equation which has to do with the geom-
etry of the boundary that depends only on Euler’s equations indirectly through the
change of coordinates. By Lemma 2.3,

D3 p=3;Dp — (30 )ap.
Dedid; p = 89 Dy p — (3v)0kd; p — (3v*)3kdj P + (3 jv*)kp.

It is, however, more convenient to formulate the higher-order versioD{dt p.
By Lemma 2.4

(6.10)

r—1
r
DiV'p=V'Dip-— vitsy).vi—s
V' p (P ;(S—i-l)( ) p
(6.11) -
r
:VrDtp—(Vru)-Vp—Z< )(V”Su)-vfsp.
—\s+1

We also want to calculate equations farBy (6.1)
0= Dy(8" divj) = 88 Drvj — 8" (30
SO
(6.12) Ap=—(3v9)o' .
SinceA is invariant, we also have
(6.13)  Ap=—(Val®)Vbu® = —g*°g*!(Vally) Vetp = —tr (VW)?)

where we used the notatigWu)3, = ((Vu) - Vu),, = (Vau®)Vcup and the trace
of a tensor is defined to be the trace over the first and last indices. It follows that
r

(6.14) VIAp ==V (tr(Vu)?) = — Z (;) (V' =5V,u) - vSHud,
s=0
By Lemma 2.4
AD¢p = —Dy(g?°g°(Valg) Vel) + h?*VaVpp + (AUu®)Vep
= 29°°h°(Vallg) Vel + 29%°9° (Vala) (Ve Vo P — (VeU®) Voue))
+ h®V,Vyp — (AU®)Vep

= 492°g°(VaUc) Vo Vg p + 2(Vau®) (V4u®) Ve — (AU®)Vep,



1588 D. CHRISTODOULOU AND H. LINDBLAD

sinceDyg?® = —h?®, h,, = Vaup + VpUa. To write things in a more appealing
way, we will use the notatiotVu)3, = ((Vu)-(Vu)-Vu),_ = (Vau®)(Vqu®) Vel
and((Vu) - V2p)_, = (Vau®) VgV p,

(6.15) AD¢p = 4tr((Vu) - V2p) + 2tr ((Vu)®) — (Au) - Vp,

and hence

(6.16) V' 2AD(p = V' 2(4tr((Vu) - VZp) + 2tr (Vw)®) — (Au) - Vp).

The exact interpretations of what the dot product and trace mean are not so impor-
tant since the right-hand side will be lower order and si¥ite? will be subject to
Leibniz’ rule. Summing up, we have the following:

LEMMA 6.1
(6.17) |DV'u+ V'*p| + DV " teurlu| + [V TtAap| <
r-1
C Z ‘VHSU‘ ‘Vrfsu
s=0

’

r—-2
(6.18) |M(DiV'p+ (V'W)-Vp—V'Dip)| <C> [M((Vu)- V' ~°p)

s=1

il

and

(6.19) |V'"?ADp— (V' 2Au) - Vp| <
r-2
C Z |v1+su| |vr—sp| +C Z |v1+r1u||vl+r2u||vl+r3u| .

s=0 r1-+ro+rz=r—2

7 Energy Estimates for Euler's Equations
Let

(71) E®= f g™y Q(V' M Vitm, VMV un)du + / V' ~teurluf?du
Q Q

+ f YIQ(V TVip, VIV p)vdy,
Q2
wherev = 1/(—Vy p). We will prove that there are continuous functid@yssuch
that

dEr(t) 1 r-1 r
(7.2) ' ‘gcr (K,;,L, M,VOIQ,ZES(t))ZES(t)

dt
s=0 s=0
ifO <r <4orr >n/2+ 3/2, provided that some a priori assumptions are true:
(7.3) 6] + 1/ < K on[0, T] x 92,
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(7.4) —VNp=e>0 on[0,T]x 0%,
(7.5) IV2p|+ |Vnpil <L on[0,T]x 9.

