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1 Introduction

We consider Euler’s equations

(1.1)
(
∂t + vk∂k

)
vj = −∂j p , j = 1, . . . ,n in D , where∂i = ∂

∂xi
,

describing the motion of a perfect incompressible fluid in vacuum:

(1.2) divv = ∂kv
k = 0 in D

wherev = (v1, . . . , vn) andD ⊂ [0, T] × R
n are to be determined. Herevk =

δkivi = vk, and we have used the summation convention that repeated upper and
lower indices are summed over. Given a simply connected bounded domainD0 ⊂
R

n and initial datav0 satisfying the constraint divv0 = 0, we want to find a set
D ⊂ [0, T] × R

n and a vector fieldv solving (1.1) and (1.2) and satisfying the
initial conditions

(1.3)

{
{x : (0, x) ∈ D} = D0

v = v0 on {0} × D0 .

Let Dt = {x ∈ R
n : (t, x) ∈ D}. We also require the boundary conditions on the

free boundary∂Dt ,

(1.4)

{
p = 0 on∂Dt

vN = κ on ∂Dt

for eacht , whereN is the exterior unit normal to∂Dt , vN = N i vi , andκ is
the normal velocity of∂Dt . The second condition can also be expressed as(∂t +
vk∂k)|∂D ∈ T(∂D). We will prove a priori bounds for the initial value problem
(1.1)–(1.4) in Sobolev spaces under the assumption

(1.5) ∇N p ≤ −ε < 0 on∂Dt where∇N = N i ∂xi .
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(1.5) is a naturalphysical conditionsince the pressurep has to be positive in
the interior of the fluid. It is essential for well-posedness in Sobolev spaces. Taking
the divergence of (1.1),

(1.6) −4p = (∂j v
k)∂kv

j in Dt , p = 0 on∂Dt .

In the irrotational case (1.5) always holds, as shown in [6, 16, 17]. Then(curlv)i j =
∂i v

j − ∂j v
i = 0 so4p < 0 and hencep > 0 and (1.5) holds by the strong maxi-

mum principle (see [11]).
The incompressible perfect fluid is to be thought of as an idealization of a liquid.

For small bodies like water drops, surface tension should help to hold the liquid
together; for a large dense body like a star, its own gravity should play a role. Here
we neglect the influence of such forces. Instead it is the incompressibility condition
that prevents the body from expanding, and it is the fact that the pressure is positive
that prevents the body from breaking up in the interior. Let us also point out that
from a physical point of view one can alternatively think of the pressure as being a
small positive constant on the boundary instead of vanishing. The aim of this paper
is to show that we have a priori bounds for the free boundary problem (1.1)–(1.5)
in any number of space dimensions. What makes this problem difficult is that the
regularity of the boundary enters to highest order. Roughly speaking, the velocity
tells the boundary where to move, and the boundary is the zero set of the pressure
that determines the acceleration.

It is generally possible to prove local existence for analytic data for a free in-
terface between two fluids with the same normal component of the velocity; see
[2] and [13] for the irrotational case. However, this type of problem might be sub-
ject to instability in Sobolev norms. The classical examples are Rayleigh-Taylor
instability, which occurs in a local linear analysis when a heavier fluid lies above a
lighter fluid in a gravitational field, and Kelvin-Helmholtz instability, which occurs
when the tangential velocities of the two fluids along the interface are different;
see, e.g., [1]. In our case it is the first kind of instability that we must exclude. No
gravitational fields are present in our problem; however, a uniform exterior gravi-
tational field would not make a difference because it can be transformed away by
going to an accelerated frame. It is condition (1.5) that excludes the possibility of
this kind of instability. In fact, without taking into account the sign condition (1.5),
the problem is actually ill-posed in Sobolev spaces; see [8].

Some existence results in Sobolev spaces are known in the irrotational case for
the closely related water wave problem that describes the motion of the surface
of the ocean under the influence of Earth’s gravity. In that problem, the gravita-
tional field can be considered as uniform, and as we remarked above, this problem
reduces to our problem by going to an accelerated frame. The domainDt is un-
bounded for the water wave problem coinciding with a half space in the case of still
water. Nalimov [12] and Yosihara [18] proved local existence in Sobolev spaces in
two space dimensions for initial conditions sufficiently close to still water. Beale,
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Hou, and Lowengrab [3] have given an argument to show that that problem is lin-
early well posed in a weak sense in Sobolev spaces if a condition is assumed that
can be shown to be equivalent to (1.5). The condition (1.5) prevents the Rayleigh-
Taylor instability from occurring when the water wave turns over. Recently Wu
[16, 17] proved local existence in general in two and three dimensions for the wa-
ter wave problem. Wu showed that (1.5) holds for an unbounded domain in the
irrotational case. More importantly, Wu [17] is the first existence result in three
space dimensions in Sobolev spaces; going from two to three dimensions required
introduction of new techniques.

The method of proof in the above papers relies heavily on the assumption that
the velocity is curl-free and hence satisfies Laplace’s equation in the interior. This
makes it possible to reduce the problem to one involving the boundary alone. In
this reduction the Dirichlet-to-Neumann map enters, and it is estimated in frac-
tional Sobolev spaces on the boundary. In the general case, with nonvanishing
curl, no existence results in Sobolev spaces are known. However, recently Ebin [9]
announced a local existence result for the same equations but with the boundary
condition containing surface tension, which makes the problem more regular.

We prove a priori bounds in the case of nonvanishing vorticity in any number
of space dimensions. We also show that the Sobolev norms remain bounded es-
sentially as long as (1.5) holds, the second fundamental form of the free surface
is bounded, and the first-order derivatives of the velocity are bounded. The proof
works with lower regularity assumptions on initial data. This is partly due to the
fact that our result is in terms of norms in the Eulerian space coordinates and the
second fundamental form of the free surface. The norms are hence independent
of a parametrization of the boundary, so we do not have to be concerned with the
possibility of a parametrization becoming singular. On the other hand, it is more
difficult to put up an iteration in this approach. However, existence will follow
from analogous estimates and existence in the presence of surface tension, reduc-
ing to the estimates presented here in the limit of vanishing surface tension. Let us
also point out that an existence result even for infinitely differentiable data together
with the a priori bounds here imply existence and continuation for low regularity
data. This is in particular true in the irrotational case where existence is known.

Our approach is quite elementary and geometric in nature. We use a new type
of energy that controls the geometry of the free surface. The energy has a boundary
part and an interior part; this fact allows us to avoid the use of fractional Sobolev
spaces on the boundary. The boundary part controls the norms of the second fun-
damental form of the free surface, whereas the interior part controls the norms of
the velocity and hence the pressure. We show that the time derivative of the en-
ergy is controlled by the energy. A crucial point is that the time derivative of the
interior part will, after integrating by parts, contribute a boundary term that ex-
actly cancels the leading-order term in the time derivative of the boundary integral.
The equations look ill-posed at first sight, but if one differentiates them, one gets
a well-posed system for higher-order derivatives of the velocity and the pressure.
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Our energy contains the components of this higher-order system. In the interior it
contains most components and on the boundary only the tangential components.
Due to the fact that the pressure vanishes on the boundary, the tangential compo-
nents of this higher-order system are more regular. Another crucial point is then
to estimate the projection of a tensor to the tangent space of the boundary, which
involves the second fundamental form.

Let us first introduceLagrangian coordinates. In these coordinates the bound-
ary is fixed. Let� be a domain inRn, and let f0 : � → D0 be a diffeo-
morphism that is volume preserving, det(∂ f0/∂y) = 1. Assume thatv(t, x) and
p(t, x), (t, x) ∈ D , are given satisfying (1.1)–(1.4). The Lagrangian coordinates
x = x(t, y) = ft(y) are given by solving

(1.7)
dx

dt
= v(t, x(t, y)) , x(0, y) = f0(y) , y ∈ � .

Then ft : � → Dt is a volume-preserving diffeomorphism, since divv = 0, and
the boundary becomes fixed in the newy-coordinates. Let us introduce the notation

(1.8) Dt = ∂

∂t

∣∣∣∣
y=constant

= ∂

∂t

∣∣∣∣
x=constant

+ vk ∂

∂xk

for the material derivative and

(1.9) ∂i = ∂

∂xi
= ∂ya

∂xi

∂

∂ya
.

Sometimes it is convenient to work in the Eulerian coordinates(t, x), and some-
times it is easier to work in the Lagrangian coordinates(t, y). In the Lagrangian
picture the partial derivative with respect to the time coordinate has more direct
significance than the partial derivative with respect to the time coordinate in the
Eulerian picture. However, this is not true for the partial derivatives with respect to
the space coordinates. The notion of space derivative that plays a more significant
role in the Lagrangian picture is that of covariant differentiation with respect to the
metric gab(t, y) = δi j ∂xi /∂ya ∂x j /∂yb, the pullback byft of the Eulerian metric
δi j on Dt ⊂ R

n. The covariant space derivatives of the Lagrangian picture are
simply and directly related to the partial derivatives with respect to the Cartesian
space coordinates of the Eulerian picture. We will work mostly in the Lagrangian
coordinates in this paper. However, our statements are coordinate independent, and
to simplify the exposition we will present the results in the Eulerian picture in the
introduction.

In the notation of (1.8) and (1.9), Euler’s equations (1.1) become

(1.10) Dtvi = −∂i p .

Note that the commutator satisfies

(1.11) [Dt , ∂i ] = −(∂i v
k)∂k .
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By (1.10) we obtain the second-order equation for the velocity

(1.12) D2
t vi − (∂k p)∂i v

k = −∂i Dt p .

Our estimates make use of (1.12) restricted to the boundary together with the
boundary condition

(1.13) p = 0 on∂Dt =⇒ Dt p = 0 on∂Dt .

In the interior we will make use of the equation obtained by taking the curl of
(1.10), using (1.11),

(1.14) Dt(curlv)i j = −(∂i v
k)(curlv)k j + (∂j v

k)(curlv)ki

together with

(1.15) divv = 0 in Dt .

If we take take the divergence of (1.10) and (1.12), respectively, by using (1.11)
and (1.15), we get the elliptic equations

4p = −(∂i v
`)∂`v

i in Dt , p = 0 on ∂Dt ,(1.16)

4Dt p = (∂k p)4vk + G(∂v, ∂2 p) in Dt , Dt p = 0 on∂Dt ,(1.17)

whereG(∂v, ∂2 p) = 4δi j (∂i v
k)∂j ∂k p + 2(∂i v

j )(∂j v
k)∂kv

i . Equation (1.16) gains
regularity; neglecting the problem with the boundary regularity, one derivative ofv

in the interior gives two derivatives ofp, which gives a gain of one time derivative
of v in (1.10). If curlv = 0, then4v = 0, so then the equation forDt p is as good
as the equation forp.

To see the importance of the condition∇N p ≤ −ε < 0, let us look at a
simplified linear model problem: Sincep = Dt p = 0 on ∂Dt , it follows that
∂i p = Ni ∇N p and∂i Dt p = Ni ∇N Dt p there, so by (1.12)

(1.18) D2
t vi − (∇N p)Nk∂i vk = −(∇N Dt p)Ni on ∂Dt .

We linearize by takingDt = � andx(t, y) = y independently oft . In the irro-
tational case,N k∂i vk = N k∂kvi = ∇N vi and4vi = δ jk∂j ∂kvi = δ jk∂i ∂j vk =
∂i div v = 0. Let us therefore consider the equations

(1.19) D2
t vi + ν−1∇N vi = Fi on ∂� , 4vi = 0 in� ,

for a vector fieldv on� depending ont , whereν and Fi are given functions on
� and Dt = ∂t . To simplify further, let us assume thatν−1 = ε is constant,
F = 0, and� is the unit disc inR

2. Then the solutions of4v = 0 are given
in polar coordinates byv(t, r, θ) = ∑

ck(t)r |k|eikθ . The boundary condition in
(1.19) implies thatc′′

k(t)+ ε|k|ck(t) = 0, with solutionsck(t) = c+
k etλk + c−

k e−tλk ,
λk = √−ε|k|, so the high frequencies remain bounded fort > 0 if ε > 0, but
they are exponentially increasing ifε < 0. Note that if data are analytic, i.e.,
c±

k = o(e−δ|k|), δ > 0, then the solution exists independently of the sign condition.
The model problem is related to Enbin’s counterexample. By linearizing around a
rigid rotationv = (x2,−x1), he gets an equation for the variation similar to (1.19)
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with ν−1 = −∇N p = −1. (1.19) is also up to terms of lower order the equation
Wu [17] uses. Furthermore, a similar model problem shows up in [6] when one
studies the equation for the derivatives of the velocity (1.24)–(1.25).

The model problem also suggests a candidate for an energy:

(1.20) E(t) =
∫
�

|∂v|2 dx +
∫
∂�

|Dtv|2ν dS, ν > 0 .

If we differentiate below the integral sign and integrate by parts, we get a bound
for the energy:

d E

dt
= 2

∫
�

∂v∂Dtv dx + 2
∫
∂�

Dtv D2
t v ν dS+

∫
∂�

|Dtv|2Dtν dS(1.21)

= −2
∫
�

4v Dtv dx + 2
∫
∂�

Dtv(D
2
t v + ν−1∇N v)ν dS

+
∫
∂�

|Dtv|2Dtν dS

≤ 2‖F‖L2(∂�,νdS)E
1/2 + ‖ν−1Dtν‖L∞(∂�)E .

An easy modification gives (1.21) with an extra term 2‖Dtω‖L2(�)E
1/2 also for

a divergence-free vector field, divv = 0, with curlv = ω satisfying D2
t vi +

ν−1Nk∂i vk = Fi on the boundary. This estimate, however, is not by itself good
enough to deal with (1.12), since we cannot expect a bound for‖∂Dt p‖L2(∂�) from
a bound for‖∂v‖L2(�) due to the loss of regularity in (1.17) in the irrotational case.
One derivative ofv in the interior gives only one derivative ofDt p in the interior,
and restricting to the boundary we lose half a derivative.

An additional idea is required that has to do with exploiting our special bound-
ary conditionsDt p = 0. If we modify our energy so it contains only tangential
components on and close to the boundary, then only the projection onto the tan-
gential components of (1.12) on the boundary will occur in the energy estimate,
and the tangential components of∂Dt p vanish. The components we lose control
over in the energy can then be gotten back by elliptic estimates. Although the pres-
sure and the regularity of the boundary did not enter in the above simplified model,
they will enter once we go to higher-order energies, which are needed to close the
argument. We will now develop these higher-order energies.

One can think of (1.10) and (1.12) as a system of equations forv and v̇ =
Dtv = −∂p:

Dtvi = −∂i p ,(1.22)

Dt∂i p + (∂k p)∂i v
k = ∂i Dt p .(1.23)
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To see better what goes on, let us differentiate once more with respect to the spatial
coordinates

Dt∂i vj = −∂i ∂j p − (∂i v
k)∂kvj ,(1.24)

Dt∂i ∂j p + (∂k p)∂i ∂j v
k = ∂i ∂j Dt p − (∂i v

k)∂k∂j p − (∂j v
k)∂k∂i p ,(1.25)

where we used (1.11).
We want to project (1.25) to the tangent space of the boundary. The orthogonal

projection5 to the tangent space of the boundary of a(0, r ) tensorα is defined to
be the projection of each component along the normal:

(1.26) (5α)i1···i r = 5
j1
i1

· · ·5 jr
i r
αj1··· jr where5 j

i = δ
j
i − Ni N

j .

Let ∂ i = 5
j
i ∂j be a tangential derivative. Ifq = 0 on∂Dt , it follows that∂ i q = 0

there and

(1.27) (5∂2q)i j = θi j ∇N q whereθi j = ∂ i Nj

is the second fundamental form of∂Dt . In fact,

0 = ∂ i ∂ j q = 5i ′
i ∂i ′5

j ′
j ∂j ′q = 5i ′

i 5
j ′
j ∂i ′∂j ′q − (∂ i Nj )N

k∂kq − Nj (∂ i N
k)∂kq

= (5∂2q)i j − θi j ∇N q

sinceNk∂ i N
k = ∂ i (NkN

k)/2 = 0.
Our energy for the second-order equation (1.25) will be a modification of (1.20)

that contains only the tangential components5∂Dtv = −5∂2 p on the boundary
and(5̃∂2)v in the interior, wherẽ5 is an extension of the projection to the interior.
Taking the time derivative of this energy and integrating by parts as in (1.21), we
get a boundary term that involves the projection of (1.25). Because5∂2Dt p =
θ∇N Dt p, this can be controlled by one less derivative∂Dt p. The energy together
with elliptic estimates controls two derivatives ofv in the interior, so (1.17) gives
us two derivatives ofDt p in the interior and hence one derivative on the boundary.
In our discussion so far we have neglected the problem of boundary regularity,
which comes in to highest order. However, our energy also controls the second
fundamental form. By (1.27) and|∇N p| ≥ ε > 0, the boundary part of the energy,
|5∂2 p|2 ≥ |θ |2|∇N p|2 ≥ |θ |2ε2, gives an estimate for the second fundamental
form θ .

The energies we propose are of the form

Er (t) =
∫
Dt

δmnQ(∂r vm, ∂
r vn)dx +

∫
Dt

|∂r −1 curlv|2 dx

+
∫
∂Dt

Q(∂r p, ∂r p)ν dS,
(1.28)

where ν = (−∇N p)−1. Here Q is a positive definite quadratic form which,
when restricted to the boundary, is the inner product of the tangential components
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Q(α, β) = 〈5α,5β〉, and in the interiorQ(α, α) increases to the norm|α|2. To
be more specific, we define

Q(α, β) = qi1 j1 · · · qir jr αi1···i r βj1··· jr(1.29)

where

qi j = δi j − η(d)2N i N j , d(x) = dist(x, ∂Dt) , N i = −δi j ∂j d .(1.30)

Hereη is a smooth cutoff function satisfying 0≤ η(d) ≤ 1, η(d) = 1 when
d < d0/4 andη(d) = 0 whend > d0/2. d0 is a fixed number that is smaller than
the injectivity radius of the normal exponential mapι0, defined to be the largest
numberι0 such that the map

(1.31) ∂Dt × (−ι0, ι0) → {x ∈ R
n : dist(x, ∂Dt) < ι0}

given by
(x, ι) → x = x + ιN (x)

is an injection. These energies, in fact, control all components of∂r v, ∂r p, and
∂r −2θ ; see (1.41)–(1.42).

We prove an energy estimate implying that the energies are bounded as long
as certain a priori assumptions are true. More specifically, we prove that there are
continuous functionsCr such that∣∣∣∣d Er (t)

dt

∣∣∣∣ ≤ Cr

(
K ,

1

ε
, L ,M,Vol Dt , E∗

r −1(t)

)
E∗

r (t) ,(1.32)

whereE∗
r (t) =

r∑
s=0

Es(t) ,

if 0 ≤ r ≤ 4 or r ≥ n/2 + 3/2, provided that

|θ | ≤ K ,
1

ι0
≤ K , on ∂Dt ,(1.33)

−∇N p ≥ ε > 0 on∂Dt ,(1.34)

|∂2 p| + |∇N Dt p| ≤ L on ∂Dt ,(1.35)

|∂v| + |∂p| ≤ M in Dt .(1.36)

The bounds (1.33) give us control of the geometry of the free surface∂D . A bound
for the second fundamental formθ gives a bound for the curvature of∂Dt , and a
lower bound for the injectivity radius of the normal exponential mapι0 measures
how far off the surface is from self-intersecting.

Now, the lowest-order energy and the volume are in fact conserved:

(1.37) E0(t) =
∫
Dt

δmnvmvn dx = E0(0) , Vol Dt =
∫
Dt

dx = Vol D0 .

Recursively it follows from (1.32) and (1.37):
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THEOREM 1.1 Let n ≤ 7. Then there are continuous functionsFr , r = 0,1, . . . ,
with Fr |t=0 = 1 such that any smooth solution of the free boundary problem for
Euler’s equations(1.1)–(1.5)for 0 ≤ t ≤ T that satisfy the a priori assumptions
(1.33)–(1.36)also satisfy the energy bound

(1.38) E∗
r (t) ≤ Fr

(
t, K ,

1

ε
, L ,M, E∗

r −1(0),Vol D0

)
E∗

r (0) , 0 ≤ t ≤ T .

Most of the a priori bounds (1.33)–(1.36) can be obtained from the energy
through (1.41) and (1.42) below using Sobolev’s lemma ifr > (n − 1)/2 + 2.
However, the lower bounds forε andι0 cannot be obtained in this way; instead one
has to try to get evolution equations for these.

Let K (0) andε(0) be the minimum and maximum values, respectively, such
that (1.33) and (1.34) hold whent = 0.

THEOREM 1.2 Let r0 be the smallest integer such that r0 > n/2+ 3/2. Then there
are continuous functionsTr > 0, r = r0, r0 + 1, . . . , such that if

(1.39) T ≤ Tr

(
K (0),

1

ε(0)
, E∗

r0
(0),Vol D0

)
,

then any smooth solution of the free boundary problem for Euler’s equations(1.1)–
(1.5) for 0 ≤ t ≤ T satisfies

(1.40) E∗
r (t) ≤ 2E∗

r (0) , 0 ≤ t ≤ T .

Remark.The restrictionn ≤ 7 in Theorem 1.1, i.e., the restriction for (1.32) to
hold, is just a result of the proof becoming simpler in this case. The assumption
that VolD0 < ∞ is just used to get anL2 estimate forp, so it can be omitted if we
add

∫
p2 dx to the energy. We need only a lower bound for the interior radius of

injectivity of the normal exponential map in (1.31) for the energy estimates to hold.
The bound for the exterior one is to prevent the surface from self-intersecting.

Let us first point out that since divv = 0 and−4p = (∂i v
k)∂kv

i , one can
useelliptic estimatesto control all components of∂r v and∂r p from the tangential
components5∂r p in the energy:

(1.41) ‖∂r v‖2
L2(Dt )

+ ‖∂r −1v‖2
L2(∂Dt )

+ ‖∂r p‖2
L2(∂Dt )

+ ‖∂r p‖2
L2(Dt )

≤
C(K ,M,Vol D0)E

∗
r .

A bound for the energy also implies a bound for the second fundamental form of
the free boundary

(1.42) ‖∂r −2θ‖2
L2(∂Dt )

≤ C

(
K , L ,M,

1

ε
, E∗

r −1,Vol Dt

)
E∗

r

that controls the regularity. In fact, we prove higher-order versions of the projection
formula (1.27):

(1.43) 5∂r q = (∂r −2θ)∇N q + O(∂r −1q)+ O(∂r −3θ) if q = 0 on∂Dt .
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Since|∇N p| ≥ ε > 0, it follows from (1.43) that

|∂r −2θ | ≤ C|5∂r p| + O(∂r −1 p)+ O(∂r −3θ) ,

where the lower-order terms can be bounded using (1.41) and (1.42) for smallerr ,
so (1.42) follows inductively.

Once we have the bound (1.42) for the second fundamental form, we can get es-
timates for any solution of the Dirichlet problem. In particular, sinceDt p satisfies
the elliptic equation (1.17), we get

(1.44) ‖5∂r Dt p‖2
L2(∂Dt )

+ ‖∂r −1Dt p‖2
L2(∂Dt )

≤
C

(
K , L ,M,

1

ε
, E∗

r −1,Vol Dt

)
E∗

r .

This follows from the elliptic estimates, used to prove (1.41), and (1.43) applied to
Dt p, where∂r −2θ is now bounded by (1.42) and∂r −1Dt p is lower order.5∂r Dt p
shows up in the energy estimate when we take the time derivative of the boundary
part of the energy5∂r p. Although a bound for the energy implies bounds for
all components of∂r p, we cannot bound the time derivative of the nontangential
components on the boundary in the case of nonvanishing curl, since the elliptic
estimates give control of only the tangential components5∂r Dt p in (1.44) because
of the term with4v in (1.17).

Let us now outline the proof of Theorems 1.1 and 1.2. First, we explain the
proof of the energy estimate (1.32), which uses integration by parts as in the model
problem. Then we give the main elliptic estimates and the projection formula used
in proving (1.41)–(1.44). Finally, we discuss how to control the geometry of the
free surface and the a priori bounds (1.33)–(1.36), the time evolution ofι0 andε,
and other geometric quantities that control the Sobolev constants that are needed
for Theorem 1.2.

1.1 Energy Estimates (Sections 5 and 7)

We will now outline the proof of the energy estimate (1.32). In order to take the
time derivative of the energy (1.28), we make use of the fact that iff is an arbitrary
function onD t depending ont , then

d

dt

∫
Dt

f dx =
∫
Dt

Dt f dx and
d

dt

∫
∂Dt

f dS=
∫
∂Dt

(
Dt f − (∇N vN ) f

)
dS

since divv = 0 (this can be seen, e.g., using the Lagrangian coordinates). We have

d Er

dt
=
∫
Dt

Dt

(
δmnQ(∂r vm, ∂

r vn)+ |∂r −1 curlv|2)dx(1.45)

+
∫
∂Dt

Dt
(
Q(∂r p, ∂r p)ν

)− Q(∂r p, ∂r p)ν∇N vN dS
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The derivatives of the coefficients ofQ and the measures can bounded by the con-
stants in (1.33)–(1.36):

(1.46) |Dtq
i j | ≤ C M , |∂qi j | ≤ C K , |∇N vN | ≤ C M ;

see Section 3. The time derivative of the higher-order tensors∂r v and∂r p can be
obtained from (1.22) and (1.23) by repeated use of (1.11),

Dt∂
r vn = −∂r ∂n p +

∑
0≤s≤r −1

csr(∂
s+1v) · ∂r −svn ,(1.47)

Dt∂
r p + (∂k p)∂r vk = ∂r Dt p +

∑
0≤s≤r −2

dsr(∂
s+1v) · ∂r −s p ,(1.48)

where the symmetrized dot product is defined in Lemma 2.4. Now

(1.49) ‖(∂s+1v) · ∂r −sv‖L2(Dt ) ≤
C(K )‖∂v‖L∞(Dt )

∑
s≤r

‖∂sv‖L2(Dt ) , 0 ≤ s ≤ r − 1 .

This is clear fors = 0, r − 1, and follows in general by interpolation. Hence by
(1.45)–(1.48) and (1.41),

(1.50)
d Er

dt
= −2

∫
Dt

δmnQ
(
∂r vm, ∂n∂

r p
)
dx

+ 2
∫
∂Dt

Q
(
∂r p, Dt∂

r p
)
ν dS+ lower-order terms,

where “lower-order term” means something that is controlled by the energyE∗
r and

by K , L, M , and 1/ε so it can be bounded by the right-hand side of (1.32).
If we integrate by parts in the first term, we get

(1.51)
d Er

dt
= 2

∫
Dt

δmnQ
(
∂r ∂nvm, ∂

r p
)
dx

+ 2
∫
∂Dt

Q
(
∂r p, Dt∂

r p − ν−1Nm∂
r vm

)
ν dS+ lower-order term.

The first term vanishes since divv = 0. Since−ν−1Nm = ∂m p, the second is the
inner product of5∂r p and

(1.52) 5
(
Dt∂

r p + (∂m p)∂r vm
) = 5(∂r Dt p)+

∑
0≤s≤r −2

dsr5
(
(∂s+1v) · ∂r −s p

)
by (1.48). Here5∂r Dt p is under control by (1.44), and we really need to use the
projection since in the case of nonvanishing curl we cannot control all components
of ∂r Dt p on the boundary. The other terms in (1.52) are bounded by the a priori
assumptions times (1.41). This is clear fors = 0, r = 2, but dealing with the
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intermediate terms is the most involved part of the manuscript. This is because the
interpolation has to be done on the boundary and the expression involves nontan-
gential components. Note that if 0≤ r ≤ 2, then the boundary terms simplify and
the lower-order terms are easily bounded by (1.32). The boundary terms vanish
if r = 0,1, and if r = 2 then Q(∂2 p, ∂2 p) = |5∂2 p|2 = |θ |2|∇N p|2, where
|∇N p| ≥ ε > 0 andQ(∂2Dt p, ∂2Dt p) = |θ |2|∇N Dt p|2.

1.2 Elliptic Estimates Using the Energy Bound (Section 5)

The bound (1.41) follows from

(1.53) |∂r v|2 ≤ C
(
δmnQ(∂r vn, ∂

r vm)+ |∂r −1 div v|2 + |∂r −1 curlv|2)
(1.54) ‖∂r p‖2

L2(∂Dt )
+ ‖∂r p‖2

L2(Dt )
≤

C(K ,Vol Dt)
∑
s≤r

(‖5∂s p‖2
L2(∂Dt )

+ ‖∂s−14p‖2
L2(Dt )

)
.

In fact, using that the measure in the boundary part of the energy≥ ‖∇N p‖−1
L∞dS,

we get from (1.16) and (1.49), respectively,

‖5∂r p‖2
L2(∂Dt )

≤ ‖∂p‖L∞
(∂Dt )

Er and

‖∂r −14p‖2
L2(Dt )

≤ C‖∂v‖2
L∞

(Dt )
Er .

(1.55)

(1.53) follows because curlv is the antisymmetric part of∂v, so only the sym-
metric part of∂r v needs to be estimated; moreover, the first term in the right con-
tains one normal component while, sinceN mN n∂mvn = −qmn∂mvn + δmn∂mvn,
two normal components can be expressed in terms of tangential components and
the divergence. (1.54) follows inductively from the following inequalities:

‖∂r p‖2
L2(∂Dt )

≤ C‖5∂r p‖2
L2(∂Dt )

(1.56)

+ C
(‖∂r −14p‖L2(Dt ) + K‖∂r p‖L2(Dt )

)‖∂r p‖L2(Dt ) ,

‖∂r p‖2
L2(Dt )

≤ ‖∂r p‖L2(∂Dt )‖∂r −1 p‖L2(∂Dt ) + ‖∂r −24p‖2
L2(Dt )

,(1.57)

‖p‖L2(Dt ) ≤ C(Vol Dt)
1/n‖4p‖L2(Dt ) if p = 0 on∂Dt .(1.58)

Estimate (1.56) follows from repeated use of the fact that the square of the normal
derivative minus the square of the tangential one behaves better on the boundary:
Let Q̃ be any quadratic form acting on(0, r ) tensors constructed fromδi j andqi j ,
and letÑ = η(d)N be an extension of the normal to the interior; see (1.30).
Let Ti j = 2Q̃(∂iα, ∂jα) − δi j δ

mnQ̃(∂mα, ∂nα). Then ∂i T i
j = 2Q̃(4α, ∂jα) +

2δim(∂i Q̃)(∂mα, ∂jα)− δmn(∂j Q̃)(∂mα, ∂nα), so∣∣∣∣∣∣
∫
∂Dt

(N i N j − qi j )Q̃(∂iα, ∂jα)dS

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
∂Dt

N i N j Ti j dS

∣∣∣∣∣∣
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=
∣∣∣∣∣∣
∫
Dt

∂i

(
Ñ j T i

j

)
dx

∣∣∣∣∣∣
≤
∫
Dt

2|4α||∂α| + C K|∂α|2 dx

by the divergence theorem. (1.57) results from integration by parts twice. (1.58) is
the product of applying the Faber-Krahns theorem; see [14].

1.3 The Projection Formula and Estimate for the Second Fundamental
Form (Section 4)

We prove an estimate for the projection: Ifq = 0 on∂Dt , then form = 0,1
and 0≤ r ≤ 4 or r ≥ (n − 1)/2 + 2,

‖5∂r q − (∇N q)∂r −2θ‖L2(1.59)

≤ ε‖∇N q‖L∞ ‖∂r −2θ‖L2 + Cε‖θ‖L∞ ‖∂r −1q‖L2

+ C
(‖θ‖L∞ )

(
‖θ‖L∞ +

∑
s≤r −2−m

‖∂sθ‖L2

) ∑
s≤r −2+m

‖∂sq‖L2

for anyε > 0, whereL p = L p(∂Dt) andθ is the second fundamental form. The
bound (1.42) for the second fundamental formθ follows from (1.41) and (1.59) by
using the a priori bound|∇N p| ≥ ε‖∇N p‖L∞/2.

Let us now briefly discuss the proof of (1.59). In Section 4 we derive a formula
for the projection:

5∂r q =(1.60)

∂r q + ∇N q∂r −2θ +
r −2∑
`=1

(
r
`

)
(∂r −2−`θ)⊗̃(∂`∇N q)

+
∑

r0+r1+···+rk+`=r −k
k−`=m=0 mod 2, k≥`≥0, k≥2

ar0···rk`mCm
(
∂r1θ⊗̃ · · · ⊗̃∂rkθ⊗̃∂r0∇`

N q
)
,

whereθ = ∂N is the second fundamental form,̃⊗ stands for some partial sym-
metrization of the tensor product, andCm stands for contraction overm pairs of
indices; see Section 4. Note that in (1.60) the total number of derivatives decreases
by 1 as the number of factors ofθ increases by 1. Therefore, since we have as-
sumed that we have control of‖θ‖L∞ , the terms on the second row will be lower
order. (1.60) follows by expressing tangential derivatives of normal derivatives as
projections onto tangential and normal components. The general form of the terms



MOTION OF FREE SURFACE OF LIQUID 1549

in (1.60) follows from the fact that the projections are defined in terms of the nor-
mal, and each time a derivative falls on the normal we get a factor ofθ and at the
same time the total number of derivatives decreases by 1.

One way to obtain the leading-order terms is to expandq in the distance to the
boundaryd(x) = dist(x, ∂Dt). To highest order5∂r q ∼ ∂r q. To calculate the
next terms, let us assume thatq = 0 on∂Dt . Thenq/d = ∇N q on∂Dt , and since
d = 5d = 0 andθ = ∇d on ∂Dt , we have

5∂r q = 5∂r

(
d

q

d

)
(1.61)

=
r −2∑
`=0

(
r

`

)
5(∂r −2−`θ)⊗̃5∂`

(
q

d

)

=
r −2∑
`=0

(
r

`

)
(∂r −2−`θ)⊗̃(∂`∇N q)+ lower-order terms,

where “lower-order terms” means terms that contain at least one more factor ofθ .
In the appendix we give interpolation inequalities to deal with the products on the
first row of (1.60)

(1.62)
∥∥|∂`∇N q| |∂r −2−`θ |∥∥

L2(∂Dt )
≤

ε‖∇N q‖L∞(∂Dt )‖∂r −2θ‖L2(∂Dt ) + Cε‖θ‖L∞(∂Dt )‖∂r −2∇N q‖L2(∂Dt ) .

The lower-order terms on the second row of (1.60) are estimated by interpolation
and Sobolev’s lemma.

1.4 Elliptic Estimates Using the Bound for the Second Fundamental
Form (Section 5)

If q = 0 on ∂Dt and 0≤ r ≤ 4 or r ≥ (n − 1)/2 + 2, then we obtain the
following estimate from (1.59) and (1.54):

‖∂r −1q‖L2(∂Dt ) ≤ C
(
K ,Vol Dt , ‖θ‖L2(∂Dt ), . . . , ‖∂r −3θ‖L2(∂Dt )

)
(1.63) (

‖∇N q‖L∞(∂Dt ) +
∑

s≤r −2

‖∇s4q‖L2(Dt )

)
.

If, in addition,r > (n−1)/2+2, then it follows from (1.59), (1.54), and Sobolev’s
lemma that

(1.64) ‖∂r −1q‖L2(∂Dt ) + ‖∂q‖L∞(∂Dt ) ≤
C
(
K ,Vol Dt , ‖θ‖L2(∂Dt ), . . . , ‖∂r −3θ‖L2(∂Dt )

) ∑
s≤r −2

‖∇s4q‖L2(Dt ) .

(1.63) together with (1.42) now gives a bound for‖∂s−1Dt p‖L2(∂Dt ) for s ≤ r ,
since, by (1.17),‖∂s−24Dt p‖L2(Dt ) = ‖O(∂s p) + O(∂sv)‖L2(Dt ) is bounded by
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(1.41) fors ≤ r and since‖∇N Dt p‖L∞(∂Dt ) is bounded by the a priori assumptions.
The bound for‖∂s−1Dt p‖L2(∂Dt ) for s ≤ r together with (1.59) and (1.42) gives
(1.44). This suffices to prove the energy estimate. However, in order to prove
Theorem 1.2, we also need to get back bounds for the a priori assumptions, which
is where (1.64) will be used.

1.5 Bounds for the Geometry and the A Priori Assumptions
(Sections 3 and 7)

We need to control the Sobolev constants for the surface and the derivatives of
the coefficients of the quadratic formQ. These are easily controlled by an upper
bound for the second fundamental formθ and a lower bound for the injectivity
radius of the normal exponential mapι0. This proves Theorem 1.1. To prove
Theorem 1.2, we also need to control the time evolution of the a priori assumptions
(1.33)–(1.36). However, there is a difficulty with (1.33) because we do not have
an evolution equation forι0 and the evolution equation forθ loses regularity, so
we have to control these in an indirect way. It turns out that in order to control
the Sobolev constants for the interior as well as for the boundary (see Lemma A.4
and Lemma A.2, respectively), the constant in the elliptic estimate (1.41), and the
constant in the interpolation inequality (1.49), it suffices to have an upper bound
1/ι1 ≤ K1 instead of (1.33), whereι1 = ι1(ε1) is defined to be the largest number
such that

(1.65) |N (x1)− N (x2)| ≤ ε1 whenever|x1 − x2| ≤ ι1 andx1, x2 ∈ ∂Dt

for some fixed number 0< ε1 < 2.
To prove this, one makes a partition of unity into neighborhoods where (1.65)

holds. An upper bound forθ and a lower bound forι1 then implies a lower bound
for ι0:

(1.66) ι0 ≥ min

(
ι1

2
,

1

‖θ‖L∞

)
.

In fact, suppose thatx∗ = x − ι0N(x), x ∈ ∂Dt , is a point inDt such that
the interior normal exponential map of∂Dt fails to be injective just beyondx∗
along the normal lineλ → x − λN(x), while dist(x∗, ∂Dt) = ι0, the injectivity
radius. Then eitherx∗ is a focal point, i.e.,θ has an eigenvalue 1/ι0, or the line
λ → x −λN(x) is contained inDt for all λ ∈ (0,2ι0) and intersects∂Dt normally
at λ = 2ι0, in which case (1.65) cannot be true for the two endpoints. Since a
similar argument holds for the exterior normal exponential map, (1.66) follows.

The bounds (1.35) and (1.36) are easily controlled by the energy using (1.41),
whereK can be replaced byK1 ≥ 1/ι1, and Sobolev’s lemma ifr ≥ r0 > n/2 +
3/2: By Sobolev’s lemma (Lemma A.4) and (1.53),

(1.67) ‖v‖2
L∞(Dt )

+ ‖∂v‖2
L∞(Dt )

≤ C(K1)

r0∑
s=0

‖∂sv‖2
L2(Dt )

≤ C(K1)E
∗
r0
.



MOTION OF FREE SURFACE OF LIQUID 1551

The proof of the fact that we can replaceK by K1 in (1.54), however, requires
some work; see Lemma 5.7. By (1.54), (1.55) (note thatp enters quadratically in
the left and linearly in the right), (1.67), and Sobolev’s lemma (Lemma A.4 and
Lemma A.2),

(1.68) ‖∂p‖2
L∞

(Dt )
+ ‖∂2 p‖2

L∞
(∂Dt )

≤ C
(
K1,Vol D0, E∗

r0

)
.

Since the evolution equation forθ loses regularity, and since theL2 estimate forθ
depends on theL∞ estimate, we will control it in an indirect way. By (1.27) and
(1.68),

‖θ‖L∞ ≤ E‖5∂2 p‖L∞(∂Dt )

≤ E ‖∂2 p‖L∞(∂Dt ) ≤ C
(
K1,Vol D0, E , E∗

r0

)
,

(1.69)

whereE(t) = ‖(∇N p(t, ·))−1‖L∞(∂Dt ) .(1.70)

The estimate for‖∇N Dt p‖L∞(∂Dt ) follows from (1.64).
It remains to control the evolution ofK1 andE . The bound forK1 follows since

we can control the time evolution of the boundary in the Lagrangian coordinates
x(t, y) and of the normalN (x(t, y))

(1.71) Dt x = v and DtNi = −(∂ i vk)N
k ,

where the right-hand sides are bounded by (1.67). We also have evolution equa-
tions forE andEr ,∣∣∣∣dE

dt

∣∣∣∣ ≤ ‖∇N Dt p‖L∞ E2 ≤ C
(
K1, E , E∗

r0
,Vol D0

)
,(1.72) ∣∣∣∣d Er

dt

∣∣∣∣ ≤ C
(
K1, E , E∗

max(r0,r −1),Vol D0
)
E∗

r .(1.73)

Assuming (1.65), the energy bound (1.40), and the boundE(t) ≤ 2E(0), inte-
gration of (1.71)–(1.73) gives back slightly better bounds ift ≤ T (K1(0), E(0),
E∗

r0
(0),Vol(D0)) is sufficiently small, so Theorem 1.2 follows. In fact, integrat-

ing (1.71) by using (1.67), we see that the change inN andx are under control if
t ≤ T is small. Hence we get back the bound (1.65) if it is true withε1/2 and 2ι1
initially.

2 Transformation of the Free Boundary to a Fixed Boundary:
Lagrangian Coordinates, the Metric, and Covariant Differentiation

in the Interior

Assume that we are given a velocity vector fieldv(t, x) defined in a setD ⊂
[0, T] × R

n such that the boundary ofDt = {x : (t, x) ∈ D} moves with the
velocity, i.e.,(1, v) ∈ T(∂D). We will now introduce Lagrangian or comoving co-
ordinates, i.e., coordinates that are constant along the integral curves of the velocity
vector field so that the boundary becomes fixed in these coordinates.
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Let x = ft(y) be the change of variables given by

(2.1)
dx

dt
= v(t, x(t, y)) , x(0, y) = f0(y) if (t, y) ∈ [0, T] ×� .

Initially, whent = 0, we can start with either the Euclidean coordinates in� = D0

or some other coordinatesf0 : � → D0 where f0 is a diffeomorphism in which the
domain� becomes simple. For eacht we will then have a change of coordinates
ft : � → Dt = {x : (t, x) ∈ D}, takingy → x(t, y). The Euclidean metricδi j in
Dt then induces a metric

(2.2) gab(t, y) = δi j
∂xi

∂ya

∂x j

∂yb

in � for each fixedt . We will use covariant differentiation in� with respect to
the metricgab(t, y), since it corresponds to differentiation inDt under the change
of coordinates� 3 y → x(t, y) ∈ Dt , and we will work in both coordinate
systems. This also avoids possible singularities in the change of coordinates. We
will denote covariant differentiation in theya-coordinates by∇a, a = 0, . . . ,n,
and differentiation in thexi -coordinates by∂i , i = 1, . . . , n.

Covariant Differentiation.The covariant differentiation of a(0, r ) tensork(t, y)
is the(0, r + 1) tensor given by

(2.3) ∇aka1···ar = ∂ka1···ar

∂ya
− 0d

aa1
kd···ar − · · · − 0d

aar
ka1···d ,

where the Christoffel symbols0d
ab are given by

(2.4) 0c
ab = gcd

2

(
∂gbd

∂ya
+ ∂gad

∂yb
− ∂gab

∂yd

)
= ∂yc

∂xi

∂2xi

∂ya∂yb
,

wheregcd is the inverse ofgab. If w(t, x) is the(0, r ) tensor expressed in thex-
coordinates, then the same tensork(t, y) expressed in they-coordinates is given
by

(2.5) ka1···ar (t, y) = ∂xi1

∂ya1
· · · ∂xir

∂yar
wi1···i r (t, x) , x = x(t, y) ,

and by the transformation properties for tensors,

(2.6) ∇aka1···ar = ∂xi

∂ya

∂xi1

∂ya1
· · · ∂xir

∂yar

∂wi1···i r
∂xi

.