Sinceh,, = Vaup + Vpua, the bound foth| of course follows from the bound for
|Vu|. We also assume

(7.6) IVpl <M, |Vu <M, in[0,T]xQ.

It is not clear to what extent we need the bound¥dp, but it is natural to assume
it, sinceAp = —tr(Vu)2 andI1V?p = 9V p. The bound forv?p together with
(7.4) of course implies the bound fer

Remark.Instead of the energy (7.1) coming from Proposition 5.12, we could al-
ternatively have used the energy coming from Proposition 5.11. The one we use
gives a better control dfV'u|| 2., Which is needed to prove Theorem 7.2 below
with minimalrg, but it only works when diwi = 0.

SinceEqg(t) = [, [v/?du = Eo(0) and VoIQ(t) = Vol 2(0), we get the fol-
lowing recursively from (7.2):

THEOREM 7.1 If r > 0 and n < 7, then there are continuous functiof, with
Frli=o = 1, such that for any smooth solution of Euler's equati¢hd)—(1.5)for
0 <t < T satisfying(7.3)—(7.6) we have

r r
1
77) ) EM <% (t, K, =, L. M, Eo(0). ... Er_1(0), Vol sz) > E0.
s=0 € s=0
O<t<T.

Let X (t) ande(t) be the maximum and minimum values, respectively, such
that (7.3)—(7.4) hold at time
1

K(t) = max(||0(t, Mx@a), @)

Et) = (VNP ) HlLepe =

7.8
(7:8) 4
e(t)’

THEOREM7.2 Letr > rg > n/2+3/2. Then there is a continuous functiGh > 0
such that if

(7.9) T < 7 (X (0), €(0), En(0), ..., Er,(0), Vol Q).

any smooth solution of the free boundary problem for Euler’s equafibi3—(1.5)
forO <t < T satisfies

(7.10) D> Est) <2) Es(0), 0<t=<T.
s=0 s=0



1590 D. CHRISTODOULOU AND H. LINDBLAD

7.1 Proof of Theorem 7.1
In the proof it is convenient to replace the a priori bound (7.3) by

1
(7.11) 0l <K', — <Ky;
t

see Definition 3.4 forg and Definition 3.5 for;. However, by Lemma 3.6,

1 K 1 Ol 1
(7.12) — < max<7l, ||9|||_oc) and — < max<|| I , —) .
Lo

L1 &1 2L0
Now, to get the iteration started we need bounds for some low norms.u,For
Eo = ||u||f2(m is conserved, but we cannot control the low normgpaind p; in
terms of the energies only. Thus to control these we must use the fact that te Vol
is conserved.
Before starting with the proof of (7.2), let us first see what a bound for the
energy (7.1) implies.

LEMMA 7.3 We have

(7.13) ||V’u||iz(m <CE, ||Hvr p||iz(m) < |V pllLxpo Er
C (Ky, Vol ) (||Vp||Loo<m> + VUl ZEk
k=0

PROOF OFLEMMA 7.3: That|ITV' pll 2pq) < 9pllLx@e Er follows from
the definition of the projection;’’ Q(ai, o) = |TIa|? 0n 3L, and the fact that the
measure in the energy is-Vy p)~1dS Since diw = 0, the bound| V"
CE; follows from Lemma 5.5. By Lemmas 6.1 and A.3

u ” LZ(Q)

r
-1 —t k
IV 2APIL2@) < ClIVUllLx@ Y K IV U2 -
k=0

(7.14) follows from (5.28) in Proposition 5.8 and the second part of (A.17) in
Lemma A.5. U

The most interesting observation is now that the bounds in particular of the
boundary term in Lemma 7.3 actually imply a bound on the second fundamental
form of the boundary:

LEMMA 7.4 With L = L*°(d2) we have

(7.15) V' %9)?, <C (Kl, 1611Lse, 1(VNP) Lo, IV Plliee, VUL (),

r-1 r
Vol @, )" Es(t)> > Es).
s=0 s=0
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PROOF. Lemma 7.4 is of course just (5.32) in Proposition 5.9 and (7.14) in
Lemma 7.3, the crucial point being a lower boua®yp > ¢ > 0. O