Covariant differentiation is constructed so the norms of tensors are invariant under
changes of coordinates,

(2.7) ga1b1 · · · gar br ka1···ar kb1···br = δi1 j j · · · δi r jrwi1···i rwj1··· jr .

Furthermore, expressed in they-coordinates,

(2.8) ∂i = ∂

∂xi
= ∂ya

∂xi

∂

∂ya
.
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Since the curvature vanishes in thex-coordinates, it must do so in they-coordi-
nates, and hence

(2.9)
[∇a,∇b

] = 0 .

Let us introduce the notationk b
a··· ···c = gbdka···d···c, and recall that covari-

ant differentiation commutes with lowering and rising indices:gce∇akb···e···d =
∇agcekb···e···d. Let us also introduce a notation for the material derivative:

(2.10) Dt = ∂

∂t

∣∣∣∣
y=const

= ∂

∂t

∣∣∣∣
x=const

+ vk ∂

∂xk
.

In this section, indicesa,b, c, . . . , will refer to quantities in they-coordinates, and
indicesi, j, k, . . . , will refer to quantities in thex-coordinates.

It is now important to be able to compute time derivatives of the change of
coordinates and commutators between time derivatives and space derivatives.

LEMMA 2.1 Let x = ft(y) be the change of variables given by(2.1), and let gab

be the metric given by(2.2). Letvi = δi j v
j = vi , and set

ua(t, y) = vi (t, x)∂xi /∂ya , ua = gabub ,(2.11)

hab = Dt gab , hab = gacgbdhcd .

Then

Dt
∂xi

∂ya
= ∂xk

∂ya

∂vi

∂xk
, Dt

∂ya

∂xi
= −∂ya

∂xk

∂vk

∂xi
,(2.12)

Dt gab = ∇aub + ∇bua , Dt g
ab = −hab , Dtdµg = gabhab dµg

2
,(2.13)

Dt0
c
ab = ∇a∇buc ,(2.14)

where dµg is the Riemannian volume element on� in the metric g.

PROOF: We have

Dt
∂xi

∂ya
= ∂Dt xi

∂ya
= ∂vi

∂ya
= ∂xk

∂ya

∂vi

∂xk
,

which proves the first part of (2.12). Furthermore,

0 = Dt

(
∂yb

∂xi

∂x j

∂yb

)
=
(

Dt
∂yb

∂xi

)
∂x j

∂yb
+ ∂yb

∂xi
Dt
∂x j

∂yb
.

Multiplying by ∂ya/∂x j and using the first part of (2.12) now gives the second
part. To prove the first part of (2.13), we note that that by (2.2)Dt gab is the sum
over i of

Dt

(
∂xi

∂ya

∂xi

∂yb

)
=
(

Dt
∂xi

∂ya

)
∂xi

∂yb
+ ∂xi

∂ya

(
Dt
∂xi

∂yb

)
= ∂xk

∂ya

∂vi

∂xk

∂xi

∂yb
+ ∂xi

∂ya

∂xk

∂yb

∂vi

∂xk
= ∇aub + ∇bua
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by (2.6). The second part of (2.13) follows from the first since 0= Dt(gabgbc) =
Dt(gab)gbc + gabDt(gbc), so Dt gak = −gckgabDt gbc. The last part of (2.13) fol-
lows since in local coordinatesdµg = √

detg dy and Dt detg = detg gabDt gab.
It follows from (2.4) and (2.13) that

Dt0
c
ab = gcd

2
(∇aDt gbd + ∇bDt gad − ∇d Dt gab) = gcd∇a∇bud .

�

LEMMA 2.2 Letwi1···i r (t, x) be an arbitrary(0, r ) tensor, and let

(2.15) ka1···ar (t, y) = wi1···i r (t, x)
∂xi1

∂ya1
· · · ∂xir

∂yar
where x= f (t, y) .

Let Dt = ∂t

∣∣
y=constantandv`(t, x) = ∂t f `(t, y). Then

Dtka1···ar =
(

Dtwi1···i r + w`···i r
∂v`

∂xi1
+ · · · + wi1···`

∂v`

∂xir

)
∂xi1

∂ya1
· · · ∂xir

∂yar

= (
∂t

∣∣
x=constwi1···i r + (Lvw)i1···i r

) ∂xi1

∂ya1
· · · ∂xir

∂yar

(2.16)

andLv is the Lie derivative.

PROOF: Note that if the tensor and the velocity depend only ont throughx,
then this would just be the definition of the Lie derivative. Now

∂

∂t

∣∣∣∣
y=const

wi1···i r (t, x)
∂xi1

∂ya1
· · · ∂xir

∂yar

=
(
∂t

∣∣∣∣
x=const

wi1···i r (t, x)+ (∂`wi1···i r )(t, x)
∂x`

∂t

)
∂xi1

∂ya1
· · · ∂xir

∂yar

+ wi1···i r (t, x)
∂2xi1

∂t∂ya1
· · · ∂xir

∂yar
+ · · · + wi1···i r (t, x)

∂xi1

∂ya1
· · · ∂

2xir

∂t∂yar
.

Sincev`(t, x) = ∂x`/∂t , we see that

wi1···i r (t, x)
∂2xi1

∂t∂ya1
· · · ∂xir

∂yar
= wi1···i r (t, x)

∂vi1

∂ya1
· · · ∂xir

∂yar

= w`···ar (t, x)
∂v`

∂xi1

∂xi1

∂ya1
· · · ∂xir

∂yar
,

and similarly for the other terms. This proves (2.16), since by definition

(Lvw)i1···i r = v`(∂`wi1···i r )+ w`···i r
∂v`

∂xi1
+ · · · + wi1···`

∂v`

∂xir
.

�
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We will now calculate commutators between the material derivativeDt and
space derivatives∂i in Lemma 2.3 and covariant derivatives∇a in Lemma 2.4. In
order to calculate commutators betweenDt and higher-order derivatives∂i1 · · · ∂i r
or∇a1 ···∇ar , we will introduce some notation incorporating that these commutators
are symmetric under permutations of the indices(i1, . . . , i r ) and(a1, . . . ,ar ), re-
spectively. Let(∂r )i1···i r = ∂r

i1···i r = ∂i1 · · · ∂i r and(∇r )a1···ar = ∇r
a1···ar

= ∇a1 ···∇ar .
In particular, it is convenient to introduce the symmetric dot product in (2.19) and
(2.24):

LEMMA 2.3 Let ∂i be given by(2.8). Then

(2.17)
[
Dt∂i

] = −(∂i v
k
)
∂k .

Furthermore,

(2.18)
[
Dt , ∂

r
] =

r −1∑
s=0

−
(

r

s + 1

)(
∂1+sv

) · ∂r −s ,

where the symmetric dot product is defined to be in components

(2.19)
(
(∂1+sv) · ∂s

)
i1···i r = 1

r !
∑
σ∈6r

(
∂1+s

iσ1 ···iσ1+s
vk
)
∂s

kiσs+2 ···iσr .

PROOF: The proof of (2.17) follows from (2.8) and (2.12). In the notation of
(2.18), we can write (2.17) as[

Dt , ∂
] = −(∂v) · ∂ .

Using this repeatedly, we obtain[
Dt , ∂

r
] =

r∑
`=0

∂`
[
Dt , ∂

]
∂r −`−1 = −

r −1∑
`=0

∂`(∂v) · ∂r −`

= −
r −1∑
`=0

`∑
s=0

(
`

s

)
(∂1+sv) · ∂r −s .

Since
∑r −1

`=s

(
`

s

) = ( r
s+1

)
, this proves (2.18). �

LEMMA 2.4 Let Ta1···ar be a(0, r ) tensor. We have

(2.20)
[
Dt ,∇a

]
Ta1···ar = −(∇a1∇aud)Tda2···ar − · · · − (∇ar ∇aud)Ta1···ar −1d .

If 4 = gcd∇c∇d and q is a function, we have[
Dt , g

ab∇a
]
Tb = −hab∇aTb − (4ue)Te ,(2.21) [

Dt ,4
]
q = −hab∇a∇bq − (4ue)∇eq .(2.22)

Furthermore,

(2.23)
[
Dt ,∇r

]
q =

r −1∑
s=1

−
(

r

s + 1

)
(∇s+1u) · ∇r −sq ,
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where the symmetric dot product is defined to be in components

(2.24)
(
(∇s+1u) · ∇r −sq

)
a1···ar

= 1

r !
∑
σ∈6r

(∇s+2
aσ1 ···aσs+1

ud
)∇r −s

daσs+3 ···aσr q .

PROOF: (2.20) is a consequence of (2.13) since in components the covariant
derivative is given by∇aTa1···ar = ∂Ta1···ar /∂ya −0d

a1aTda2···a3 −· · ·−0d
ar aTa1···ar −1d.

Now [
Dt , g

ab∇a

]
Tb = (Dt g

ab)∇aTb + gab
[
Dt ,∇a

]
Tb ,

and (2.21) follows from (2.12) and (2.20). (2.22) follows from (2.21) applied to
Tb = ∇bψ , sinceDt∇bq = ∂t∂q(t, y)/∂yb = ∇bDtq.

In the notation of (2.24), we have by (2.20)

(2.25)
[
Dt ,∇

]∇sq = −s(∇2u) · ∇sq .

Using this repeatedly, we get

[
Dt ,∇r

]
q =

r −1∑
`=0

∇`
[
Dt ,∇

]∇r −`−1q

= −
r −1∑
`=0

∇`(r − `− 1)
(∇2u

) · ∇r −`−1q

= −
r −2∑
`=0

`∑
s=0

(r − `− 1)

(
`

s

)(∇s+2u
) · ∇r −s−1q .

Since
∑r −2

`=s(r − `− 1)
(
`

s

) = ( r
s+2

)
, this proves (2.23). �

Notice that the difference between (2.18) and (2.23) is that in (2.23) the term
with s = 0 is absent, which is the advantage of going to covariant differentiation.

3 The Geometry and Regularity of the Boundary:
The Second Fundamental Form and Extension

of the Normal to the Interior

In this section we will deal with the geometry and regularity of the boundary.
The regularity is measured by the regularity of the normal, in particular by the
first space derivative, i.e., the second fundamental form. We also need to control
how far off the boundary is from self-intersecting since we want to foliate the
domain close the boundary into surfaces that do not self-intersect. This can be
achieved by the level sets of the distance function to the boundary. This gives
an extension of the normal to the interior, which we need to prove our estimates.
The size of the neighborhood in which the level sets are well-defined and smooth
determines the size of the derivatives of our extension of the normal to a vector
field defined everywhere in the interior. We also want to control the time evolution
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of the boundary, which can be measured by the time derivative of the normal in the
Lagrangian coordinates.

We will use both the Eulerian coordinates and the Lagrangian coordinates.
When we calculate time derivatives, it is of course most convenient to do so in
the Lagrangian coordinates, whereas the Eulerian coordinates are more convenient
to use when we measure how the surface lies in space, since we want to be able
to compare the normal at different points. In this section we will also define the
projection of a tensor to the boundary that we will use to define covariant differen-
tiation on the boundary. The projection will play an important role in our estimates,
and we will discuss it in detail in Section 4.

DEFINITION 3.1 LetNa denote be the unit normal to∂�,

(3.1) gabNaNb = 1 , gabNaTb = 0 if T ∈ T(∂�) ,

and letNa = gabNb denote the unit conormal,gabNaNb = 1. The induced metric
γ on the tangent space to the boundaryT(∂�) extended to be 0 on the orthogonal
complement inT(�) is then given by

(3.2) γab = gab − NaNb , γ ab = gab − NaNb .

The orthogonal projection of an(r, s) tensorS to the boundary is given by

(3.3) (5S)a1···ar
b1···bs

= γ a1
c1

· · · γ as
cs
γ

d1
b1

· · · γ ds
bs

Sc1···cr
d1···ds

,

where

(3.4) γ c
a = δc

a − NaNc and γ a
c = δa

c − NaNc .

Covariant differentiation on the boundary∇ is given by

(3.5) ∇S = 5∇S.

The second fundamental form of the boundary is given by

(3.6) θab = (5∇N)ab = γ c
a ∇cNb .

Note first that∇ is invariantly defined since the projection and the covariant
derivative are. Note also that∇ indeed corresponds to the intrinsic covariant deriv-
ative∇/ of the boundary:

LEMMA 3.2 Suppose that the coordinates are chosen so that locally the boundary
is given by∂� = {y : yn = 0} and parameterized by(y1, . . . , yn−1). Let∇/ denote
covariant differentiation on∂�. Then

(3.7) ∇aTb =
{

∇/ aTb for a,b = 1, . . . , n − 1

0 for a = n or b = n
if T n = 0 .
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PROOF: The conormal isNa = δan/
√

gnn, and the normal isNa = gacNc =
gan/

√
gnn. The induced metric is given byγab = gab for a,b = 1, . . . ,n − 1, and

its inverse is given byγ ab = gab − NaNb for a,b = 1, . . . , n − 1. Note also that
γ n

a = γ n
a = γ na = γ an = 0 whena ≤ n

γ b
a = γ b

a = δb
a whena < n

γ b
n = γ b

n = −gbn/gnn whenb < n .

Let us at this point use the notation∇a = gab∇b, ∇a = gab∇b, and∇/ a = γ ab∇/ b,
where the last sum is only overb = 1, . . . ,n − 1. To prove (3.7), we first note that
∇aTb = γ a

a′γ b
b′∇a′

Tb′ = γ a
a′∇a′

Tb = 0 wheni = n or b = n sinceγ n
a′ = 0. On the

other hand, if 1≤ a,b ≤ n − 1, then

∇aTb = γ a
a′ga′a′′

(
∂Tb

∂ya′′ + gbb′′
0a′′b′′cT

c

)
= γ aa′ ∂Tb

∂ya′ + γ aa′
γ bb′

0a′b′cT
c ,

and if 1≤ a,b, c ≤ n − 1, then

0abc = 1

2

(
∂gbc

∂ya
+ ∂gac

∂yb
− ∂gab

∂yc

)
= 1

2

(
∂γbc

∂ya
+ ∂γac

∂yb
− ∂γab

∂yc

)
= 0/ abc

gives the intrinsic connection, so (3.7) follows. �

It follows that any invariant quantities formed from either side of (3.7) have to
be equal. If the coordinates are chosen soyn = 0 on∂�, then the curvature of∂�
is related to the second fundamental form by Gauss equations

(3.8) R
d
cab = θacθ

d
b − θbcθ

d
a .

Recall also that ifT is tangential,

(3.9)
[∇a,∇b

]
Ta1···ar = −R

a1

cabTc···ar − · · · − R
ar

cabTa1···c .

We also need to extend the normal to a neighborhood of the boundary. The exact
extension of the normal to the interior is not so important at this point. Basically
we want to have control of the supremum norm of the time and space derivatives
of the normal in the interior. One way to define an extension of the normal in the
interior is to consider a foliation of� close to∂�,

(3.10) Sλ = {y ∈ � : d(t, y) = λ} , d > 0 in� , d = 0 on∂� .

The unit conormal toSλ is then given by

(3.11) Na = ∂ad√
gbc∂b d∂c d

.

It is natural to taked(t, y) = distg(y, ∂�) to be the geodesic distance to the
boundary, which is the same as the Euclidean distance in thex-variables. Ifd
is the geodesic distance in the metricg, then the conormal isNa = ∇ad and
θ = ∇N = ∇2d = 5∇2d, and the normal derivative of the normal vanishes
∇N N = 0. Sinceθ = 5∇2d = ∇2d, it follows that∇θ = 5∇5∇2d = 5∇3d is
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symmetric as well.∇2θ , however, is not symmetric, but the antisymmetric part is
lower order. By Gauss equations (3.8)–(3.9),

(3.12) ∇a∇bθcd − ∇b∇aθcd = [∇a,∇b

]
θcd = −R

e
cabθed − R

e
dabθde .

Furthermore, sinceN · N = 1, we getN · ∇2N + (∇N) · (∇N) = 0; in other
words,

(3.13) ∇Nθab = −θc
aθcb ,

so the second fundamental forms for the surfacesSλ for smallλ are as regular as
for ∂�. We will discuss this and the regularity of the extension of the normal to
the interior further in Lemma 3.10.

Let us now discuss two definitions to control the geometry and regularity of the
boundary. Let us express our surface in thex-variables∂Dt ⊂ R

n using the metric
there.

DEFINITION 3.3 LetN (x) be the outward unit normal to∂Dt at x ∈ ∂Dt . Let
dist(x1, x2) = |x1 − x2| denote the Euclidean distance inR

n, and forx1, x2 ∈ ∂Dt

let dist∂Dt (x1, x2) denote the geodesic distance on the boundary. Let dist(x, ∂Dt)

be the Euclidean distance fromx to the boundary.

DEFINITION 3.4 Letι0 be the injectivity radius of the normal exponential map of
∂Dt , i.e., the largest number such that the map

∂Dt × (−ι0, ι0) → {x ∈ R
n : dist(x, ∂Dt) < ι0}(3.14)

given by(x, ι) → x = x + ιN (x)

is an injection.

Note thatι0 ≥ 1/|θ |L∞(∂Dt ), for along the normal line fromx ∈ ∂Dt , the
first focal point is at a distance 1/|θ(x)|, where|θ(x)| = sup|v|=1 |θ(x) · v| is the
greatest eigenvalue in magnitude. Instead of using the injectivity radiusι0, we
can use a radiusι1 that, in conjunction with a bound for the second fundamental
form, is comparable. The radiusι1 works equally well for controlling the Sobolev
constants, and it is easier to control the time evolution off.

DEFINITION 3.5 Let 0< ε1 < 2 be a fixed number, and letι1 = ι1(ε1) the largest
number such that

(3.15) |N (x1)− N (x2)| ≤ ε1 whenever|x1 − x2| ≤ ι1 , x1, x2 ∈ ∂Dt .

Remark.Note that Definition 3.5 also says that the intersection∂Dt ∩ B(ι1, x0)

of the surface with an open ball of radiusι1 centered at any pointx0 ∈ ∂Dt is
connected, and it can be written as a graph over the plane orthogonal to the normal
N (x0) at the centerx0. In fact, we claim that the line segment inB(ι1, x0) along
the exterior normalN (x0) from any pointx1 in the same component of∂Dt as
x0 is completely contained in the complement{Dt (and the line segment in the
opposite direction is completely contained inDt ). In fact, if not, then there would
be a pointx2 ∈ ∂Dt where it would enter the regionDt again, and at that point the
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exterior normalN (x2) would have to make an angle of at leastπ/2 with N (x0),
contradicting the condition in Definition 3.5.

LEMMA 3.6 Suppose that|θ | ≤ K, and letι0 and ι1 be as in Definitions3.4 and
3.5. Then

(3.16) ι0 ≥ min

(
ι1

2
,

1

K

)
and ι1 ≥ min

(
2ι0,

ε1

K

)
.

PROOF: Let
ι3 = min

dist∂Dt (x,z)≥π/K
|x − z| .

We claim that

ι0 = ι3

2
≥ ι1

2
if min

(
ι0,
ι3

2

)
≤ 1

K
.

By Definition 3.4 there arex1 6= x2 on the boundary such that

x1 + aN(x1) = x2 + bN(x2) for some|a| ≤ ι0, |b| ≤ ι0 .

If ι0 < 1/K , then by Lemma 3.7 dist∂Dt (x1, x2) ≥ π/K , and hence

ι3 = min
dist∂Dt (x,z)≥π/K

|x − z| ≤ |x1 − x2| ≤ 2ι0 <
2

K
.

If ι3 < 2/K , it follows from Lemma 3.7 that the minima above are attained at
some, possibly different,(x3, x4) ∈ ∂Dt × ∂Dt with dist∂Dt (x3, x4) > π/K .
Hence∂Dt × ∂Dt 3 (x, z) → |x − z| has a local minimum at(x3, x4), so the
normalsN (x3) andN (x4) are parallel to the line betweenx3 andx4. From this
it follows that ι0 ≤ ι3/2, and it also contradicts the condition in Definition 3.5 so
we conclude thatι3 = |x3 − x4| > ι1. This proves the first part of (3.16), and the
second part follows in a similar way; if dist∂Dt (x1, x2) ≤ π/K , then by Lemma 3.7

|N (x1)− N (x2)| ≤ 2 sin

(
K dist∂Dt

x1, x2

2

)
≤ K dist∂Dt (x1, x2) ≤ Kπ

|x1 − x2|
2

≤ ε1 ,

if |x1 − x2| ≤ ε12/Kπ . If, on the other hand, dist∂Dt (x1, x2) > π/K , then|x1 −
x2| ≥ ι3, and if ι3 < 2/K , thenι3 = 2ι0 so|x1 − x2| ≥ min(2/K ,2ι0). �

LEMMA 3.7 Suppose that|θ | ≤ K and0< dist∂Dt (x1, x2) < π/K. Then

(3.17) x1 + aN (x1) 6= x2 + bN (x2) for |a| ≤ 1

K
, |b| ≤ 1

K
.

Furthermore, if|θ | ≤ K anddist∂Dt (x1, x2) ≤ π/K, then

|x1 − x2| ≥ 2 dist∂Dt (x1, x2)

π
and(3.18)

N (x1) · N (x2) ≥ cos
(
K dist∂Dt (x1, x2)

)
.
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PROOF: Let α(s) be a geodesic in∂� parameterized by arc length,|α̇(s)| = 1,
with α(si ) = xi . Let s0 = (s − 1 + s2)/2. To simplify notation, we assume that
s0 = 0 andα(0) = 0 and setα̇(0) = T . Let N (s) be the normal toα(s), and
k(s) = θ(α̇(s), α̇(s)) be the (normal) curvature ofα(s), i.e., α̈(s) = ±k(s)N (s).
We will show thatT · (α(s) + aN (s)) > 0 for |a| < K and thatT · α(s) ≥
sin(Ks)/K provided that 0< s < π/2K . Since the same result is true in the
negative direction, this would prove the lemma.

Let φ(s) be the angle thaṫα(s) makes withT ; i.e., α̇(s) · T = cosφ(s). Then
|φ̇(s)| ≤ K so 0≤ φ(s) ≤ Ks. Let x(s) = α(s) · T andr (s) = |α(s)− T (α(s) ·
T )|. Thenẋ(s) = cosφ(s) ≥ cos(Ks) and|ṙ (s)| ≤ sinφ(s) ≤ sin(Ks). Hence
x(s) ≥ sin(Ks)/K and r (s) ≤ (1 − cos(Ks))/K . Furthermore,T · N (s) ≥
cos(φ(s)+ π/2) = − sinφ(s) ≥ − sin(Ks), which proves the lemma. �

Note that it follows from the remark after Definition 3.5 that in a neighborhood
of x0 ∈ ∂Dt , we can write the boundary as a graph. We can now make a partition
of unity into coordinate neighborhoods where this is true, which will be used to
control the Sobolev constants:

LEMMA 3.8 Suppose thatDt ⊂ R
n with the boundary satisfying the condition in

Definition3.5 with ι1 ≥ 1/K1. Then there areχi ∈ C∞
0 (R

n), i = 1,2, . . . , such
that

(3.19)
∑

p

χi = 1 ,
∑

p

|∂αχi | ≤ CαK |α|
1 , diam(supp(χi )) ≤ 1

K1
,

and for each x∈ R
n there are at most32n i such thatχi (x) 6= 0. Furthermore,

eithersupp(χi )∩ ∂Dt is empty or is part of a graph contained in∂Dt , which after
a rotation is given by

xn = fi (x
′) , (x′, xn) ∈ R

n , |x′ − x′
i | ≤ ι1 ,(3.20)

|∂ fi | ≤ ε1 , xi ∈ ∂Dt , N (xi ) = (0, . . . , 0,1) .

PROOF: Let B(r, x) denote the ball of radiusr centered atx. Let ρ1 = ι1/16,
and let{B(2ρ1, xi )} be a cover ofRn such that{B(ρ1, xi )} are disjoint. We define

χi (x) = χ(|x − xi |/4ι1)∑
i χ(|x − xi |/4ι1)

whereχ ∈ C∞
0 satisfy 0≤ χ ≤ 1, χ(s) = 1 whens ≤ 0 andχ(s) = 0 when

s ≥ 2. The number of disjoint balls of radiusρ1 that can be contained in a ball of
radius 16ρ1 is 16n. Since supp(χi ) is contained in a ball of radius 8ρ1, this proves
that for eachx ∈ R

n there are at most 16n i such thatχi (x) 6= 0. �

We will now estimate first-order derivatives of the extension of the normal to
the interior. In Lemma 3.9 we estimate the time derivatives on the boundary. It is
now natural to work in the Lagrangian coordinates. In Lemma 3.10 we estimate the
geodesic extension of the normal to the interior in a neighborhood of the boundary.
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LEMMA 3.9 Let N be the unit normal to∂�, and let hab = Dt gab/2. On [0, T] ×
∂� we have

Dt Na = hN N Na , Dt N
c = −2hc

d Nd + hN NNc ,(3.21)

Dtγ
ab = −2γ acγ bdhcd .(3.22)

The volume element on∂� satisfies

(3.23) Dtdµγ = (tr h − hN N)dµγ = (tr θu · N + γ ab∇aub)dµγ .

PROOF: Since the right-hand sides of (3.21) restricted to[0, T] × ∂� are inde-
pendent of the extension of the normal to the interior, we may choose the foliation

Na = ∂au√
gcd∂cu∂du

where∂� = {y : u(y) = 0}, u < 0 in� .

Then

Dt Na = −1

2
Na(Dt g

cd)NcNd = hN N Na

and

Dt N
a = Dt g

adNd = (Dt g
ad)Nd + gadDt Nd = −2hadNd + hN NNa ,

which proves (3.21). (3.22) follows from

Dtγ
ab = Dt(g

ab − NaNb)

= Dt g
ab − (Dt N

a)Nb − NaDt N
b

= −2hab + 2ha
c NcNb + 2hb

d Nd Na − 2hkl N
kNl NaNb

= (δa
d − NaNd)(δ

b
d − NbNd)h

cd = −2γ a
d γ

b
d hcd .

Introducing coordinates, we havedµg = √
detg dy and Dt

√
detg = √

detg tr h.
Now dµγ = √

detg(
∑

N2
n)

−1/2 dS, wheredS is the Euclidean surface measure,
andDt(

∑
N2

n)
−1/2 = −(1

2)(
∑

N2
n)

−3/2∑ 2NnDt Nn. But Dt Nn = hN NNn, which
proves thatDtdµγ = (tr h−hN N)dµγ . Now trh−hN N = γ ab∇avb = γ ab∇a(Nbv·
N)+ γ ab∇avb. �

We will now extend the normal to a vector field defined and regular everywhere
in the interior such that whend(t, y) ≤ ι0/4, it is the normal to the sets{y :
(t, y) = d0}, and in the interior it drops off to 0.

LEMMA 3.10 Let ι0 be as in Definition3.4, and let d(y) = distg(y, ∂�) be the
geodesic distance in the metric g from y to∂�. Then the conormal n= ∇d to the
sets Sa = ∂{y ∈ � : d(y) = a} satisfies

(3.24) |∇n| ≤ 2|θ |L∞(∂�) and |Dtn(t, y)| ≤ 6|h|L∞(�) when d(y) <
ι0

2
.
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PROOF: Now sincen · n = 1, it follows thatn · ∇n = 0 and hence(∇n) · ∇n+
n · ∇2n = 0; sinceθ = ∇n, we get∇Nθ = −θ · θ . It follows that|∇N |θ || ≤ |θ |2.
If d(y) = distg(y, ∂�) < ι0, then there is a uniquey ∈ ∂� such thatd(y, y) =
distg(y, ∂�). Hence we can introduced andy as new variables so thaty = y(d, y).
In these coordinates∇N = ∂/∂d, so with f (d) = |θ(d, y)| we get the inequality
| f ′(d)| ≤ f (d)2 for each fixedy. It’s easy to see thatf (d) ≤ 2 f (0) if 2d f (0) ≤ 1,
and hence|θ(d, y)| ≤ 2|θ |L∞(∂�) if 2d|θ |L∞(∂�) ≤ 1, which proves the first part of
(3.24). We claim that

(3.25) ∇N Dtd = hN N , ∇Nṅ + θ · ṅ = θ · h · n if ṅ = Dtn − h · n .

In fact, sincegabNaNb = 1, we have

0 = 2gabNaDt Nb + (Dt g
ab)NaNb = 2∇N Dtd − 2habNaNb ,

and the first equation in (3.25) follows. Since

∇chN N = ∇c(N
aNbhab) = NaNb∇chab + hab∇c(N

aNb)

= NaNb∇ahcb + hab(N
bθa

c + Naθb
c ) ,

by differentiating the first equation in (3.25) we get

∇N Dt Nc + θe
c Dt Ne = ∇cNe∇eDtd = ∇chN N

= ∇N(hcbNb)+ θe
c hebNb + θb

c Nahab .

With ṅc = Dt Nc − hcbNb, we get∇Nṅc + θe
c ṅe = θb

c Nahab, which proves the
second part of (3.25),

(3.26) |∇N |ṅ|| ≤ |θ ||ṅ| + |θ ||h| ≤ K |ṅ| + K |h| if K = 2|θ |L∞(∂�) .

Thus using the coordinatesy = y(d, y), we get

|ṅ(t, y)| ≤ ed(t,y)K |ṅ(t, y)| +
∫ d(t,y)

0
e(d(t,y)−s)K K |h|ds

≤ ed(t,y)K
(|ṅ(t, y)| + Kd(t, y)|h|L∞(�)

)
,

wherey ∈ ∂� satisfiesd(t, y) = distg(y, y). SinceKd0 ≤ 1
2, we get|ṅ(t, y)| ≤

2|ṅ(t, y)| + |h|L∞(�) whend(t, y) ≤ d0. SinceDtn(t, y) = hN N(t, y)n(t, y) and
ṅ = Dtn − h · n, we get|Dtn(t, y)| ≤ 6|h|L∞(�). �

LEMMA 3.11 Letι0 be the reduced injectivity radius of the normal exponential map
of ∂�, and let d0 be a fixed number such thatι0/16 ≤ d0 ≤ ι0/2. Letη ∈ C∞(R)
be such thatη(s) = 1 when|s| ≤ 1/2, η(s) = 0 when|s| ≥ 3/4, 0 ≤ η(s) ≤ 1,
and|η′(s)| ≤ 4. Then the pseudo-Riemannian metricγ given by

γab = gab − ñañb , γ ab = gab − NaNb , Na = gabña ,(3.27)

whereñc = η

(
d

d0

)
∇cd
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satisfies

(3.28) |∇γ |L∞(�) ≤ 256

(
|θ |L∞(∂�) + 1

ι0

)
and |Dtγ (t, y)| ≤ 64|h|L∞(�) .

PROOF: We have∇cña = −η(d/d0)∇cNa − η′(d/d0)NaNc/d0, which in view
of (3.27) proves that|∇γ̃ | ≤ 2|∇n|+16/d0, so the first inequality in (3.28) follows.
Sinceγab = gab− ñañb, whereñb = η(d/d0)Nb, we haveDtñb = η(d/d0)Dt Nb +
η′(d/d0)NbDtd/d0. Integrating the first equation in (3.25) gives|Dtd(t, y)| ≤
|hN N|L∞(�)d(t, y), and sinced/d0 ≤ 1 in the support ofη(d/d0), this proves the
second part of (3.28). �

Note that in a neighborhood of∂�, γ̃ is just the induced metric on the surfaces
Sλ = {y ∈ R

n : d(y, ∂�) = λ}, and in the interior̃γ is just the interior metricg.

4 Estimates for the Projection of a Tensor to the Tangent Space
of the Boundary

DEFINITION 4.1 Let N be the unit normal to∂�, and let∇N = N j ∇j be the
normal derivative. Letd(t, y) = distg(y, ∂�) be the geodesic distance fromy to
∂�, and letNi = ∇i d be the geodesic extension of the normal to the interior. Let
θi j = ∇i Nj = ∇i ∇j d be the second fundamental form of∂�. Letγ j

i = δ
j
i −Ni N j ,

and if I = (i1, . . . , i r ) and J = ( j1, . . . , jr ) are multi-indices of length|I | = r ,
setγ J

I = γ
j1

i1
. . . γ

jr
i r

and NI = Ni1 · · · Nir . If β is a (0, r ) tensor in�, define
the projection5β to a tensor on∂� to be (5β)I = γ J

I βJ . Let ∇β = 5∇β
denote the tangential covariant derivative. This is the intrinsic covariant derivative
of ∂� if β is already tangential to∂�, i.e., if βi1···i k···i r Nk = 0, k = 1, . . . , r ; see
Lemma 3.2. Furthermore, let∇r and∇r be the operators that in components are
given by∇r

I = ∇i1 · · · ∇i r and∇r
I = ∇ i1 · · · ∇ i r , respectively.

DEFINITION 4.2 Letα be a(0, s) tensor andβ a(0, r ) tensor. We will letα⊗̃β de-
note some partial symmetrization of the tensor productα⊗β, i.e., a sum over some
subset of the permutations of the indices divided by the number of permutations in
that subset. In each situation there is of course a specific subset, but in our esti-
mates it does not matter which one, so to simplify the exposition we do not write
out the exact permutations. Similarly, we letα ·̃β denote a partial symmetrization
of the dot productα ·β, which in turn is defined to be a contraction of the last index
of α with the first index ofβ: (α · β)i1···i r +s−2 = gi j αi1···i s−1iβj i s···i r +s−2.

The simple observation that will help us is that ifq = 0 on∂�, then the projec-
tion of the tensor∇2q to the boundary will only contain first-order derivatives ofq
and will contain all components of the second fundamental form. In fact,

(4.1) 5∇2q = ∇2q + θ∇Nq ,
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where the tangential derivatives∇2q = 0 on the boundary. To prove (4.1) we note
that

(4.2) γ k
j ∇i γ

l
k = −γ k

j ∇i (NkNl ) = −γ k
j θik Nl − γ k

j Nkθ
l
i = −θi j Nl ,

so

∇ i ∇ j q = γ i ′
i γ

j ′
j ∇i ′γ

j ′′
j ′ ∇j ′′q = γ i ′

i γ
j ′

j γ
j ′′

j ′ ∇i ′∇j ′′q + γ i ′
i γ

j ′
j (∇i ′γ

j ′′
j ′ )∇j ′′q(4.3)

= γ i ′
i γ

j ′
j ∇i ′∇j ′q − θi j ∇Nq .

We now want to find a higher-order version of (4.1). One way to understand
why there should be such a formula ifq = 0 on∂� is to expandq in a Taylor series
in the geodesic distanced from the boundary. Ifq = 0 on∂�, thenq/d ∼ ∇Nq is
a well-defined function in a neighborhood of∂�, and hence we can write

5∇r q = 5∇r
(
d

q

d

)
=

r∑
s=0

(
r

s

)
5(∇r −sd)⊗̃5∇s

(q

d

)
.

Since, however,d = 5∇d = 0 on∂� and∇2d = θ , we obtain

(4.4) 5∇r q =
r −2∑
s=0

(
r

s

)
5(∇r −2−sθ)⊗̃5∇s

(q

d

)
.

PROPOSITION4.3 On ∂� we have

(4.5)

∣∣∣∣∣(5∇r )q − ∇r q − ∇Nq ∇r −2θ −
r −2∑
s=1

(
r

s

)
(∇r −2−sθ)⊗̃(∇s∇Nq)

∣∣∣∣∣ ≤

C
∑

r0+r1+···+rk+`=r −k
k−`=0 mod 2, k≥`≥0, k≥2

|∇r1θ | · · · |∇rkθ ||∇r0∇`
Nq|

and

|∇r0∇`
Nq| ≤ C

∑
r̃0+r̃1+···+r̃k=r0+`−k

|∇ r̃1θ | · · · |∇ r̃kθ ||∇ r̃0q|(4.6)

|∇r0q| ≤ C
∑

r̃0+`+r̃1+···+r̃k=r0−k

|∇ r̃1θ | · · · |∇ r̃kθ ||∇ r̃0∇`
Nq| ,(4.7)

where the sums are over all positive integers ri ≥ 0, r̃ i ≥ 0, and k, ` ≥ 0.

PROPOSITION4.4 We have

(4.8) (5∇r )Jq =∑
r0+r1+···+rk+`=r −k

ck`J I0···Ik(g)(∇r1θ)I1⊗ · · · ⊗(∇rkθ)Ik⊗∇r0
I0

(∇`
Nq
)
,

where the sum is over positive integers k, `,m ≥ 0, k − ` = 2m ≥ 0, ri ≥ 0, and
all permutations(I0, I1, . . . , Ik) of (J, i1, . . . , i2m). Here

(4.9) ckl J I0···Ik(g) = dk`m J I0···Ik gi1i2 · · · gi2m−1i2m
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denotes contractions over m indices. Furthermore,

(4.10) (5∇r )q = ∇̃r q +
r −2∑
s=0

(
r

s

)
(∇r −2−sθ)⊗̃(∇s∇Nq)+ F ,

where F is of the form in the right-hand side of(4.8)but with k≥ 2 in the sum.

Remark.Propositions 4.1 and 4.2 apply to the functionq being replaced by the
(0, s) tensorα as well if the projections and tangential and normal derivatives are
correctly interpreted: Only the firstr indices should be projected. This will be
explained later in this section; see Proposition 4.11.

The proof of Propositions 4.3 and 4.4 consists of turning projections onto the
tangential and normal components into tangential derivatives of normal derivatives.
The basic idea is that any derivative∇r of orderr can be expressed as a sum of
combinations of tangential derivatives∇ and normal derivatives∇N of total order
at mosts ≤ r , and similarly any combination of normal and tangential derivatives
of total orderr can be expressed as a sum of derivatives∇s for s ≤ r . Since
the coefficients of both the normal derivative and of the projection involved in the
tangential derivative are made up out of the normal, it follows that the coefficients
in expressing a derivative∇r in terms of normal∇N and tangential∇ derivatives
will consist of derivatives of the normal, i.e., derivatives of the second fundamental
form θ . Whenever a derivative in, say (4.5)–(4.8), falls on the normal, it produces
a new factorθ . At the same time, the total number of derivatives involved has gone
down by 1, so the total number of derivatives in expressions (4.5)–(4.8) goes down
by 1 for each new factor ofθ . This simple observation will be used to prove (4.6),
(4.7), and (4.8). The more detailed information in (4.5) and (4.10) formally follows
from (4.4) and the above argument.

The key to turn tangential and normal components into tangential derivatives of
normal components is Lemma 4.5 below. In Lemma 4.6 it is then expressed in a
form that is more directly adapted to the situation in Propositions 4.3 and 4.4.

LEMMA 4.5 Suppose that S is a(0, r +`+s) tensor that is symmetric with respect
to the first r+ ` indices. Let

(4.11) Sr,`
i1···i r +s

= (5r,`S)i1···i r +s = γ
j1

i1
· · · γ jr

i r
N jr +1 · · · N jr +`Sj1··· jr +`i r +1···i r +s

be the projection of the first indices onto r tangential and` normal components.
Then

(4.12) 5r +1,0∇5r,`S = 5r +1,`∇S− r θ⊗̃5r −1,`+1S+ ` θ ·5r +1,`−1S

where (
θ⊗̃5r −1,`+1S

)
i0i1···i r i r +1···i r +s

= 1

r

r∑
p=1

θi0i p(5
r −1,`+1S)I pir +1···i r +s ,(4.13)

(
θ ·5r +1,`−1S

)
i0i1···i r i r +1···i r +s

= θ
j

i0
(5r +1,`−1S)j i 1···i r i r +1···i r +s ,(4.14)
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where Ip = (i1, . . . , i p−1, i p+1, . . . , i r ).

PROOF OFLEMMA 4.5: To simplify notation, we assume thats = 0. Now

Sr,`
i1···i r = γ J

I N J ′
SJ J′ = γ

j1
i1

· · · γ jr
i r

N jr +1 · · · N jr +`Sj1··· jr +` ,

where I = (i1, . . . , i r ) and J = ( j1, . . . , jr ) are multi-indices of lengthr , and
J ′ = ( jr +1, . . . , jr +`) is a multi-index of length̀ . Now

∇ i0 Sr,`
i1···i r = γ

j0
i0
γ L

I ∇j0(γ
J
L N J ′

SJ J′)

= γ
j0

i0
γ J

I N J ′∇j0 SJ J′ + γ
j0

i0
γ L

I (∇j0γ
J
L )N

J ′
SJ J′ + γ

j0
i0
γ J

I (∇j0 N J ′
)SJ J′ .

By (4.2)

γ L
I ∇i0γ

J
L = −

r∑
p=1

θi0i pγ
Jp

Ip
N jp ,

whereI p = (i1, . . . , i p−1, i p+1, . . . , i r ) andJp = ( j1, . . . , jp−1, jp+1, . . . , jr ). Fur-
thermore,

∇i0 N J ′ =
r +`∑

p=r +1

θ
j ′p

i0
N J ′

p ,

whereJ ′
p = ( jr +1, . . . , jp−1, jp+1, . . . , jr +`). If we now assume thatS is symmet-

ric, the notation simplifies a bit and we obtain the lemma. �

Now we want to apply Lemma 4.5 toS = ∇r +`q. Since in geodesic coordinates
∇N N = 0, it follows that

(4.15) [∇N,5] = 0 , ∇`
N = Ni1 · · · Ni`∇i1 · · · ∇i` .

LEMMA 4.6 Let

(4.16) Sr,` = 5r,`∇r +`q = ∇`
N5∇r q .

Then

(4.17) Sr +1,` = ∇Sr,` + r θ⊗̃Sr −1,`+1 − `θ · Sr +1,`−1 .

Furthermore,

(4.18) Sr,` − ∇r S0,` =
r −2∑
k=0

∇r −2−k
(
(k + 1)θ⊗̃Sk,`+1 − `θ · Sk+2,`−1

)
and

Sr,` − ∇r S0,` =
r −2∑
m=0

(
r

m

)
(∇mθ)⊗̃∇r −2−mS0,`+1(4.19)

−
r −2∑
m=0

`

(
r − 1

m

)
(∇mθ) ·̃ ∇r −mS0,`−1
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+
∑

ar1r2k(∇r1θ)⊗̃(∇r2θ)⊗̃∇r −4−r1−r2−kSk,`+2

+ (`+ 1)
∑

br1r2k(∇r1θ)⊗̃(∇r2θ) ·̃ ∇r −2−r1−r2−kSk,`

+ `
∑

cr1r2k(∇r1θ) ·̃ (∇r2θ)⊗̃∇r −2−r1−r2−kSk,`

+ `(`− 1)
∑

dr1r2k(∇r1θ) ·̃ (∇r2θ) ·̃ ∇r −r1−r2−kSk,`−2 ,

where the sums are over all integers r1, r2, k ≥ 0 such that all exponents of differ-
entiation also are≥ 0.