Lemma 7.3 suffices to control the interior terms, as we shall see. To control the
boundary terms, it turns out that the crucial point is to estimate

ITIV' D¢ pllL2cag) »

which uses the bound in Lemma 7.4 to estimiié —2A D, PllL2q)- We have the
following:

LEMMA 7.5 Let p = Dyp and L™ = L*°(3£2). We have

(7.16) TV piliF2gp0, + IV Pl o) + IV PIT2g, <

C (Kl, 1011, (VNP Lo, IV PllLee, VUl L), VNP,

r-1 r
Vol @, ) Es(t)) > E).
s=0 s=0

PrROOF. By Lemmas 6.1 and A.3
(7.17) V" 2ADplL2g) <

r

C(K)(IIVPllie + IVUllL=@) ( (1V¥ull L2 + ||V"p||Lz<Q>)>

k=0
r-1

+ CKD VUl D IV¥Ul L2
k=0

The bound in (7.16) fonv“lptHLz(m) is just (5.33) in Proposition 5.10 together
with (7.17) and Lemmas 7.3 and 7.4. The bound(f@v" p; | (¢, follows (5.30)
in Proposition 5.9 and the bound just obtained [f&°p|| 25, for s < r — 1.
Finally, the bound fol| V' pt || 2(q, follows from (5.29) in Proposition 5.8 and the
bounds for| V' 71 pi [l 250, and [ TIV" ptl| 2.5 just obtained. O

After having seen what a bound for the energy implies, we now want to prove
(7.2). The main ingredient is Proposition 5.12 appliedte —V'p, 8 = V' ~u,
andv = 1/(—=Vnp). Then divd = 0 and curk = 0, so we get from Proposi-
tion 5.12 and Lemma 7.3

dE _
(7.18) = C(Ky, 1101, (VNP e, 1V PllLee, VUl L)) Er
+CVE (||H(— DiV'p+ VNerUk)”LZ(aQ)

+ IDV'U+ VPl 2 + 1DV teurlu] 2 q)) -
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Using Lemmas 6.1 and A.3, we can directly control the interior terms in (7.18):

(7.19) ID:V U+ V'l L2 + 1DV " teurlull 2y <

r
—k k
ClVulle@ > Ky IV¥Ull L2 -
k=0

Hence it only remains to control the boundary termin (7.18). By Lemma 6.1,

(7.20) ||H(DtVr p+ (V- VP)HLZ(aQ) =
r—2

IV DepllLzagy +C Y [TV - VI7*P) | 250, -
s=1

Since the first term in the right-hand side of (7.20) is controlled by Lemma 7.5, it
only remains to estimate
(7.21) [T ((v**2u) - v'~sp) HLZ(aQ) forl<s<r—2.

Clearly these terms are lower order, so there is no problem in estimating them,
say, using Sobolev’s lemma to bound them with interior norms. However, in order
to get a bound that is linear in the highest-order derivative provided the a priori
assumptions (7.3)—(7.6) hold, we must work a bit harder. Let us therefore look at
the endpoints. 16 =r — 2, this can be estimated by

r 1/2
(7.22) IV?pllL~@ IV ull 2q) < CL <Z Ek>
k=0

where we used the a priori assumption (7.5) and Sobolev’s lemma (Lemma A.2),

r
(7.23) IV MUllLzg) < CIV UllLz0-vi0-20) < C(K1) Y IV¥Ull L2, -
k=0

If s =0 (which actually is excluded), we could estimate it with

; 1/2
(7.24) VUl o) IV PliLzge) < C(KOM (Z Ek)
k=0

by Lemma 7.3. Hence, we must now somehow control the intermediate terms. |If
the derivatives were tangential, we could do this with the interpolation inequality

Lemma A.1. But because of the projection to the tangential components in (7.21),
the highest-order derivatives will be mostly tangential. By (4.48)