PROOF: (4.17) follows from (4.12). Now by repeated use of (4.17)

Sr,` = ∇Sr −1,` + (r − 1)θ⊗̃Sr −2,`+1 − `Sr,`−1

= ∇(∇Sr −2,` + (r − 2)θ⊗̃Sr −3,`+1 − `θ · Sr −1,`−1
)

+ (r − 1)θ⊗̃Sr −2,`+1 − ` θ · Sr,`−1

= · · · = ∇r S0,` +
r −2∑
k=0

∇r −2−k
(
(k + 1)θ⊗̃Sk,`+1 − `θ · Sk+2,`−1

)
,

which proves (4.18). To proceed further, we must use (4.18) twice. In the right-
hand side of (4.18) we use (4.18) to writeSk,`+1 as∇kSk,`+1 plus terms involving
one factor ofθ , and writeSk+2,`−1 as∇k+2S0,`−1 plus terms involving one factor
of θ .

Let us first calculate the term involving one factor ofθ . By Leibniz’ rule we
have

r −2∑
k=0

∇r −2−k
(
(k + 1)θ⊗̃∇kS0,`+1 − `θ · ∇kS0,`−1

)
=

r −2∑
k=0

r −2−k∑
m=0

(
r − 2 − k

m

)
(k + 1)(∇mθ)⊗̃∇r −2−mS0,`+1

− `

r −2∑
k=0

r −2−k∑
m=0

(
r − 2 − k

m

)
(∇mθ) ·̃ ∇r −2−mS0,`−1

=
r −2∑
m=0

(
r

m

)
(∇mθ)⊗̃∇r −2−mS0,`+1 − `

r −2∑
m=0

(
r − 1

m

)
(∇mθ) ·̃ ∇r −mS0,`−1 ,
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since
∑r −2−m

k=0 (k+1)
(r −2−k

m

) = ( r
m

)
and

∑r −2−m
k=0

(r −2−k
m

) = (r −1
m

)
. This explains the

terms involving one factor ofθ in the first row of (4.19). Using (4.18) and Leibniz’
rule, it is easy to see that the term involving two factors ofθ has to be of the form
in (4.19). �

PROOF OFPROPOSITIONS4.3 AND 4.4: The proof is just an application of
Lemma 4.6: (4.5) follows from (4.8). (4.8) follows by induction from (4.17), notic-
ing that the total order of the tensor goes down by 1 for each new factor ofθ . (4.10)
follows from (4.19). (4.6) and (4.7) follow from the same argument. �

Using (4.17) and (4.18), one can show that

5∇2q = ∇2q + θ∇Nq ,(4.20)

5∇3q = ∇3q − 2θ⊗̃(θ ·̃ ∇q)+ (∇θ)∇Nq + 3θ⊗̃∇∇Nq ,(4.21)

5∇4q = ∇4q − θ⊗̃(5(∇θ) ·̃ ∇q + 8θ ·̃ ∇2q
)− 2(∇θ)⊗̃(θ ·̃ ∇q)(4.22)

+ (∇2θ)∇Nq + 4(∇θ)⊗̃∇∇Nq + 6θ⊗̃∇2∇Nq

− 3θ⊗̃(θ ·̃ θ)∇Nq + 3θ⊗̃θ∇2
Nq .

Since∇N = N · ∇, 5∇N = ∇N = θ , 5∇2N = 5∇θ = 5∇5θ = ∇θ , and
∇Nθ = 5N · ∇2q = −5(∇N) · (∇N) = −θ · θ (see (4.51)), we get

∇q = 5∇q ,(4.23)

∇∇Nq = 5N · ∇2q + θ · ∇q ,(4.24)

∇2
Nq = N · (N · ∇2q) ,(4.25)

∇2q = 5∇2q − θN · ∇q ,(4.26)

∇2∇Nq = 5N · ∇3q + 2θ ·̃5∇2q(4.27)

+ (∇θ) ·5∇q − θ · θN · ∇q − θN · (N · ∇2q) ,

where in (4.27) we used that∇2∇Nq = 5∇2∇Nq − θ∇2
Nq.

PROPOSITION4.7 Suppose that q= 0 on∂� and0 ≤ r ≤ 4 or r ≥ (n−1)/2+2.
Let Lp = L p(∂�), and suppose thatι1 ≥ 1/K1, whereι1 is as in Definition3.4.
Then for m= 0,1 and anyε > 0, we have∥∥5∇r q − (∇Nq)∇r −2θ

∥∥
L2(4.28)

≤ ε‖∇Nq‖L∞‖∇r −2θ‖L2 + C(1/ε)
r −1∑
k=1

‖θ‖k
L∞‖∇r −kq‖L2

+ C
(
K1,1/ε, ‖θ‖L∞

) (‖θ‖L∞ +
∑

0≤s≤r −2−m

‖∇sθ‖L2

)
∑

0≤s≤r −2+m

‖∇sq‖L2
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where the second line drops out if r≤ 4.

PROOF OFPROPOSITION4.7 FOR r ≤ 4: We want to prove (4.28) forr = 4,
since the proof forr ≤ 3 is simpler and follows in the same way. By (4.22) we
have, ifq = 0 on∂�,

5∇4q = (∇2θ
)∇Nq + 4

(∇θ)⊗̃∇∇Nq + 6θ⊗̃∇2∇Nq

− 3θ⊗̃(θ · θ)∇Nq + 3θ⊗̃θ∇2
Nq .

The only problematic term can be controlled by Lemma A.1 (hereL p = L p(∂�)):∥∥|∇θ ||∇∇Nq|∥∥
L2 ≤ ‖∇θ‖L4‖∇∇Nq‖L4

≤ C‖θ‖1/2
L∞‖∇2θ‖1/2

L2 ‖∇Nq‖1/2
L∞‖∇2∇Nq‖1/2

L2

≤ C2−1ε‖∇Nq‖L∞‖∇2θ‖L2 + C2−1ε−1‖θ‖L∞‖∇2∇Nq‖L2

for anyε > 0.

By (4.27), since5∇q = 0 on∂�,

‖∇2∇Nq‖L2 ≤ ‖∇3q‖L2 + 3‖θ‖L∞‖∇2q‖L2 + ‖θ‖2
L∞‖∇q‖L2 .

�

The basic inequalities that we will use on the boundary for the proof of Theo-
rem 4.5 in general can be summarized in the following:

LEMMA 4.8 Let Lp = L p(∂�) and let t= r − 2. Then if t− m ≥ s,

(4.29) ‖∇sα‖L2t/(s+m) ≤ C‖α‖1−s/(t−m)
L2t/m ‖∇ t−mα‖s/(t−m)

L2 , m ≥ 0, t − m ≥ s ,

(4.30) ‖∇sα‖L2t/(s−m) ≤

C(K1)

t+m∑
`=s

‖∇`α‖L2 if t ≥ n − 1

2
, s − m ≥ 0, t + m ≥ s ,

where K1 is a constant such thatι1 ≥ 1/K1 andι1 is as in Definition3.4. Further-
more,

‖|∇r1θ | · · · |∇rkθ |‖L p ≤ C‖θ‖k−1
L∞ ‖∇r1+···+rkθ‖L p ,(4.31)

‖∇sθ‖L2t/(s+m) ≤ C‖θ‖1−(s+m)/t
L2t/m ‖∇ t−mθ‖(s+m)/t

L2 , m ≥ 0 .(4.32)

Furthermore, we have for everyε > 0 if 1 ≤ s ≤ t

(4.33)
∥∥|∇ t−sθ ||∇s∇Nq|∥∥

L2 ≤
ε‖∇Nq‖L∞‖∇ tθ‖L2 + Cε−(t−s)/s‖θ‖L∞‖∇ t∇Nq‖L2 ,
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and if0 ≤ m ≤ s ≤ t − m,∥∥|∇ t−sθ ||∇sq|∥∥
L2(4.34)

≤ ‖∇ t−sθ‖L2t/(t−s+m)‖∇sq‖L2t/(s−m)

≤ C(K1)‖θ‖1−(t−s+m)/t
L2t/m ‖∇ t−mθ‖(t−s+m)/t

L2

t+m∑
`=s

‖∇`q‖L2 .

PROOF OFLEMMA 4.8: Equations (4.29) and (4.31)–(4.33) are just the inter-
polation inequality (A.4) in Lemma A.1. For the proof of (4.31), one first uses
Hölder’s inequality. (4.30), on the other hand, is a special case of Sobolev’s lemma,
Lemma A.2, which by the remark after the lemma holds with the covariant differ-
entiation of the interior restricted to the boundary. By Hölder’s inequality and
(4.29) withm = 0:∥∥|∇ t−sθ ||∇s∇Nq|∥∥

L2 ≤ ‖∇ t−sθ‖L2t/(t−s)‖∇s∇Nq‖L2t/s

≤ C‖θ‖s/t
L∞‖∇ tθ‖1−s/t

L2 ‖∇Nq‖1−s/t
L∞ ‖∇ t∇Nq‖s/t

L2

≤ ε‖∇Nq‖L∞‖∇ tθ‖L2 + Cε−(t−s)/s‖θ‖L∞‖∇ t∇Nq‖L2

for anyε > 0,

which proves (4.33). (4.34) follows from Hölder’s inequality and (4.30) applied to
α = q and (4.32). �

PROOF OFPROPOSITION4.7 IN THE CASE r ≥ 5: The proof is an application
of Proposition 4.3 and Lemma 4.8. Sinceq = 0, the term∇r q = 0 on the left of
(4.5) and the terms on the right with̀= 0 vanishes as well sò≥ 2 in the right
sum. Each term in the sum on the left of (4.5) can be estimated using (4.33). Then
we can use (4.6) to estimate‖θ‖L∞‖∇r −2∇Nq‖L2 by ‖θ‖L∞‖∇r −1q‖L2 plus a sum
of terms of the form

(4.35) ‖θ‖L∞
∥∥|∇r2θ | · · · |∇rkθ ||∇r0q|∥∥

L2 ,

r0 + r2 + · · · + rk = r − k, k ≥ 2 .

Similarly, if we use (4.6), we can estimate the terms in the right of (4.5) (the second
line of (4.5)) by

(4.36)
∥∥|∇r1θ | · · · |∇rkθ ||∇r0q|∥∥

L2 , r0 + r1 + · · · + rk = r − k, k ≥ 2 .

Now a typical term looks like

‖θ‖L∞
∥∥|∇r −2−sθ ||∇sq|∥∥

L2 ,

which can be estimated by (4.34) withm = 0,1. The general term is not much
harder: Using Hölder’s inequality and (4.31), we see that we must estimate

(4.37) ‖θ‖k−1
L∞ ‖∇r ′

θ‖L p‖∇r0q‖L p′ , r0 + r ′ = r − k, k ≥ 2 ,
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for some 1/p + 1/p′ = 1/2, which are to be determined. Ifr ′ = 0, then we can
takep = ∞, so we may assume thatr ′ ≥ 1. Similarly, we may assume thatr0 ≥ 2,
since ifr0 = 1, we can takep′ = ∞. We pick

(4.38) p = 2(r − 2)

r ′ + m
, p′ = 2(r − 2)

r − 2 − r ′ − m
,

and use (4.34) withm = 0,1. �

Note that Propositions 4.3 and 4.4 apply toq being replaced by the(0, t) tensor
α as well if the projections and tangential and normal derivatives are correctly
interpreted. Only the firstr indices should be projected; i.e., all indices referring to
θ should be projected as well as the ones referring to differentiation ofα, but the
ones referring toα itself should not. So we should replace5∇r by 5r,0∇r , and

we should replace∇r when applied toα by ∇r = 5r,0∇5r −1,0∇ · · ·52,0∇51,0∇.
(One should keep the old definition of∇r θ , since all these indices are projected
over.) In components, this means the following:

DEFINITION 4.9 Let

(5r,0∇r )i1···i r αi r +1···i+t = γ
j1

i1
· · · γ jr

i r
∇j1 · · · ∇jr αi r +1···i r +t ,(4.39)

∇Nαi1···i t = Nk∇kαi1···i t ,

and

(4.40)
(
∇r
)

i1···i r
αi r +1···i r +t =

γ
j1

i1
· · · γ jr

i r
∇j1

(
γ

k2
j2

· · · γ kr
jr

∇k2

(
· · · γ Nr −2

mr −2
γ Nr −1

mr −1
γ Nr

mr
∇Nr −2(

γ
or −1
Nr −1

γ
or
Nr

∇or −1

(
γ pr

or
∇pr αi r +1···i r +t

)) · · ·
))
.

In fact, with this modification the proofs of Lemmas 4.5 and 4.6 go through.
Also, the interpolation inequality in Lemma A.1 remains true. One just has to
modify the proof to work with mixed tangential and full inner products:

(4.41) 〈α, β〉γg = γ i1 j1 · · · γ i s jsgis+1 js+1 · · · gis+t js+tαi1···i sis+1···i s+tβj1··· js js+1··· js+t .

Hence we obtain the following version of the interpolation inequality:

LEMMA 4.10 Suppose thatα is a (0, t) tensor, and let∇s be defined as in(4.40).
Then if s≤ r − 2

(4.42)
∥∥∇sα

∥∥
L2(r −2)/s ≤ C‖α‖1−s/(r −2)

L∞
∥∥∇r −2α

∥∥s/(r −2)
L2 .

In order to deal with some lower-order terms, the following is useful:



MOTION OF FREE SURFACE OF LIQUID 1573

PROPOSITION4.11 Suppose thatα is a (0, µ) tensor, and let5s,0∇s and∇s be
defined as in(4.39)and (4.40). Let t = r − 2. Then

(4.43) |(5s,0∇s)α − ∇sα| ≤ C
∑

r0+r1+···+rk=s−k
k≥1, r0≥1

|∇r1θ | · · · |∇rkθ ||∇r0α| .

Here ∇rα is defined by projecting over only the first r components as in(4.40),
whereas∇r θ is defined as before by projecting over all r+ 2 components. If s≤ t

‖(5s,0∇s)α‖L2t/s ≤(4.44)

C‖α‖1−s/t
L∞ ‖∇ tα‖s/t

L2

+ C(K1)(1 + ‖θ‖L∞)s
(‖θ‖L∞ + ‖∇ tθ‖L2

)s/t
t−1∑
`=0

‖∇`α‖L2 ,

where K1 is a constant such thatι1 ≥ 1/K1 andι1 is as in Definition3.4. Further-
more,

(4.45) ‖∇ tα‖L2 ≤
C‖∇ tα‖L2 + C(K1)(1 + ‖θ‖L∞)t

(‖θ‖L∞ + ‖∇ tθ‖L2

) t−1∑
`=0

‖∇`α‖L2

and ∥∥|(5s,0∇s)α||(5t−s,0∇ t−s)β|∥∥
L2(4.46)

≤ ∥∥(5s,0∇s)α
∥∥

L2t/s

∥∥(5t−s,0∇ t−s)β
∥∥

L2t/(t−s)

≤ C(K1)

(
‖α‖L∞ +

t−1∑
`=0

‖∇`α‖L2

)
‖∇ tβ‖L2

+ C(K1)

(
‖β‖L∞ +

t−1∑
`=0

‖∇`β‖L2

)
‖∇ tα‖L2

+ C(K1)(1 + ‖θ‖L∞)t
(‖θ‖L∞ + ‖∇ tθ‖L2

)
(

‖α‖L∞ +
t−1∑
`=0

‖∇`α‖L2

)(
‖β‖L∞ +

t−1∑
`=0

‖∇`β‖L2

)
.

PROOF: (4.43) follows from Lemma 4.5. And ifr ′ = r1 + · · · + rk, r ′ + r0 =
s − k, then by Hölder’s inequality, (4.32) withm = 0 and (4.30) withm = −k,
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respectively,∥∥|∇r1θ | · · · |∇rkθ ||∇r0α|∥∥
L2t/s(4.47)

≤ C‖θ‖k−1
L∞ ‖∇r ′

θ‖L2t/r ′ ‖∇r0α‖L2t/(r0+k)

≤ C(K1)‖θ‖k−r ′/t
L∞ ‖∇ tθ‖r ′/t

L2

t−k∑
`=r0

‖∇`α‖L2

≤ C(K1)
(
1 + ‖θ‖L∞

)s(‖θ‖L∞ + ‖∇ tθ‖L2

)s/t
t−k∑
`=r0

‖∇`α‖L2 .

If s = t this proves (4.45). (4.44) follows from (4.43), (4.42), and (4.47). (4.46)
follows from (4.44), (4.45), and our usual convexity inequalityas/tb1−s/t ≤ a +
b. �

Let us now derive some properties of the projection. Sincegi j = γ i j + Ni N j ,
we have

(4.48) 5(S · R) = 5(S) ·5(R)+5(S · N)⊗̃5(N · R) .

Note also that

[∇N,5]S = 0 , [∇,5]S = 0 ,(4.49)

[∇N,∇]S = −θ · ∇S, [∇N,∇]S = −θ · ∇S,

where we have used that[∇N,∇] = [∇N,5∇5] = 5[∇N,∇]5. SinceN ·∇kθ =
0, we get

(4.50) [∇N,∇r ]S =
r −1∑
`=0

∇`[∇N,∇]∇r −1−`S = −
r −1∑
k=0

(
r

k + 1

)
(∇kθ) · ∇r −kS,

where we used that
∑r −1

`=0

(
`

k

) = ( r
k+1

)
and ∇((5R) · 5S

) = (∇5R) · 5S +
(5R) · ∇5S. Furthermore, 0= ∇2(N · N) = 2N · ∇2N + 2(∇N) · ∇N and thus
∇Nθ = −θ · θ , so (4.50) applied toS = θ gives

(4.51) ∇N∇r θ = −
r∑

k=0

((
r

k + 1

)
+
(

r

k

))
(∇kθ) · ∇r −kθ .

5 Elliptic Estimates and Energy Estimates for the Boundary Problem

Most of the results here will be stated in a coordinate-independent way. We
can, however, take advantage of the fact that we have a transformationft : � →
Dt ⊂ R

n such that the metric is Euclidean inDt . Also, since we are looking
for a short time existence, our metric expressed in they-coordinates in� gi j (t, y)
is equivalent to the metric att = 0, gi j (0, y). Similarly, the induced metric on
∂� γi j (t, y) is equivalent toγi j (0, y). Throughout this section,∇ will refer to
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covariant differentiation with respect to the metricgi j in �, and∇ will refer to
covariant differentiation on∂� with respect to the induced metricγi j on ∂� as
defined in the beginning of Section 3.

We will assume that the normalN to ∂� is extended to a vector field in the
interior of� satisfyinggi j Ni N j ≤ 1 there such that, in a neighborhood of∂�,
N is the unit normal to the sets∂�ρ = {y : distg(y, ∂�) = ρ} and N has the
regularity described by Lemmas 3.10 and 3.11. Thenγi j = gi j − Ni Nj where
Ni = gi j N j is a positive, semidefinite, pseudo-Riemannian metric in�. Using the
decomposition into normal and tangential componentsgi j = Ni N j + γ i j , we can
write

gi j gkl∇iβk∇jβl = (
Ni N j gkl + gi j NkNl + γ ikγ j l(5.1)

− Ni NkN j Nl + γ i j γ kl − γ ikγ j l
)∇iβk∇jβl

gi j gkl∇kβi ∇lβj = (
gi j γ kl + γ i j gkl − (γ ikγ j l − Ni NkN j Nl )(5.2)

− (γ i j γ kl − γ ikγ j l )
)∇iβk∇jβl .

The terms(γ ikγ j l − Ni NkN j Nl )∇iβk∇jβk and(γ i j γ kl −γ ikγ j l )∇iβk∇jβl are go-
ing to be lower order: the first one because it can be controlled by divβ = gik∇iβk,
which we expect to be lower order, and the second one because the boundary
term vanishes if we integrate by parts using Green’s theorem. Hence (5.1) and
(5.2) say that we essentially can control|∇β|2 = gi j gkl∇iβk∇jβl by the normal-
tangential componentsγ i j NkNl ∇iβk∇jβl and either the normal-normal compo-
nentsNiN jNkNl ∇iβk∇jβl or the tangential-tangential componentsγ i j γ kl∇iβk∇jβl .

DEFINITION 5.1 Letβk = βI k = ∇r
I uk where∇r

I = ∇i1 · · · ∇i r , u is a(0,1) tensor,
and[∇i ,∇j ] = 0. Let divβ = ∇iβ

i = ∇r div u, and let curlβ i j = ∇iβj − ∇jβi =
∇r curlui j .

LEMMA 5.2 Let β be as in Definition5.1, and let Q be a positive semidefinite
quadratic form Q(∇iβk,∇jβl ) = qI J (∇iβI k)∇jβJl . Then

gi j gkl Q(∇iβk,∇jβl ) ≤ (
2(Ni N j gkl + gi j NkNl )+ 2gikg jl(5.3)

+ (γ i j γ kl − γ ikγ j l )
)
Q(∇iβk,∇jβl )

gi j gkl Q(∇kβi ,∇lβj ) ≤ (
n(gi j γ kl + γ i j gkl)+ 2gikg jl

)
Q(∇iβk,∇jβl )(5.4)

and

(5.5) Ni N j γ kl Q(∇iβk,∇jβl ) ≤
2NkNlγ i j Q(∇iβk,∇jβl )+ NkNlγ i j Q(curlβik, curlβj l ) .

PROOF: Sincegik = γ ik + Ni Nk, we obtain

γ ikγ j l Q(∇iβk,∇jβl ) ≤ (
2gikg jl + 2Ni NkN j Nl

)
Q(∇iβk,∇jβl ) ,(5.6)

Ni NkN j Nl Q(∇iβk,∇jβl ) ≤ (
2gikg jl + 2γ ikγ j l

)
Q(∇iβk,∇jβl ) .(5.7)
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Equations (5.3) and (5.4) follow from (5.6) and (5.7) and

(5.8) γ ikγ j l Q
(
αik, αj l

) ≤ (n − 1)γ i j γ kl Q(αik, αj l ) .

To prove (5.8), let trγ (α) = γ ikαik and letα̂ik = αik − γikγ
pqαpq/(n − 1) be the

traceless part. Then

trγ (α) trγ (σ ) = (n − 1)
(
γ i j γ klαikσj l − γ i j γ kl α̂ik σ̂j l

)
.

�

Let us recall the Gauss formula for� and∂�:

(5.9)
∫
�

∇m(β
m)dµg =

∫
∂�

Nmβ
m dµγ and

∫
∂�

∇i f
i
dµγ = 0

if f is tangential to∂� and N is the unit conormal to∂�. The last part of (5.9)

follows since, by (3.8),∇i f
i = ∇/ i f

i
is the intrinsic divergence on∂� if the coor-

dinates are chosen so∂� is given byyn = 0.

LEMMA 5.3 Let Ri jkl I J be any quadratic form qI J multiplied with (NkNl gi j −
gki Nl N j ) or (gklγ i j − γ ikgl j ). Then

(5.10)
∫
�

Ri jkl I J ∇kαI i ∇jβJl dµ =
∫
∂�

Nlγ i j qI JαI i ∇jβJl dµγ −
∫
�

(∇k Ri jkl I J )αI i ∇jβJl dµ ,

(5.11)
∫
�

Ri jkl I J ∇kαI i ∇jβJl dµ =

−
∫
∂�

Nlγ ikqI J∇kαI i βJl dµγ −
∫
�

(∇j R
i jkl I J )∇kαI i βJl dµ .

Moreover, if Ri jkl I J is any quadratic form qI J multiplied with(γ klγ i j − γ ikγ l j ),
then

(5.12)
∫
�

Ri jkl I J ∇kαi I ∇jβl J dµ = −
∫
�

(∇k Ri jkl I J )αi I ∇jβl J dµ .

PROOF: Note that we have the following identities:

Ri jkl I J ∇kαI i ∇jβJl = ∇k(R
i jkl I J αI i ∇jβJl)− (∇k Ri jkl I J )αI i ∇jβl J ,(5.13)

Ri jkl I J ∇kαI i ∇jβJl = ∇j (R
i jkl I J ∇kαI i βJl)− (∇j R

i jkl I J )∇kαI i βJl .(5.14)
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Integrating (5.13) and (5.14) over� by using Gauss formula (5.7), we get a bound-
ary term from the divergence. The lemma now follows from

(5.15)

Nk(N
kNl gi j − gki Nl N j ) = Nk(g

klγ i j − γ ikgl j ) = Nlγ i j ,

Nj (N
kNl gi j − gki Nl N j ) = Nj (g

klγ i j − γ ikgl j ) = −Nlγ ik ,

Nk(γ
klγ i j − γ ikγ l j ) = 0 ,

�
DEFINITION 5.4 If |I | = |J| = r , set

gI J = gi1 j1 · · · gir jr and γ I J = γ i1 j1 · · · γ i r jr .

If α andβ are(0, r ) tensors, let〈α, β〉 = gI JαI βJ and|α|2 = 〈α, α〉. If (5β)I =
γ J

I βJ is the projection, then〈5α,5β〉 = γ I JαI βJ . Let

‖β‖L2(�) =
 ∫

�

|β|2 dµg

1/2

, ‖β‖L2(∂�) =
 ∫
∂�

|β|2 dµγ

1/2

,

‖5β‖L2(∂�) =
 ∫
∂�

|5β|2 dµγ

1/2

,

wheredµg is the Riemannian volume element on� anddµγ is the induced surface
measure on∂�.

LEMMA 5.5 Let β be as in Definition5.1 and ι0 be as in Definition3.4. If |θ | +
1/ι0 ≤ K, then

(5.16) |∇β|2 ≤ C
(
gi j γ klγ I J∇kβI i ∇lβJ j + |divβ|2 + |curlβ|2) ,

(5.17)
∫
�

|∇β|2 dµ ≤

C
∫
�

(
Ni N j gklγ I J∇kβI i ∇lβJ j + |divβ|2 + |curlβ|2 + K 2|β|2)dµ .

PROOF: The proof follows by induction from repeated use of Lemma 5.2.
|β|2 = gI JβI βJ can be written as a sum of terms of the form

(5.18) Ni1 N j1 · · · Nis N jsγ i s+1 js+1 · · · γ i r jr βi1···i r βj1··· jr .

If s = 0,1, then (5.18) is bounded by the right-hand side of (5.16). If we induc-
tively assume that we can bound the right-hand side of (5.18) fors ≤ s0, then the
bound fors = s0 + 1 follows from (5.4)–(5.5) in Lemma 5.2. On the other hand,
if we control the right-hand side of (5.17), then we have a bound for the integral of
(5.18) fors = 1,2. However, by (5.3) in Lemma 5.2 and (5.12) in Lemma 5.3, this
gives us the integral of (5.18) also fors = 0, but then we can use (5.16) to obtain
(5.17). �
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LEMMA 5.6 Let β be as in Definition5.1 and ι0 be as in Definition3.4. If |θ | +
1/ι0 ≤ K, then

‖β‖2
L2(∂�)

≤ C
(‖∇β‖L2(�) + K‖β‖L2(�)

)‖β‖L2(�) ,(5.19)

‖β‖2
L2(∂�)

≤ C‖5β‖2
L2(∂�)

(5.20)

+ C
(‖divβ‖L2(�) + ‖curlβ‖L2(�) + K‖β‖L2(�)

)‖β‖L2(�) .

and

(5.21) ‖∇β‖2
L2(�)

≤
C‖∇β‖L2(∂�)‖β‖L2(∂�) + C

(‖divβ‖L2(�) + ‖curlβ‖L2(�)

)2
.

Furthermore,

‖∇β‖2
L2(�)

≤ C‖5∇β‖L2(∂�)‖5N · β‖L2(∂�)(5.22)

+ C
(‖divβ‖L2(�) + ‖curlβ‖L2(�) + K‖β‖L2(�)

)2
‖∇β‖2

L2(�)
≤ C‖5N · ∇β‖L2(∂�)‖5β‖L2(∂�)(5.23)

+ C
(‖ divβ‖L2(�) + ‖ curlβ‖L2(�) + K‖β‖L2(�)

)2
where N· βI = Niβi I and N · ∇βk I = Ni ∇kβi I .

PROOF: Let N be the extension of the normal to the interior as in Lemmas 3.10
and 3.11. Then ∫

∂�

|β|2 dµγ =
∫
�

∇k
(
Nk|β|2)dµ ,

and since|∇N| ≤ K , by Lemmas 3.10 and 3.11, (5.19) follows. (5.20) follows by
induction as in the proof of Lemma 5.5 from∣∣∣∣∣∣

∫
∂�

qI J (Ni N j − γ i j )βI i βJ j dµγ

∣∣∣∣∣∣ ≤

C
(‖divβ‖L2(�) + ‖curlβ‖L2(�) + K‖β‖L2(�)

)‖β‖L2(�) ,

if qI J is any product of factorsqik jk of the formgik jk , γ i k jk , or Nik N jk . The left-
hand side is∫
�

∇k
(
NkqI J (Ni N j − γ i j )βI i βJ j

)
dµ

= 2
∫
�

NkqI J
(
Ni N j − γ i j

)
βI i ∇kβJ j dµ

+
∫
�

(∇kNk)qI J
(
Ni N j − γ i j )βI i βJ j dµ
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= −2
∫
�

NkqI Jγ i j βI i

(∇kβJ j − ∇jβJk

)
dµ

+ 2
∫
�

qI J (Ni N j + γ i j )(∇jβI i )N
kβJk dµ

+ 2
∫
�

∇j

(
qI Jγ i j Nk

)
βI i βJk dµ+

∫
�

(∇kNk)qI J
(
Ni N j − γ i j

)
βI i βJ j dµ .

(5.21) is just integration by parts twice. (5.22) and (5.23) follow from Lemmas 5.5
and 5.3. �

One can actually get away with a less regular boundary for some of the esti-
mates:

LEMMA 5.7 Letβ be as in Definition5.1. Then there isε1(r ) > 0 such that if the
condition in Definition3.5holds withε1 ≤ ε1(r ), we have with K1 ≥ 1/ι1

‖β‖2
L2(∂�)

≤ C
(‖∇β‖L2(�) + K1‖β‖L2(�)

)‖β‖L2(�) ,(5.24)

‖β‖2
L2(∂�)

≤ C‖5β‖2
L2(∂�)

(5.25)

+ C
(‖divβ‖L2(�) + ‖curlβ‖L2(�) + K1‖β‖L2(�)

)‖β‖L2(�) .

PROOF: We will prove (5.24) and (5.25) in thex-coordinates

� 3 y → x(t, y) ∈ Dt ⊂ R
n .

Since the metric there is the induced metric fromR
n, we can then compare the

normalN to ∂Dt at different points. Letχp be the partition of unity in Lemma
3.4, letNp = N (xp) be the unit normal at some fixed pointxp ∈ supp(χp) ∩ ∂Dt ,
and letN be the unit normal to∂Dt . Then∫

∂Dt

χp|β|2〈Np, N〉dS=
∫
Dt

N k
p ∂k

(
χp|β|2)dx ,

whereN is the unit normal to∂Dt and〈Np, N〉 = δi j N
i
pN

j ≥ 1
2. Since|∂χp| ≤

C K1, (5.24) follows.
To prove (5.25), we will use a similar estimate to the one in the proof of (5.20),

with N replaced byNp, γ i j = δi j − N i N j replaced byγp
i j = δi j − N i

pN
j

p , and

qI J replaced byqI J
p , a product of factorsδi j , γp

i j , andN i
pN

j
p . We will use the

identity

N k
p ∂k

(
δi j qp

I JχpβI i βJ j
)− 2δi j ∂i

(
N k

p qp
I JχpβI kβJ j

)
= −2N k

p qp
I JχpβI kδ

i j ∂iβJ j + 2δi j N k
p qp

I Jχp(∂iβI k − ∂kβI i )βJ j

+ N k
p (∂kχp)

(
δi j qp

I JβI i βJ j

)− 2δi j (∂iχp)
(
N k

p qp
I JβI kβJ j

)
.
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Integrating this overDt by using the Gauss theorem, we get

∣∣∣∣∣∣
∫
∂Dt

(〈Np,N 〉δi j − 2N j N i
p

)
qp

I JχpβI i βJ j dS

∣∣∣∣∣∣ ≤
∫
Dt

(
2χp(|divβ| + |curlβ|)+ 3|∂χp||β|)|β|dx .

We now assume that|N −Np| ≤ ε1 in the support ofχp, whereε1 = ε1(r ) is to be
determined. WritingN = aNp + bTp, wherea = 〈Np,N 〉, b = √

1 − a2 ≤ ε1,
〈Tp,Tp〉 = 1, and〈Tp,Np〉 = 0, we get

〈Np,N 〉δi j − 2N j N i
p = a

(
γ i j

p − N i
pN

j
p

)− 2bN i
pT

j
p .

Let Qp(βi , βj ) = qp
I JχpβI i βJ j , and letRp(β, β) = (

a(γ i j
p −N i

pN
j

p )−2bN i
pT

j
p
)

Qp(βi , βj ). It follows that

N i
pN

j
p Qp(βi , βj ) ≤

(
γ i j

p − b

a

(
N i

pT
j

p + T i
p N j

p

))
Qp(βi , βj )+ 1

a
Rp(β, β)

≤
(
γ i j

p − b

a

(
1 + b

a
T i

p T j
p + a

1 + b
N i

pN
j

p

))
Qp(βi , βj )

+ 1

a
Rp(β, β)

≤
(

1

1 − b
γ i j

p + b

1 + b
N i

pN
j

p

)
Qp(βi , βj )+ 1

a
Rp(β, β) ,

sinceT i
p T j

p Qp(βi , βj ) ≤ γ
i j
p Qp(βi , βj ) anda2 = 1 − b2. Moving the term with

the normal component over to the other side, we obtain

δi j Qp(βi , βj ) ≤ 2

1 − b
γ i j

p Qp(βi , βj )+ 1 + b

a
Rp(β, β) .

Integrating this gives∫
∂Dt

δi j qp
I JχpβI i βJ j dS≤ 2

1 − ε1

∫
∂Dt

γ i j
p qp

I JχpβI i βJ j dS

+ 4
∫
Dt

(
χp(|divβ| + |curlβ|)+ |∂χp||β|)|β|dx .
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Repeated use of this gives

(5.26)
∫
∂Dt

δi j δ I JχpβI i βJ j dS≤

A
∫
∂Dt

γ i j
p γp

I JχpβI i βJ j dS+ B
∫
Dt

(
χp(|divβ| + |curlβ|)+ |∂χp||β|)|β|dx

for some constantsA andB that depend only on the orderr of the tensorβ.
We now claim that ifqI J is any positive definite quadratic form, then

(5.27) γ i j
p qI JχpβI i βJ j ≤ γ i j qI JχpβI i βJ j + bδi j qI JχpβI i βJ j .

In fact, if Q(βi , βj ) = qI JχpβI i βJ j ,

γ i j
p Q(βi , βj )− γ i j Q(βi , βj )

= (N i N j − N i
pN

j
p )Q(βi , βj )

= (
b2T i

p T j
p − b2N i

pN
j

p + ab(N i
pT

j
p + T i

p N j
p )
)
Q(βi , βj )

≤
(

b2T i
p T j

p − b2N i
pN

j
p + ab

(
1 + b

a
N i

pN
j

p + a

1 + b
T i

p T j
p

))
Q(βi , βj )

= b(N i
pN

j
p + T i

p T j
p )Q(βi , βj )

≤ bδi j Q(βi , βj ) ,

sincea2 = 1 − b2. Using (5.27) now, we can replaceγ i j
p γp

I J by γ i j γ I J in (5.26)
with a small error that can be absorbed into the left-hand side ifb ≤ ε1 is suffi-
ciently small. Finally, summing overp by using

∑
p χp = 1,

∑
p |∂χp| ≤ C K1,

and Hölder’s inequality gives (5.25). �

Lemma 5.6 applied toβ = ∇q, whereq is a function, gives estimates for both
the Dirichlet problem and the Neumann problem. In fact, ifq = 0 on ∂�, then
5∇2q = θ∇Nq. Thus (5.22) and (5.20) give

‖∇2q‖2
L2(�)

≤ C K‖∇Nq‖2
L2(∂�)

+ C
(‖4q‖L2(�) + K‖∇q‖L2(�)

)2
≤ C

(‖4q‖L2(�) + K‖∇q‖L2(�)

)2
.

Similarly, if ∇Nq = 0 on∂�, thenNi ∇ j ∇i q = −θ i
j ∇ i q, and by (5.23) and (5.20),

‖∇2q‖2
L2(�)

≤ C K‖∇q‖2
L2(∂�)

+ C
(‖4q‖L2(�) + K‖∇q‖L2(�)

)2
≤ C

(‖4q‖L2(�) + K‖∇q‖L2(�)

)2
.
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Similarly, we can get estimates for higher-order derivatives. More generally, we
have the following:

PROPOSITION5.8 Let ι0 andι1 be as in Definitions3.4and3.5, and suppose that
|θ | + 1/ι0 ≤ K and 1/ι1 ≤ K1. Then withK̃ = min(K , K1) we have, for any
r ≥ 2 andδ > 0,

‖∇r q‖L2(∂�) + ‖∇r q‖L2(�)(5.28)

≤ C‖5∇r q‖L2(∂�) + C(K̃ ,Vol (�))
∑

s≤r −1

‖∇s4q‖L2(�)

‖∇r q‖L2(�) + ‖∇r −1q‖L2(∂�)(5.29)

≤ δ‖5∇r q‖L2(∂�) + C(1/δ, K ,Vol (�))
∑

s≤r −2

‖∇s4q‖L2(�) .

PROOF: (5.28) with an extra lower-order termC(K̃ )‖∇q‖L2(�) in the right fol-
lows from (5.20) or (5.25) together with repeated use of (5.21) and (5.19) or (5.24).
The lower-order term can then be bounded by (5.17) in Lemma A.5. (5.29) with
the same extra lower-order term follows from (5.22) together with repeated use of
(5.19) and (5.21). �

Remark.One should be able to improve the results of Proposition 5.8 and replace
the sum in the right-hand side of (5.28) by the sum overs = 0, 1

2, at least when
|∇Nq| > ε > 0 on∂�. However, then one has to make sense of fractional deriva-
tives.

PROPOSITION5.9 Assume that0 ≤ r ≤ 4 or r ≥ (n − 1)/2 + 2. Suppose that
|θ | ≤ K and ι1 ≥ 1/K1, whereι1 is as in Definition3.5. If q = 0 on ∂�, then for
m = 0,1,

(5.30) ‖5∇r q‖L2(∂�) ≤

2‖∇r −2θ‖L2(∂�)‖∇Nq‖L∞(∂�) + C
r −1∑
k=1

‖θ‖k
L∞(∂�)‖∇r −kq‖L2(∂�)

+ C(K , K1)

(
‖θ‖L∞(∂�) +

∑
k≤r −2−m

‖∇kθ‖L2(∂�)

) ∑
k≤r −2+m

‖∇kq‖L2(∂�) ,

and if r > (n − 1)/2 + 2, then for anyδ > 0

(5.31) ‖5∇r −1q‖L2(∂�) ≤

δ‖∇r −1q‖L2(∂�) + Cδ

(
K , K1, ‖θ‖L2(∂�), ‖∇r −3θ‖L2(∂�)

) r −2∑
k=0

‖∇kq‖L2(∂�) .
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If, in addition,|∇Nq| ≥ ε > 0 and|∇Nq| ≥ 2ε‖∇Nq‖L∞(∂�), then

(5.32) ‖∇r −2θ‖L2(∂�) ≤

C

(
1

ε

)(
‖5∇r q‖L2(∂�) +

r −1∑
k=1

‖θ‖k
L∞(∂�)‖∇r −kq‖L2(∂�)

)

+ C

(
K , K1,

1

ε

)(
‖θ‖L∞(∂�) +

∑
k≤r −3

‖∇kθ‖L2(∂�)

) ∑
k≤r −1

‖∇kq‖L2(∂�) .

Furthermore, if r≤ 4, then the second line of(5.30)and (5.32)drop out.

PROOF: (5.30) and (5.32) follow from Proposition 4.5. To prove (5.30) we can
takeε = 1, and to prove (5.32) we takem = 1 in Proposition 4.5. (5.31) follows
from (5.30) and Sobolev’s lemma, (A.8). �
PROPOSITION 5.10 Assume that0 ≤ r ≤ 4 or r ≥ (n − 1)/2 + 2 and that
|θ | + 1/ι0 ≤ K. If q = 0 on ∂�, then

(5.33) ‖∇r −1q‖L2(∂�) ≤

C
(‖∇r −3θ‖L2(∂�)‖∇Nq‖L∞(∂�) + ‖∇r −24q‖L2(�)

)
+ C

(
K ,Vol (�), ‖θ‖L2(∂�), . . . , ‖∇r −4θ‖L2(∂�)

)(
‖∇Nq‖L∞(∂�) +

∑
s≤r −3

‖∇s4q‖L2(�)

)
.

If r > (n − 1)/2 + 2, then

‖∇r −1q‖L2(∂�) + ‖∇q‖L∞(∂�)(5.34)

≤ C‖∇r −24q‖L2(�)

+ C
(
K ,Vol (�), ‖θ‖L2(∂�), . . . , ‖∇r −3θ‖L2(∂�)

)∑
s≤r −3

‖∇s4q‖L2(�) .

PROOF: (5.33) follows from (5.28) and (5.30) withm = 1 andr replaced
by r − 1. The estimate for‖∇r −1q‖L2(∂�) in (5.34) follows from (5.28), withr
replaced byr − 1, and (5.31). The estimate for‖∇q‖L∞(∂�) in (5.34) follows from
the estimate for‖∇r −1q‖L2(∂�) and Sobolev’s lemma, Lemma A.2. �

There are two possible energies, given in Proposition 5.11 and Proposition 5.12,
respectively.

PROPOSITION5.11 Let Q(α, α) = γ I JαI αJ and hi j = Dt gi j /2, and set

E(t) =
∫
∂�

γ i j Q(αi , αj )ν dµγ +
∫
�

gi j NkNl Q(∇iβk,∇jβl )dµg ,
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where0< ν < ∞. Let K be a constant such that

|h| ≤ K in [0, T] ×� ,(5.35)

|θ | + 1

ι0
+
∣∣∣∣νt

ν

∣∣∣∣ ≤ K on [0, T] × ∂� .(5.36)

Then

d E

dt
≤ C

√
E
(∥∥5(Dtα + νNk∇βk)

∥∥
L2(∂�)

+ ∥∥Dt∇β − ∇α∥∥
L2(�)

)
(5.37)

+ C K E + C
(‖divα‖L2(�) + ‖curlα‖L2(�) + K‖α‖L2(�)

+ ‖divβ‖L2(�) + ‖curlβ‖L2(�) + K‖β‖L2(�)

)2
PROOF: Since by Lemma 3.9Dt dµγ = (tr h−hN N)dµγ andDt dµ = tr h dµ,

we obtain

d E

dt
= 2

∫
∂�

γ i j Q(αi , Dtαj )ν dµγ(5.38)

+ 2
∫
�

gi j NkNl Q(∇iβk, Dt∇jβl )dµg

+
∫
∂�

(
Dt(γ

i j γ I J )+
(

tr h − hN N + νt

ν

)
γ i j γ I J

)
αI i αJ j ν dµγ

+
∫
�

(
Dt(g

i j NkNlγ I J )+ tr h gi j NkNlγ I J
)∇iβI k ∇jβJl dµg .