(7.25) |0((V™5U) - VD) | ogre
< [TV ’HVr_SpH‘LZ(aQ)
+ || [TT(N*V*ou) | TN V9 y, pl | L2(5Q)
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< IV L2o-2/saq) ITIV' 7Pl L20-2/0-2-9 30
+ I|H(NKV1+SU|()|||_2(r—2)/5(39) [TIN*V' 1Sy, PllL2c-2/0-2-9 (5g) -

These terms can now be estimated by (4.46) in Proposition 4.1lwtlivVu and
B = V2p. This concludes the proof of Theorem 7.1.

7.2 Proof of Theorem 7.2

Let us now show how Theorem 7.2 follows. We will be using Sobolev’s lemma
(Lemmas A.2—A.4). But then we must first make sure that we can control the
Sobolev constants. By the results in the appendix, these depend on the constant
K1 = 1/¢; in Definition 3.5. Alternatively, the change of the Sobolev constants
in time are controlled by a bound for the time derivative of the metric inythe
coordinates; see the appendix. We also need to have control of the congtant 1
We have the following:

LEMMA 7.6 Let K; be as in Definitior8.5, £(t) asin(7.8), and p > n/2 + 3/2.
Then there are continuous functiong,GH;,, I;, and J, such that

(7.26) IVUllLe@) < Gry(K1, Eo, ..., Erp),

(7.27)  IVPle@ + IV2pllLepa) < Hio(Ky, Eo. ..., Er, VOI Q)
(7.28) 1OllLopa) < I (K1, &, Eoq, ..., ErD,VoI Q),
(7.29) IVPtllLepa < Jo(K1, €, Eq, - -+, Erg, Vol Q) .

PROOF. By Sobolev’s lemma

n
(7.30) IVUlliv@ = CKDY IViUllizgy . T —1> 3,
s<r
n
(7.31) IVPlie@ = CKDY IVoPlliagy, T —1> 3,
S<r
n—-1
(7.32) IV2pllL~pe) < CKDY IVPliege ., —2> .

S<r

(7.26) follows from (7.30) and (7.13) in Lemma 7.3, and (7.27) follows from (7.31),
(7.14), and (7.26). (Note that enters quadratic in the left-hand side of (7.14) but
only linear in the right-hand side.) (7.32) follows in the same way. The bounds
for ||10]L~ and |V p|lL~ cannot be obtained directly by Sobolev’s lemma since
the right-hand side of (7.15) depends ||~ and the right-hand side of (7.16)
depends ofj V p||L~. However,

(7.33) IV2pl = [MVZp| = [Vnpl16] = €461,
so (7.28) follows from (7.27). (7.29) follows from (5.34) in Proposition 5.1Q]
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LEMMA 7.7 Let Ky > 1/1; ande; = e1(r) be as in Definitior8.5and Lemmd.7.
Thenifp > n/2+ 3/2,

d r
(7.34) ‘&E, < Ci (K1, €, Eo,.... E. VOIQ) ) Eg
s=0
and
d
(7.35) ‘ES <C/(K1, &, Ep, ..., Ef VOIQ).

PROOF (7.34) is a consequence of Lemma 7.6 and the estimates in the proof
of Theorem 7.1. (7.35) follows from

d _
gol =9 Pt N e | = CHEINPE D) ey 1IN B DL agy
and (7.29). O

As a result of Lemma 7.7, we get the following:

LEMMA 7.8 If r > rq, there is continuous functiofiy (K4, £(0), Eq(0), ...,
E; (0), Vol ) > 0 such that for

(7.36) 0<t < 7 (Ky, €(0), Eq(0), ..., E(0), Vol Q)
the following statements haldVe have
(7.37) Es(t) <2E5(0), O<s<r, e(t) <28(0).
Furthermore,

(0. yv) X X o o
(7.38) BOITE < gt XX < 28,0 XX,
and withe1(r) > Oas in Lemmd.7,
(7.39) woxt, 3 - N0l = 26, yeag,

L
(7.40) IX(t, y) — X(0, y)| < 1—16 yeQ,
ox(t,y) ax@©0,y)| &) _

7.41 - 0.
(7.41) 3y 3y <4 V€

PrROOF. We get (7.37) from Lemma 7.7 it (Ky, €(0), Eo(0), ..., E (0),
Vol ) > 0 is sufficiently small. We have

(7.42)  |IVUllLe() + IV PllLe@) < C(Ky, €(0), Eo(0), ..., E(0),

(7.43) [V?plL=ae) + 16llL=pe) < C(K1, £(0), Eg(0), ..., Er(0), Vol ),

(7.44) IVPtllLe@ < D(K1, €(0), Eo(0), - - -, Er,(0), VoI Q) .

In fact, (7.42)—(7.44) follows from (7.37) and Lemma 7.6. It follows from this that
(7.45) [VU(t, )llLeee < 2IVU(O, )liL=pe)
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(7.46) VP, L@ < 2(IVPO, L=,

(7.47) lvt, Lo < 2[v(0, )lLe) -

In fact, by (6.7) we have

(7.48) IDVu| < [V2p| + |Vul?, |Ddv| <13°p| + |dv]?.

Using (7.42)—(7.44) we get that

T
(7.49) f IV2P(t, )l + VUL, )lIfw dt < VU, )|l
0

if T is sufficiently small, so (7.45) follows after possibly makifig> 0 smaller.
(7.46) and (7.47) follow in a similar manner frof®;Vp| = |Vp| and|Div| =
|op|, respectively.

Also, (7.38) follows from the same argument since

and by (7.44)

(7.51) Z/T IVap|lL (g dtX*XP < %a)(b
0
if T is sufficiently small. Now the estimate fo¥ follows from
(7.52) Ding = hnynNa,
and the estimates forandax/dy from
Dex(t, y) = v(t, X(t, ),

(7.53) Dta_x _ u(t, x(t, y)) _ Bv(t,x)a_x’

ay ay ax oy
and (7.47) and (7.45), respectively. d

The idea is now to use (7.38)—(7.41) to pickKa, i.e.,¢; (see Definition 3.5),
which depends only on its valuetai 0,

0
(7.54) L) > ‘1(2) .
LEMMA 7.9 Suppose that;(r)/2 < &1 < e1(r), and let7 be as in Lemma&.7.

Pick¢; > O such that

(7.55) |V (x(0. y0) = ¥(X(O.y2)| < 5
wheneveix; (0, y1) — x(0, y2)| < 27
Thenift< 7 we have
(7.56) |N(X(t, y1) — N(X(L, Y2))| < &1
wheneveix;(t, y1) — X(t, ¥2)| < u1.
PrRoOOF (7.56) follows from (7.55) and (7.39)—(7.40). O
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Theorem 7.2 now follows directly from Lemmas 7.9 and 7.8. Lemma 7.9 allows
us to pick aK; depending only on initial conditions, while Lemma 7.8 gives us
7 > 0that depends only on the initial conditions afgdsuch that, by Lemma 7.9,
1/t < Kifort < 7.

Note that there is also an evolution equationéoibut using it would require
control of one more derivative af:

(7.57) Do =

— YNV, Valg + NANPVaupij + 2(6iaNj + 6jaNDGPPNCVpuc .
We can control the size af through (7.43), but we cannot control it in terms
of initial data without going to energies with one more derivative. This is why

we need to estimate all the Sobolev constants in ternt§;ahstead ofK, since
(7.38)—(7.41) will allow us to control the time evolution kf.

Appendix: Sobolev Lemmas and Interpolation Inequalities

Let us now state some Sobolev lemmas and interpolation inequalities. Most
of the results here are standardif, but we must control how it depends on the
metric. There are two convenient ways to do this. The first is to use the fact that
our set expressed in thecoordinatesD; C R" inherits the metric iR", and the
surfaced D, can be expressed locally as a graph dver:.