SinceDtγ
i j = −2γ imγ jnhmn, the second line is bounded by the boundary term in

the energyE, and the third line is bounded by‖∇β‖2
L2(�)

. By Lemma 5.3∫
�

gi j NkNlγ I J∇kαI i ∇jβJl dµg

=
∫
∂�

Nlγ i j γ I JαI i ∇jβJl dµγ +
∫
�

gik N j Nlγ I J∇kαI i ∇jβJl dµg

−
∫
�

∇k
(
gi j NkNlγ I J − gik N j Nlγ I J

)
αI i ∇jβJl dµg .

The first term on the second line is bounded by‖divα‖L2(�)‖∇β‖L2(�), and the
second byK‖α‖L2(�)‖∇β‖L2(�). Recall now that by Lemma 5.5

‖∇β‖2
L2(�)

≤ C E + C
(‖divβ‖L2(�) + ‖curlβ‖L2(�) + K‖β‖L2(�)

)2
.

This proves Proposition 5.11. �
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PROPOSITION5.12 Let Q(α, α) = γ I JαI αJ and hi j = Dt gi j /2, and set

(5.39) E(t) =
∫
∂�

γ i j Q(αi , αj )ν dµγ +
∫
�

gklγ i j Q(∇iβk,∇jβl )dµg

where0< ν < ∞. Let K be a constant such that

|h| ≤ K in [0, T] ×� ,(5.40)

|θ | + 1

ι0
+
∣∣∣∣νt

ν

∣∣∣∣ ≤ K on [0, T] × ∂� .(5.41)

Then
d E

dt
≤ C

√
E
(∥∥5(Dtα + νNk∇βk)

∥∥
L2(∂�)

+ ‖Dt∇β − ∇α‖L2(�)

)
(5.42)

+ C K E + C‖curlα‖L2(�)

√
E + C‖α‖L2(�)‖∇ divβ‖L2(�)

+ (
K‖α‖L2(�) + ‖divβ‖L2(�) + ‖curlβ‖L2(�)

)2
.

PROOF: Since by Lemma 3.9Dt dµγ = (tr h−hN N)dµγ andDt dµ = tr h dµ,
we obtain

d E

dt
= 2

∫
∂�

γ i j Q(Dtαi , αj )ν dµγ + 2
∫
�

gklγ i j Q(Dt∇iβk,∇jβl )dµg

+
∫
∂�

(
Dt(γ

i j γ I J )+
(

tr h − hN N + νt

ν

)
γ i j γ I J

)
αI i αJ j ν dµγ

+
∫
�

(
Dt(g

klγ i j γ I J )+ tr h gklγ i j γ I J
)∇iβI k ∇jβJl dµg .

SinceDtγ
i j = −2γ imγ jnhmn, the second line is bounded by the boundary term in

the energyE, and the third line is bounded by‖∇β‖2
L2(�)

. The second term on the
first line is bounded by‖curlα‖L2(�)

√
E plus∫

�

gklγ i j γ I J∇kαI i ∇jβJl dµg =
∫
∂�

Nlγ i j γ I JαI i ∇jβJl dµγ +
∫
�

γ ikg jl γ I JαI i ∇k∇jβJl dµg

−
∫
�

∇k

(
gklγ i j γ I J

)
αI i ∇jβJl dµg ,

where we have used Lemma 5.3. The first term on the second line is bounded by
‖α‖L2(�)‖∇ divβ‖L2(�), and the second byK‖α‖L2(�)‖∇β‖L2(�). Recall now that
by Lemma 5.5

‖∇β‖2
L2(�)

≤ C E + C
(‖divβ‖L2(�) + ‖curlβ‖L2(�)

)2
.
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This proves Proposition 5.12. �

6 Euler’s Equations and Higher-Order Derived Equations

Recall Euler’s equations

(6.1) Dtvi + ∂i p = 0 , ∂i v
i = 0 ,

where

(6.2) Dt = d

dt

∣∣∣∣
y=const

= d

dt

∣∣∣∣
x=const

+ vk∂k and ∂i = ∂

∂xi
= ∂yd

∂xi

∂

∂yd
.

We now want to get higher-order versions of (6.1) in terms of higher-order tensors
∂r vi . By Lemma 2.3

(6.3) Dt∂
r vi + ∂r ∂i p = −

r −1∑
s=0

(
r

s + 1

)
(∂1+sv) · ∂r −svi .

In particular, ifr = 1,

(6.4) Dt∂i vj + ∂i ∂j p = −(∂i v
k)∂kvj .

We now want to change coordinates and calculateDt∇r u. By Lemma 2.2,

Dt∇a1 · · · ∇ar ua(6.5)

= ∂xi1

∂ya1
· · · ∂xir

∂yar

∂xi

∂ya
∂i1 · · · ∂i r vi

= ∂xi1

∂ya1
· · · ∂xir

∂yar

∂xi

∂ya(
∂t∂i1 · · · ∂i r vi + ∂vl

∂xi1
∂l · · · ∂i r vi + · · · + ∂vl

∂xir
∂i1 · · · ∂lvi

+ ∂vl

∂xi
∂i1 · · · ∂i r vl

)
.

It follows from (6.4) and (6.5) that

Dt∇r ua + ∇r ∇a p(6.6)

= −
r −1∑
s=1

(
r

s + 1

)
(∇1+su) · ∇r −sua + (∇auc)∇r uc

= (∇auc − ∇cua)∇r uc −
r −2∑
s=1

(
r

s + 1

)
(∇1+su) · ∇r −sua .

In particular, ifr = 1, we get

(6.7) Dt∇aub + ∇a∇b p = (∇auc)∇buc ,
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so

(6.8) Dt(∇aub − ∇bua) = 0 .

The higher-order Euler’s equations (6.3) or (6.6) will be used in the interior
together with the facts that

(6.9) divv = 0 , Dt curlv = O(∇v) .
On the boundary we will instead use an equation which has to do with the geom-
etry of the boundary that depends only on Euler’s equations indirectly through the
change of coordinates. By Lemma 2.3,

Dt∂i p = ∂i Dt p − (∂i v
k)∂k p ,

Dt∂i ∂j p = ∂i ∂j Dt p − (∂i v
k)∂k∂j p − (∂i v

k)∂k∂j p + (∂i ∂j v
k)∂k p .

(6.10)

It is, however, more convenient to formulate the higher-order version forDt∇r p.
By Lemma 2.4

Dt∇r p = ∇r Dt p −
r −1∑
s=1

(
r

s + 1

)
(∇1+su) · ∇r −s p

= ∇r Dt p − (∇r u) · ∇ p −
r −2∑
s=1

(
r

s + 1

)
(∇1+su) · ∇r −s p .

(6.11)

We also want to calculate equations forp. By (6.1)

0 = Dt(δ
i j ∂i vj ) = δi j ∂i Dtvj − δi j (∂i v

k)∂kvj

so

(6.12) 4p = −(∂i v
k)∂kv

i .

Since4 is invariant, we also have

(6.13) 4p = −(∇aub)∇bua = −gabgcd(∇aud)∇cub = − tr
(
(∇u)2

)
,

where we used the notation(∇u)2ab = (
(∇u) · ∇u

)
ab

= (∇auc)∇cub and the trace
of a tensor is defined to be the trace over the first and last indices. It follows that

(6.14) ∇r 4p = −∇r
(
tr(∇u)2

) = −
r∑

s=0

(
r

s

)
(∇r −s∇au) · ∇s+1ua .

By Lemma 2.4

4Dt p = −Dt
(
gabgcd(∇aud)∇cub

)+ hab∇a∇b p + (4ue)∇ep

= 2gabhcd(∇aud)∇cub + 2gabgcd(∇aud)
(∇c∇b p − (∇cu

e)∇bue)
)

+ hab∇a∇b p − (4ue)∇ep

= 4gabgcd(∇auc)∇b∇d p + 2(∇aud)(∇duc)∇cu
a − (4ue)∇ep ,
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sinceDt gab = −hab, hab = ∇aub + ∇bua. To write things in a more appealing
way, we will use the notation(∇u)3ab = (

(∇u) ·(∇u) ·∇u
)

ab
= (∇aud)(∇duc)∇cub

and
(
(∇u) · ∇2 p

)
ab

= (∇aud)∇d∇b p,

(6.15) 4Dt p = 4 tr
(
(∇u) · ∇2 p

)+ 2 tr
(
(∇u)3

)− (4u) · ∇ p ,

and hence

(6.16) ∇r −24Dt p = ∇r −2
(
4 tr

(
(∇u) · ∇2 p

)+ 2 tr
(
(∇u)3

)− (4u) · ∇ p
)
.

The exact interpretations of what the dot product and trace mean are not so impor-
tant since the right-hand side will be lower order and since∇r −2 will be subject to
Leibniz’ rule. Summing up, we have the following:

LEMMA 6.1

(6.17)
∣∣Dt∇r u + ∇r +1 p

∣∣+ ∣∣Dt∇r −1 curlu
∣∣+ ∣∣∇r −14p

∣∣ ≤

C
r −1∑
s=0

∣∣∇1+su
∣∣ ∣∣∇r −su

∣∣,
(6.18)

∣∣5(Dt∇r p + (∇r u) · ∇ p − ∇r Dt p
)∣∣ ≤ C

r −2∑
s=1

∣∣5((∇1+su) · ∇r −s p
)∣∣,

and

(6.19)
∣∣∇r −24Dt p − (∇r −24u) · ∇ p

∣∣ ≤

C
r −2∑
s=0

∣∣∇1+su
∣∣∣∣∇r −s p

∣∣+ C
∑

r1+r2+r3=r −2

∣∣∇1+r1u
∣∣∣∣∇1+r2u

∣∣∣∣∇1+r3u
∣∣ .

7 Energy Estimates for Euler’s Equations

Let

Er (t) =
∫
�

gmnγ i j Q
(∇r −1∇i um,∇r −1∇j un

)
dµ+

∫
�

|∇r −1 curlu|2 dµ(7.1)

+
∫
∂�

γ i j Q
(∇r −1∇i p,∇r −1∇j p

)
ν dµγ

whereν = 1/(−∇N p). We will prove that there are continuous functionsCr such
that

(7.2)

∣∣∣∣d Er (t)

dt

∣∣∣∣ ≤ Cr

(
K ,

1

ε
, L ,M,Vol�,

r −1∑
s=0

Es(t)

)
r∑

s=0

Es(t)

if 0 ≤ r ≤ 4 or r ≥ n/2 + 3/2, provided that some a priori assumptions are true:

|θ | + 1/ι0 ≤ K on [0, T] × ∂� ,(7.3)
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−∇N p ≥ ε > 0 on[0, T] × ∂� ,(7.4)

|∇2 p| + |∇N pt | ≤ L on [0, T] × ∂� .(7.5)

Sincehab = ∇aub + ∇bua, the bound for|h| of course follows from the bound for
|∇u|. We also assume

(7.6) |∇ p| ≤ M , |∇u| ≤ M , in [0, T] ×� .

It is not clear to what extent we need the bound for∇2 p, but it is natural to assume
it, since4p = − tr(∇u)2 and5∇2 p = θ∇N p. The bound for∇2 p together with
(7.4) of course implies the bound forθ .

Remark.Instead of the energy (7.1) coming from Proposition 5.12, we could al-
ternatively have used the energy coming from Proposition 5.11. The one we use
gives a better control of‖∇r u‖L2(�), which is needed to prove Theorem 7.2 below
with minimal r0, but it only works when divu = 0.

SinceE0(t) = ∫
�

|v|2 dµ = E0(0) and Vol�(t) = Vol�(0), we get the fol-
lowing recursively from (7.2):

THEOREM 7.1 If r ≥ 0 and n ≤ 7, then there are continuous functionsFr , with
Fr |t=0 = 1, such that for any smooth solution of Euler’s equations(1.1)–(1.5)for
0 ≤ t ≤ T satisfying(7.3)–(7.6), we have

r∑
s=0

Es(t) ≤ Fr

(
t, K ,

1

ε
, L ,M, E0(0), . . . , Er −1(0),Vol�

) r∑
s=0

Es(0) ,(7.7)

0 ≤ t ≤ T .

Let K(t) andε(t) be the maximum and minimum values, respectively, such
that (7.3)–(7.4) hold at timet :

K(t) = max

(
‖θ(t, ·)‖L∞(∂�),

1

ι0(t)

)
,

E(t) = ‖(∇N p(t, ·))−1‖L∞(∂�) = 1

ε(t)
.

(7.8)

THEOREM7.2 Let r ≥ r0 > n/2+3/2. Then there is a continuous functionTr > 0
such that if

(7.9) T ≤ Tr
(
K(0), E(0), E0(0), . . . , Er0(0),Vol�

)
,

any smooth solution of the free boundary problem for Euler’s equations(1.1)–(1.5)
for 0 ≤ t ≤ T satisfies

(7.10)
r∑

s=0

Es(t) ≤ 2
r∑

s=0

Es(0) , 0 ≤ t ≤ T .
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7.1 Proof of Theorem 7.1

In the proof it is convenient to replace the a priori bound (7.3) by

(7.11) |θ | ≤ K ′ ,
1

ι1
≤ K1 ;

see Definition 3.4 forι0 and Definition 3.5 forι1. However, by Lemma 3.6,

(7.12)
1

ι0
≤ max

(
K1

2
, ‖θ‖L∞

)
and

1

ι1
≤ max

(‖θ‖L∞

ε1
,

1

2ι0

)
.

Now, to get the iteration started we need bounds for some low norms. Foru,
E0 = ‖u‖2

L2(�)
is conserved, but we cannot control the low norms ofp and pt in

terms of the energies only. Thus to control these we must use the fact that the Vol�

is conserved.
Before starting with the proof of (7.2), let us first see what a bound for the

energy (7.1) implies.

LEMMA 7.3 We have

‖∇r u‖2
L2(�)

≤ C Er , ‖5∇r p‖2
L2(∂�)

≤ ‖∇ p‖L∞(∂�)Er ,(7.13)

‖∇r p‖2
L2(∂�)

+ ‖∇r p‖2
L2(�)

≤(7.14)

C (K1,Vol�)
(‖∇ p‖L∞(∂�) + ‖∇u‖2

L∞(�)
) r∑

k=0

Ek .

PROOF OFLEMMA 7.3: That‖5∇r p‖L2(∂�) ≤ ‖∂p‖L∞(∂�)Er follows from
the definition of the projection,γ i j Q(αi , αj ) = |5α|2 on ∂�, and the fact that the
measure in the energy is(−∇N p)−1dS. Since divu = 0, the bound‖∇r u‖2

L2(�)
≤

C Er follows from Lemma 5.5. By Lemmas 6.1 and A.3

‖∇r −14p‖L2(�) ≤ C‖∇u‖L∞(�)

r∑
k=0

K r −`
1 ‖∇ku‖L2(�) .

(7.14) follows from (5.28) in Proposition 5.8 and the second part of (A.17) in
Lemma A.5. �

The most interesting observation is now that the bounds in particular of the
boundary term in Lemma 7.3 actually imply a bound on the second fundamental
form of the boundary:

LEMMA 7.4 With L∞ = L∞(∂�) we have

‖∇r −2θ‖2
L2 ≤ C

(
K1, ‖θ‖L∞, ‖(∇N p)−1‖L∞, ‖∇ p‖L∞, ‖∇u‖L∞(�),(7.15)

Vol�,
r −1∑
s=0

Es(t)

)
r∑

s=0

Es(t) .
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PROOF: Lemma 7.4 is of course just (5.32) in Proposition 5.9 and (7.14) in
Lemma 7.3, the crucial point being a lower bound−∇N p > ε > 0. �

Lemma 7.3 suffices to control the interior terms, as we shall see. To control the
boundary terms, it turns out that the crucial point is to estimate

‖5∇r Dt p‖L2(∂�) ,

which uses the bound in Lemma 7.4 to estimate‖∇r −24Dt p‖L2(�). We have the
following:

LEMMA 7.5 Let pt = Dt p and L∞ = L∞(∂�). We have

(7.16) ‖5∇r pt‖2
L2(∂�)

+ ‖∇r −1 pt‖2
L2(∂�)

+ ‖∇r pt‖2
L2(�)

≤

C

(
K1, ‖θ‖L∞, ‖(∇N p)−1‖L∞, ‖∇ p‖L∞, ‖∇u‖L∞(�), ‖∇N pt‖L∞,

Vol�,
r −1∑
s=0

Es(t)

)
r∑

s=0

Es(t) .

PROOF: By Lemmas 6.1 and A.3

‖∇r −24Dt p‖L2(�) ≤(7.17)

C(K1)
(‖∇ p‖L∞(�) + ‖∇u‖L∞(�)

) ( r∑
k=0

(‖∇ku‖L2(�) + ‖∇k p‖L2(�)

))

+ C(K1)‖∇u‖2
L∞(�)

r −1∑
k=0

‖∇ku‖L2(�) .

The bound in (7.16) for‖∇r −1 pt‖L2(∂�) is just (5.33) in Proposition 5.10 together
with (7.17) and Lemmas 7.3 and 7.4. The bound for‖5∇r pt‖L2(∂�) follows (5.30)
in Proposition 5.9 and the bound just obtained for‖∇s pt‖L2(∂�) for s ≤ r − 1.
Finally, the bound for‖∇r pt‖L2(�) follows from (5.29) in Proposition 5.8 and the
bounds for‖∇r −1 pt‖L2(∂�) and‖5∇r pt‖L2(∂�) just obtained. �

After having seen what a bound for the energy implies, we now want to prove
(7.2). The main ingredient is Proposition 5.12 applied toα = −∇r p, β = ∇r −1u,
andν = 1/(−∇N p). Then divβ = 0 and curlα = 0, so we get from Proposi-
tion 5.12 and Lemma 7.3

d Er

dt
≤ C

(
K1, ‖θ‖L∞, ‖(∇N p)−1‖L∞, ‖∇ p‖L∞, ‖∇u‖L∞(�)

)
Er(7.18)

+ C
√

Er
(‖5(−Dt∇r p + νNk∇r uk)‖L2(∂�)

+ ‖Dt∇r u + ∇r +1 p‖L2(�) + ‖Dt∇r −1 curlu‖L2(�)

)
.
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Using Lemmas 6.1 and A.3, we can directly control the interior terms in (7.18):

(7.19) ‖Dt∇r u + ∇r +1 p‖L2(�) + ‖Dt∇r −1 curlu‖L2(�) ≤

C‖∇u‖L∞(�)

r∑
k=0

K r −k
1 ‖∇ku‖L2(�) .

Hence it only remains to control the boundary term in (7.18). By Lemma 6.1,

(7.20) ‖5(Dt∇r p + (∇r u) · ∇ p
)‖L2(∂�) ≤

‖5∇r Dt p‖L2(∂�) + C
r −2∑
s=1

∥∥5((∇1+su) · ∇r −s p
)∥∥

L2(∂�)
.

Since the first term in the right-hand side of (7.20) is controlled by Lemma 7.5, it
only remains to estimate

(7.21)
∥∥5((∇1+su) · ∇r −s p

)∥∥
L2(∂�)

for 1 ≤ s ≤ r − 2 .

Clearly these terms are lower order, so there is no problem in estimating them,
say, using Sobolev’s lemma to bound them with interior norms. However, in order
to get a bound that is linear in the highest-order derivative provided the a priori
assumptions (7.3)–(7.6) hold, we must work a bit harder. Let us therefore look at
the endpoints. Ifs = r − 2, this can be estimated by

(7.22) ‖∇2 p‖L∞(∂�)‖∇r −1u‖L2(∂�) ≤ C L

(
r∑

k=0

Ek

)1/2

where we used the a priori assumption (7.5) and Sobolev’s lemma (Lemma A.2),

(7.23) ‖∇r −1u‖L2(∂�) ≤ C‖∇r −1u‖L2(n−1)/(n−2)(∂�) ≤ C(K1)

r∑
k=0

‖∇ku‖L2(�) .

If s = 0 (which actually is excluded), we could estimate it with

(7.24) ‖∇u‖L∞(∂�)‖∇r p‖L2(∂�) ≤ C(K1)M

(
r∑

k=0

Ek

)1/2

by Lemma 7.3. Hence, we must now somehow control the intermediate terms. If
the derivatives were tangential, we could do this with the interpolation inequality
Lemma A.1. But because of the projection to the tangential components in (7.21),
the highest-order derivatives will be mostly tangential. By (4.48)∥∥5((∇1+su) · ∇r −s p

)∥∥
L2(∂�)

(7.25)

≤ ∥∥∣∣5(∇1+su)
∣∣ ∣∣5∇r −s p

∣∣∥∥
L2(∂�)

+ ∥∥∣∣5(Nk∇1+suk)
∣∣ ∣∣5Nk∇r −1−s∇k p

∣∣∥∥
L2(∂�)
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≤ ‖5(∇1+su)‖L2(r −2)/s(∂�) ‖5∇r −s p‖L2(r −2)/(r −2−s)(∂�)

+ ‖5(Nk∇1+suk
)‖L2(r −2)/s(∂�) ‖5Nk∇r −1−s∇k p‖L2(r −2)/(r −2−s)(∂�) .

These terms can now be estimated by (4.46) in Proposition 4.11 withα = ∇u and
β = ∇2 p. This concludes the proof of Theorem 7.1.