Let & (X) be the unit normal at € 9Dy, and suppose that

(A1) [N (X)) — N(X2)| < &1 whenevelX; —Xo| <11, X1,X2 € 0D.

By (A.1) we can write the surface as a graph within a ball of radius 1/K, , and
for functions supported in such a ball we can thus use Sobolev’s lemRfa fror
R". In general, we make a partition of unity into functions supported in such balls,
and the Sobolev constant will thus depend onlyan

When controlling how the metric changes with time, we can use that our metrics
y ond2 andg in  are equivalent to the same metrics at 0 in they-coordinates:

(A2)  CoviWZ'ZI <yt yZ'Z <CodZ'Z) FZeT(Q),
(A3)  ColoiZ'Z) <gjt.)Z'Z) <Cogd (V)Z'Z) if ZeT(Q),
and use Sobolev's lemma for the metri;q% and gﬂ respectively. In this case,

the Sobolev constants depend only)dhy) = ¥ (0, y) andg’ (y) = g;; (0, y),
respectively, and oft,.

LEmmMA Al If @ is a (0, r) tensor, then with a= k/m and a constant C that only
depends on m and n,

(A4) [IV¥a(lLsoe) < Cllelltage IVl pp0)
. m k m-Kk
f —=—4+——, 2<p<s<qg=<o0.
S p q
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PROOF Let us first prove (A.4) in the casa = 2 andk = 1. We claim that
(AB)  [Vallfs < Cs|lal [V?al| s, ifs>2andCs=s—2++/n—1,

from which (A.4) follows in the case = 2 andk = 1. Then, the norm in the left
of (A.4) to the power is the limit ase — 0 of

/ ((Va, Va) + s)s/zfl(va, Va)du,
BIo)

= —/ ((ﬁa, Vo) + 8)5/2_1(0(, Aa)dpu,

_ / 2(% _ 1)((%, Va) + )72 (Va, V2a) - (@, Va)du,
Q2
where we have integrated by parts. As> 0 we see that

(A.6) IVa||}s < Cs f (Va, Va)¥* | [VZa|d s,
< CslIVell3s?[lel [VPal| 2 -

Dividing both sides byﬁanigz gives the desired inequality (A.4).

For fixedm, p, andq, lets = s(k) be defined by (A.4) and sét, = || VKa|| sw.
Then we have just proven tth < CnMy_1My,1 for 1 < k < m— 1. Hence
Ny = Cr'ka satisfiesl\lk2 < Nk_1Nk,1, and this logarithmic convexity implies that
N < NS™/MNK/™, which proves (A.4) in general. O
LEMMA A.2 Suppose thatA.1) and (A.2) hold with¢; > 1/K;. Then ifx is a
(O, r) tensor,

k

n-1
A7) Delio-vporioag < CK) Y IVlbae . 1<p<——,
=0
(A.8) lallLepe) <
n-1
SIVEllLroe) + Cs(K) Y IIVellepe) . K> B
O<t¢=<k-1

foranys > 0.

Remark.For the boundary there are two possible interpretations of (A.7) and (A.8).
One is to let the norm be given by the inner producte) = y'Y o a; and the
covariant differentiation given by, which corresponds to covariant differentiation

on the boundary. The other interpretation is to let the inner product on the boundary
be that of the interiote, ) = g'? ooy and the covariant differentiation be that of
the interiorV. In fact, in both cases the proof reduceskte 1 as before. I is a
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function, then the lemma fas follows from using covariant differentiation on the
boundary. Applying this result to a norm gives

(A.9) % Vi (e @) = 2@, 7 Vi) < lal 1} Vial,
which is bounded by | | V| and|«| | V|, respectively.

PROOF OFLEMMA A.2: We may assume thgt > n and henc& < 1in (A.8)
andk = 1in (A.7). In fact, the general case follows from first using (A.8) and
(A.7), respectively, in this case and then repeatedly using (A.7). Second, the case
r > 0 can be reduced to the case of functions 0 by applying it to the norms
¢ = |a|. Hence we may assume thats a function ank = 1.

Using the partition of unityx;} in Lemma 3.8, we writep = ) ; ¢; where
¢i = xi¢. The support of eachy; is then contained in a s& where the surface
can be written as a graphy, = fi(x") with |0f]| < &; < 1 asin (3.20). Then
dx < dS < Cdx and|dg¢|/C < |Vo| < |dx¢p| whereC = (1 + &1)¥/? < 2;
thus, apart from a constant factor, Sobolev's lemmaSoreduces to Sobolev’s
lemma inR"~1. By using Minkowski's inequality, Sobolev’s lemma &', and
Minkowski's inequality again, we get

(A.10) /(Z|¢.) ds<2)" / 119 dX’

B(4rg,Xi)
a/p
<ZCZ( |V¢i|pdx’)
B(4ro,xi)
a/p
p/q
<8c (f(zvmq) dS)
a2
sinceq > p. Here

a1 (T vel)" = (Zavaliel + bxiven?) ™

< CK{ @M PPA(gIrg™ + [VoDP,
which proves (A.7). (A.8) withs replaced by a constant follows in the same way.
Finally, we get (A.8) by considering (A.8) withreplaced by a constant akd= 1
applied toua replaced byla|?. In fact, we then gefle||?~ < C|lla| |Va||lLa +
Cllla|?||La for some(n — 1)/k < g < p. Using Holder’s inequality, we can
estimate the first term bl || Lea/o-a [| Ve llLe < 8] Ver[IZp + CZ 712 pgypay
where the last term is bounded By||a[|; ="/l || q)/q O

LEMMA A.3 With notation as in Lemma5’.1 and A.2, we have
K

m a
(A.12) > IVals < Clallish, (Z ||V'oe||Lp(Q)K{“') .
i=0

j=0
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PROOF As in the proof of (A.5), the general case of (A.12) will follow from
the special casm = 2 andk = 1. If we integrate by parts as in the proof of (A.4),
we also get a boundary term

/IValsdqufIValsZIaIIVZaIdMJrC/ Vo aldu, .
aQ
Q Q

If « has compact support 2, then the boundary term cancels. Then by the proof
of (A.4)

(A.13) IValisq < Cllaliae I VaallLr@ -

We will prove that (A.13) is also true i has compact support in a neighborhood
of the boundary; < dist(y, 02) < 0. We have

f IVal* Haldu,
Q2
1/t (t—1)/t
< / Ve Pdpu, f /Y dpe,,
Q2 Q2
1/t (t—1)/t
<C / |[VnIVa] S du / | Vel dpe
Q Q
1/t -1/t
sc [ivas v v | ([l veld
Q Q

Now we want to use Holder’s inequality again on each factor Wi« || »,
lellLa, and|| Ve |Ls where ¥q+1/p=2/s. Letl/q =1-/q,1/p =1-1/p,
and /s’ =1 — 1/s. We will show that we can pickso thats = p'((s— Dt — 1)
ands’ = (t — 1)g. We need to show that the two expressionstfare the same,
e, that(s—s/p+1)/(s—1) =t =(s—1+s/q)/(s— 1), which is equivalent
tol/p+1/q=2/s.

The boundary term can hence be bounded By |} I V2l e ol i) -
On the other hand, the interior term can be estimated as in the proof of (A.5) so we
get

||Va||s|_5(gz) <
_ —2 1 1
ClIVallfsd, llerlLa V2elle@) + ClIVel s I V2l g el g, -
from which (A.13) follows also in the case whates supported in the neighbor-
hood:; < dist(y,9R2) < 0. Let{yx;} be the partition of unity in Lemma 3.8.
Now, since|V¢yi| < Ciy7¢, it follows that||V2(xia) || e iS bounded by the sum in

the right-hand side of (A.12) ifin = 2 andk = 1. Since|laZs < [|la/?[?,, <
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lellLalleellLe by Holder's inequality, (A.12) follows in the case where= 2 and
k=1.

The general case of (A.12) follows from the special case as in the proof of (A.5)
with the only exception being that navl, = Zik:o | Via|l sw. So far we have only
proven thatM; < C MgM,, but the general case M,f < C Mk_1 My, 1 follows by
induction from the previous case appliedNt§ = Z:(:o V' V| s, (M{(_l)2 <
CM,_,M;, and Holder's inequalitylerlls < [llo*2lal*ls < llerllie®lelifs
again. O

LEMMA A.4 Suppose that > 1/K; anda is a(0, r) tensor. Then
K

n
(A.14) e[l Lnprn—kmy (@) < C Z Kll(%”VZOl”LP(Q) ) l<pc< K’
=0
_ n
(A.15) lollie <C > K IV¥alpg). k> 5
0<e<k

PROOF. Asinthe proof of Lemma A.2, we may assume tias a function and
k = 1. We now want to extend the functions to outsfde@nd then use Sobolev's
lemma inR". We can extend the function by writing the surface as a grapk
f(x), (X, x,) € R", as in the proof of Lemma A.2. Lt} be the partition of
unity in Lemma 3.8 and sef = i ¢. In a neighborhood of sugp;), we can then
write 0Dy as a graph after a rotation:

xX"=1fx), &, xMHeR", |of|<1.
We now define

¢i (X) whenx € Q

(A.16) 900 = d(X) whenx ¢ Q

wherex = (X', X") = (X, X" — 2(x" — f (X))).
In proving estimates (A.14) and (A.15), we may assumed¢hatC>(Q) since
this is dense itW*P(Q); see [10]. Then by Sobolev’s lemmalR':

i lLaen < CIIV@illLp@ny < CIVillLe) + ClIVAillLecay < C'IVillLee

since|dk' /axI| < C. Since|Vyi| < CKjy, this proves (A.14); (A.15) follows in a
similar manner. O

LEMMA A.5 Suppose that g= 0ond2. Then
191l L2 < C(Vol Q)l/n”VQHLZ(Q) )

(A.17)
IVl L2 < CVOl Y AQ] L2 -

PrROOF. The first inequality is Faber-Krahns theorem. Its proof uses a sym-
metrization argument; see [14]. The second follows from the first and integration
by parts. O
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We state two more lemmas.

LEMMA A.6 If the metric satisfies
(A18)  Colai(Z'Z! <gyt.y)Z'Z) <Cogd(y)Z'Z) ifZ eT(Q),
where ¢ is a positive definite metric, then with a constant depending only®on g
and G,
(A.19) K| Ls@xjo.Ty < C||0l||ﬁ?9x[o,n) 91T p x0Ty »
provided thatatjoz(o, J)=0forj=0,...,m—1
PROOEF It remains to prove (A.19), which is done similarly to the proof of
(A.12). Suppose now that(0, -) = 3« (0, ) = 0. By (A.18) we can bound the

norm and the measure from above and below by a measure that is independent of
t. Thus, as before, it follows that

T T
f /|ata|3dudt§<:f /|ata|s2|a||83a|dudt+0/|ata|s1|a|du(T)
0 0
Q Q Q

1-2/ts

-
/IataISllaIdu(T)f /f|8ta|sdudt
Q 0
Q
1/tp 1/tq

T T
/ / |82c|P dpe dt / f la|9 dp dt ,
0 Q 0 Q

from which (A.19) follows as before. O

Using Lemma A.2 and the proof of Lemma 5.6, we can get a slightly improved
version of Lemma 5.6:

LEMMA A7 Leto be (O, r) tensor, and assume thit| ~;qo) + 1/t10 < K and
Vol(R2) < V. Thenthere is G= C(K, V,r, n) such that

(A.20) lallLo-vpo-ppe) < CliVallLe@) + Cllaliir@, 1=<p<n,
(A21)  |IV2all 2 < C(ITTV2all 20-0mg) + 1Al 2 + Vel L2) -
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