7.2 Proof of Theorem 7.2

Let us now show how Theorem 7.2 follows. We will be using Sobolev’s lemma
(Lemmas A.2–A.4). But then we must first make sure that we can control the
Sobolev constants. By the results in the appendix, these depend on the constant
K1 = 1/ι1 in Definition 3.5. Alternatively, the change of the Sobolev constants
in time are controlled by a bound for the time derivative of the metric in they-
coordinates; see the appendix. We also need to have control of the constant 1/ε.
We have the following:

LEMMA 7.6 Let K1 be as in Definition3.5, E(t) as in(7.8), and r0 > n/2 + 3/2.
Then there are continuous functions Gr0, Hr0, Ir0 and Jr0 such that

‖∇u‖L∞(�) ≤ Gr0(K1, E0, . . . , Er0) ,(7.26)

‖∇ p‖L∞(�) + ‖∇2 p‖L∞(∂�) ≤ Hr0(K1, E0, . . . , Er0,Vol�) ,(7.27)

‖θ‖L∞(∂�) ≤ Ir0(K1, E , E0, . . . , Er0,Vol�) ,(7.28)

‖∇ pt‖L∞(∂�) ≤ Jr0(K1, E , E0, · · · , Er0,Vol�) .(7.29)

PROOF: By Sobolev’s lemma

‖∇u‖L∞(�) ≤ C(K1)
∑
s≤r

‖∇su‖L2(�) , r − 1>
n

2
,(7.30)

‖∇ p‖L∞(�) ≤ C(K1)
∑
s≤r

‖∇s p‖L2(�) , r − 1>
n

2
,(7.31)

‖∇2 p‖L∞(∂�) ≤ C(K1)
∑
s≤r

‖∇s p‖L2(∂�) , r − 2>
n − 1

2
.(7.32)

(7.26) follows from (7.30) and (7.13) in Lemma 7.3, and (7.27) follows from (7.31),
(7.14), and (7.26). (Note thatp enters quadratic in the left-hand side of (7.14) but
only linear in the right-hand side.) (7.32) follows in the same way. The bounds
for ‖θ‖L∞ and‖∇ pt‖L∞ cannot be obtained directly by Sobolev’s lemma since
the right-hand side of (7.15) depends on‖θ‖L∞ and the right-hand side of (7.16)
depends on‖∇ pt‖L∞ . However,

(7.33) |∇2 p| ≥ |5∇2 p| = |∇N p| |θ | ≥ E−1|θ | ,
so (7.28) follows from (7.27). (7.29) follows from (5.34) in Proposition 5.10.�
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LEMMA 7.7 Let K1 ≥ 1/ι1 andε1 = ε1(r ) be as in Definition3.5and Lemma5.7.
Then if r0 > n/2 + 3/2,

(7.34)

∣∣∣∣ d

dt
Er

∣∣∣∣ ≤ Cr (K1, E , E0, . . . , Er0,Vol�)
r∑

s=0

Es

and

(7.35)

∣∣∣∣ d

dt
E

∣∣∣∣ ≤ Cr (K1, E , E0, . . . , Er0,Vol�) .

PROOF: (7.34) is a consequence of Lemma 7.6 and the estimates in the proof
of Theorem 7.1. (7.35) follows from∣∣∣∣ d

dt

∥∥(−∇N p(t, ·))−1
∥∥

L∞(∂�)

∣∣∣∣ ≤ C
∥∥(−∇N p(t, ·))−1∥∥2

L∞(∂�)‖∇N pt(t, ·)‖L∞(∂�)

and (7.29). �

As a result of Lemma 7.7, we get the following:

LEMMA 7.8 If r ≥ r0, there is continuous functionTr (K1, E(0), E0(0), . . . ,
Er (0),Vol�) > 0 such that for

(7.36) 0≤ t ≤ Tr

(
K1, E(0), E0(0), . . . , Er (0),Vol�

)
the following statements hold: We have

(7.37) Es(t) ≤ 2Es(0) , 0 ≤ s ≤ r , E(t) ≤ 2E(0) .

Furthermore,

(7.38)
gi j (0, y)Xi X j

2
≤ gi j (t, y)Xi X j ≤ 2gi j (0, y)Xi X j ,

and withε1(r ) > 0 as in Lemma5.7,

|N (x(t, y))− N (x(0, y)| ≤ ε1(r )

1
6 , y ∈ ∂� ,(7.39)

|x(t, y)− x(0, y)| ≤ ι1

16
, y ∈ � ,(7.40) ∣∣∣∣∂x(t, y)

∂y
− ∂x(0, y)

∂y

∣∣∣∣ ≤ ε1(r )

16
, y ∈ ∂� .(7.41)

PROOF: We get (7.37) from Lemma 7.7 ifTr (K1, E(0), E0(0), . . . , Er (0),
Vol�) > 0 is sufficiently small. We have

‖∇u‖L∞(�) + ‖∇ p‖L∞(�) ≤ C(K1, E(0), E0(0), . . . , Er0(0)) ,(7.42)

‖∇2 p‖L∞(∂�) + ‖θ‖L∞(∂�) ≤ C(K1, E(0), E0(0), . . . , Er0(0),Vol�) ,(7.43)

‖∇ pt‖L∞(�) ≤ D(K1, E(0), E0(0), · · · , Er0(0),Vol�) .(7.44)

In fact, (7.42)–(7.44) follows from (7.37) and Lemma 7.6. It follows from this that

‖∇u(t, ·)‖L∞(∂�) ≤ 2‖∇u(0, ·)‖L∞(∂�) ,(7.45)
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‖∇ p(t, ·)‖L∞(�) ≤ 2‖∇ p(0, ·)‖L∞(�) ,(7.46)

‖v(t, ·)‖L∞(�) ≤ 2‖v(0, ·)‖L∞(�) .(7.47)

In fact, by (6.7) we have

(7.48) |Dt∇u| ≤ |∇2 p| + |∇u|2 , |Dt∂v| ≤ |∂2 p| + |∂v|2 .
Using (7.42)–(7.44) we get that

(7.49)
∫ T

0
‖∇2 p(t, ·)‖L∞ + ‖∇u(t, ·)‖2

L∞ dt ≤ ‖∇u(0, ·)‖L∞

if T is sufficiently small, so (7.45) follows after possibly makingT > 0 smaller.
(7.46) and (7.47) follow in a similar manner from|Dt∇ p| = |∇ pt | and|Dtv| =
|∂p|, respectively.

Also, (7.38) follows from the same argument since

(7.50) Dt gab = hab = ∇aub + ∇bua

and by (7.44)

(7.51) 2
∫ T

0
‖∇aub‖L∞(�) dt XaXb ≤ gabXaXb

2
if T is sufficiently small. Now the estimate forN follows from

(7.52) Dtna = hN Nna ,

and the estimates forx and∂x/∂y from

Dt x(t, y) = v(t, x(t, y)) ,

Dt
∂x

∂y
= ∂v(t, x(t, y))

∂y
= ∂v(t, x)

∂x

∂x

∂y
,

(7.53)

and (7.47) and (7.45), respectively. �

The idea is now to use (7.38)–(7.41) to pick aK1, i.e., ι1 (see Definition 3.5),
which depends only on its value att = 0,

(7.54) ι1(t) ≥ ι1(0)

2
.

LEMMA 7.9 Suppose thatε1(r )/2 ≤ ε1 ≤ ε1(r ), and letT be as in Lemma7.7.
Pick ι1 > 0 such that

(7.55) |N (x(0, y1))− N (x(0, y2))| ≤ ε1

2
whenever|x1(0, y1)− x(0, y2)| ≤ 2ι1 .

Then if t≤ T we have

(7.56) |N (x(t, y1))− N (x(t, y2))| ≤ ε1

whenever|x1(t, y1)− x(t, y2)| ≤ ι1 .

PROOF: (7.56) follows from (7.55) and (7.39)–(7.40). �
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Theorem 7.2 now follows directly from Lemmas 7.9 and 7.8. Lemma 7.9 allows
us to pick aK1 depending only on initial conditions, while Lemma 7.8 gives us
T > 0 that depends only on the initial conditions andK1 such that, by Lemma 7.9,
1/ι1 ≤ K1 for t ≤ T .

Note that there is also an evolution equation forθ , but using it would require
control of one more derivative ofu:

(7.57) Dtθi j =
− γ `i γ

a
j Nd∇`∇aud + NaNb∇aubθi j + 2(θia Nj + θja Ni )g

abNc∇buc .

We can control the size ofθ through (7.43), but we cannot control it in terms
of initial data without going to energies with one more derivative. This is why
we need to estimate all the Sobolev constants in terms ofK1 instead ofK , since
(7.38)–(7.41) will allow us to control the time evolution ofK1.

Appendix: Sobolev Lemmas and Interpolation Inequalities

Let us now state some Sobolev lemmas and interpolation inequalities. Most
of the results here are standard inR

n, but we must control how it depends on the
metric. There are two convenient ways to do this. The first is to use the fact that
our set expressed in thex-coordinatesDt ⊂ R

n inherits the metric inRn, and the
surface∂D t can be expressed locally as a graph overR

n−1.
Let N (x) be the unit normal atx ∈ ∂Dt , and suppose that

(A.1) |N (x1)− N (x2)| ≤ ε1 whenever|x1 − x2| ≤ ι1 , x1 , x2 ∈ ∂Dt .

By (A.1) we can write the surface as a graph within a ball of radiusι1 = 1/K1 , and
for functions supported in such a ball we can thus use Sobolev’s lemma inR

n−1 or
R

n. In general, we make a partition of unity into functions supported in such balls,
and the Sobolev constant will thus depend only onK1.

When controlling how the metric changes with time, we can use that our metrics
γ on∂� andg in� are equivalent to the same metrics att = 0 in they-coordinates:

C−1
0 γ 0

i j (y)Z
i Z j ≤ γi j (t, y)Zi Z j ≤ C0γ

0
i j (y)Z

i Z j if Z ∈ T(�) ,(A.2)

C−1
0 g0

i j (y)Z
i Z j ≤ gi j (t, y)Zi Z j ≤ C0g0

i j (y)Z
i Z j if Z ∈ T(�) ,(A.3)

and use Sobolev’s lemma for the metricsγ 0
i j and g0

i j , respectively. In this case,
the Sobolev constants depend only onγ 0

i j (y) = γi j (0, y) andg0
i j (y) = gi j (0, y),

respectively, and onC0.

LEMMA A.1 If α is a (0, r ) tensor, then with a= k/m and a constant C that only
depends on m and n,

(A.4) ‖∇kα‖Ls(∂�) ≤ C‖α‖1−a
Lq(∂�)‖∇mα‖a

L p(∂�)

if
m

s
= k

p
+ m − k

q
, 2 ≤ p ≤ s ≤ q ≤ ∞ .
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PROOF: Let us first prove (A.4) in the casem = 2 andk = 1. We claim that

(A.5) ‖∇α‖2
Ls ≤ Cs

∥∥|α| |∇2α|∥∥
Ls/2 if s ≥ 2 andCs = s − 2 + √

n − 1 ,

from which (A.4) follows in the casem = 2 andk = 1. Then, the norm in the left
of (A.4) to the powerr is the limit asε → 0 of∫

∂�

(〈∇α,∇α〉 + ε
)s/2−1〈∇α,∇α〉dµγ

= −
∫
∂�

(〈∇α,∇α〉 + ε
)s/2−1〈α,4α〉dµγ

−
∫
∂�

2

(
s

2
− 1

)(〈∇α,∇α〉 + ε
)s/2−2〈∇α,∇2α〉 · 〈α,∇α〉dµγ

where we have integrated by parts. Asε → 0 we see that

‖∇α‖s
Ls ≤ Cs

∫
〈∇α,∇α〉s/2−1|α||∇2α|dµγ(A.6)

≤ Cs‖∇α‖s−2
Ls

∥∥|α| |∇2α|∥∥
Ls/2 .

Dividing both sides by‖∇α‖s−2
Ls gives the desired inequality (A.4).

For fixedm, p, andq, lets = s(k) be defined by (A.4) and setMk = ‖∇kα‖Ls(k) .
Then we have just proven thatM2

k ≤ CmMk−1Mk+1 for 1 ≤ k ≤ m − 1. Hence
Nk = Ck2

m Mk satisfiesN2
k ≤ Nk−1Nk+1, and this logarithmic convexity implies that

Nk ≤ N(m−k)/m
0 Nk/m

m , which proves (A.4) in general. �

LEMMA A.2 Suppose that(A.1) and (A.2) hold with ι1 ≥ 1/K1. Then ifα is a
(0, r ) tensor,

(A.7) ‖α‖L(n−1)p/(n−1−kp)(∂�) ≤ C(K1)

k∑
`=0

‖∇`α‖L p(∂�) , 1 ≤ p <
n − 1

k
,

(A.8) ‖α‖L∞(∂�) ≤
δ‖∇kα‖L p(∂�) + Cδ(K1)

∑
0≤`≤k−1

‖∇`α‖L p(∂�) , k >
n − 1

p
,

for anyδ > 0.

Remark.For the boundary there are two possible interpretations of (A.7) and (A.8).
One is to let the norm be given by the inner product〈α, α〉 = γ I JαI αJ and the
covariant differentiation given by∇, which corresponds to covariant differentiation
on the boundary. The other interpretation is to let the inner product on the boundary
be that of the interior〈α, α〉 = gI JαI αJ and the covariant differentiation be that of
the interior∇. In fact, in both cases the proof reduces tok = 1 as before. Ifφ is a
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function, then the lemma forφ follows from using covariant differentiation on the
boundary. Applying this result to a norm gives

(A.9) |γ j
i ∇j 〈α, α〉| = 2|〈α, γ j

i ∇jα〉| ≤ |α| |γ j
i ∇jα| ,

which is bounded by|α| |∇α| and|α| |∇α|, respectively.

PROOF OFLEMMA A.2: We may assume thatp > n and hencek ≤ 1 in (A.8)
andk = 1 in (A.7). In fact, the general case follows from first using (A.8) and
(A.7), respectively, in this case and then repeatedly using (A.7). Second, the case
r > 0 can be reduced to the case of functionsr = 0 by applying it to the norms
φ = |α|. Hence we may assume thatα is a function andk = 1.

Using the partition of unity{χi } in Lemma 3.8, we writeφ = ∑
i φi where

φi = χiφ. The support of eachφi is then contained in a setSi where the surface
can be written as a graphxn = fi (x′) with |∂ fi | ≤ ε1 ≤ 1 as in (3.20). Then
dx′ ≤ dS ≤ Cdx′ and |∂x′φ|/C ≤ |∇φ| ≤ |∂x′φ| whereC = (1 + ε1)

1/2 ≤ 2;
thus, apart from a constant factor, Sobolev’s lemma onSi reduces to Sobolev’s
lemma inR

n−1. By using Minkowski’s inequality, Sobolev’s lemma inRn−1, and
Minkowski’s inequality again, we get∫

∂�

(∑
|φi |

)q
dS≤ 2

∑ ∫
B(4r0,xi )

|φi |q dx′(A.10)

≤ 2C
∑ ∫

B(4r0,xi )

|∇φi |pdx′
q/p

≤ 8C

 ∫
∂�

(∑
|∇φi |q

)p/q
dS

q/p

sinceq > p. Here(∑
|∇φi |q

)p/q =
(∑

(|∇χi ||φ| + |χi ||∇φ|)q
)p/q

(A.11)

≤ C K p
1 (32)(n−1)p/q(|φ|r −1

0 + |∇φ|)p ,

which proves (A.7). (A.8) withδ replaced by a constant follows in the same way.
Finally, we get (A.8) by considering (A.8) withδ replaced by a constant andk = 1
applied toα replaced by|α|2. In fact, we then get‖α‖2

L∞ ≤ C‖|α| |∇α|‖Lq +
C‖|α|2‖Lq for some(n − 1)/k < q < p. Using Hölder’s inequality, we can
estimate the first term byC‖α‖L pq/(p−q)‖∇α‖L p ≤ δ‖∇α‖2

L p + C2δ−1‖α‖2
L pq/(p−q) ,

where the last term is bounded byCδ‖α‖1−(p−q)/q
L∞ ‖α‖(p−q)/q

L p . �
LEMMA A.3 With notation as in LemmasA.1 andA.2, we have

(A.12)
k∑

j =0

‖∇ jα‖Ls(�) ≤ C‖α‖1−a
Lq(�)

(
m∑

i=0

‖∇ iα‖L p(�)K
m−i
1

)a

.
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PROOF: As in the proof of (A.5), the general case of (A.12) will follow from
the special casem = 2 andk = 1. If we integrate by parts as in the proof of (A.4),
we also get a boundary term∫

�

|∇α|s dµ ≤ C
∫
�

|∇α|s−2|α| |∇2α|dµ+ C
∫
∂�

|∇α|s−1|α|dµγ .

If α has compact support in�, then the boundary term cancels. Then by the proof
of (A.4)

(A.13) ‖∇α‖2
Ls(�) ≤ C‖α‖Lq(�)‖∇2α‖L p(�) .

We will prove that (A.13) is also true ifα has compact support in a neighborhood
of the boundaryι1 < dist(y, ∂�) ≤ 0. We have∫

∂�

|∇α|s−1|α|dµγ

≤
 ∫
∂�

|∇α|(s−1)t dµγ

1/t  ∫
∂�

|α|t/(t−1) dµγ

(t−1)/t

≤ C

 ∫
�

∣∣∇N |∇α|(s−1)t
∣∣dµ

1/t  ∫
�

∣∣∇N |α|t/(t−1)
∣∣dµ

(t−1)/t

≤ C

 ∫
�

|∇α|(s−1)t−1|∇2α|dµ
1/t  ∫

�

|α|1/(t−1)|∇α|dµ
(t−1)/t

.

Now we want to use Hölder’s inequality again on each factor with‖∇2α‖L p,
‖α‖Lq , and‖∇α‖Ls where 1/q + 1/p = 2/s. Let 1/q′ = 1− /q, 1/p′ = 1− 1/p,
and 1/s′ = 1 − 1/s. We will show that we can pickt so thats = p′((s − 1)t − 1)
ands′ = (t − 1)q. We need to show that the two expressions fort are the same,
i.e., that(s − s/p + 1)/(s − 1) = t = (s − 1 + s/q)/(s − 1), which is equivalent
to 1/p + 1/q = 2/s.

The boundary term can hence be bounded by‖∇α‖s−2/t
Ls(�)‖∇2α‖1/t

L p(�)‖α‖1/t
Lq(�).

On the other hand, the interior term can be estimated as in the proof of (A.5) so we
get

‖∇α‖s
Ls(�) ≤
C‖∇α‖s−2

Ls(�)‖α‖Lq(�)‖∇2α‖L p(�) + C‖∇α‖s−2/t
Ls(�)‖∇2α‖1/t

L p(�)‖α‖1/t
Lq(�) ,

from which (A.13) follows also in the case whereα is supported in the neighbor-
hood ι1 < dist(y, ∂�) ≤ 0. Let {χi } be the partition of unity in Lemma 3.8.
Now, since|∇`χi | ≤ Cι1−`, it follows that‖∇2(χiα)‖L p is bounded by the sum in
the right-hand side of (A.12) ifm = 2 andk = 1. Since‖α‖2

Ls ≤ ‖|α|2‖2
Ls/2 ≤
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‖α‖Lq‖α‖L p by Hölder’s inequality, (A.12) follows in the case wherem = 2 and
k = 1.

The general case of (A.12) follows from the special case as in the proof of (A.5)
with the only exception being that nowMk = ∑k

i=0 ‖∇ iα‖Ls(k) . So far we have only
proven thatM1 ≤ C M0M2, but the general case ofM2

k ≤ C Mk−1Mk+1 follows by
induction from the previous case applied toM ′

k = ∑k
i=0 ‖∇ i ∇α‖Ls(k) , (M ′

k−1)
2 ≤

C M′
k−2M ′

k, and Hölder’s inequality‖α‖Ls ≤ ‖|α|1−a|α|a‖Ls ≤ ‖α‖1−a
Lq ‖α‖a

L p

again. �

LEMMA A.4 Suppose thatι1 ≥ 1/K1 andα is a (0, r ) tensor. Then

‖α‖Lnp/(n−kp)(�) ≤ C
k∑
`=0

K k−`
1 ‖∇`α‖L p(�) , 1 ≤ p <

n

k
,(A.14)

‖α‖L∞(�) ≤ C
∑

0≤`≤k

K n/p−`
1 ‖∇kα‖L p(�) , k >

n

p
.(A.15)

PROOF: As in the proof of Lemma A.2, we may assume thatα is a function and
k = 1. We now want to extend the functions to outside� and then use Sobolev’s
lemma inR

n. We can extend the function by writing the surface as a graphxn =
f (x′), (x′, xn) ∈ R

n, as in the proof of Lemma A.2. Let{χi } be the partition of
unity in Lemma 3.8 and setφi = χiφ. In a neighborhood of supp(χi ), we can then
write ∂Dt as a graph after a rotation:

xn = f (x′) , (x′, xn) ∈ R
n , |∂ f | ≤ 1 .

We now define

φ̂i (x) =
{
φi (x) whenx ∈ �
φ(x̂) whenx /∈ �(A.16)

wherex̂ = (x̂′, x̂n) = (x′, xn − 2(xn − f (x′)).
In proving estimates (A.14) and (A.15), we may assume thatφ ∈ C∞(�) since

this is dense inW1,p(�); see [10]. Then by Sobolev’s lemma inR
n:

‖φ̂i ‖Lq(Rn) ≤ C‖∇φ̂i ‖L p(Rn) ≤ C‖∇φi ‖L p(�) + C‖∇φ̂i ‖L p({�) ≤ C′‖∇φi ‖L p(�)

since|∂ x̂i /∂x j | ≤ C. Since|∇χi | ≤ C K1, this proves (A.14); (A.15) follows in a
similar manner. �

LEMMA A.5 Suppose that q= 0 on ∂�. Then

‖q‖L2(�) ≤ C(Vol�)1/n‖∇q‖L2(�) ,

‖∇q‖L2(�) ≤ C(Vol�)1/2n‖4q‖L2(�) .
(A.17)

PROOF: The first inequality is Faber-Krahns theorem. Its proof uses a sym-
metrization argument; see [14]. The second follows from the first and integration
by parts. �
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We state two more lemmas.

LEMMA A.6 If the metric satisfies

(A.18) C−1
0 g0

i j (y)Z
i Z j ≤ gi j (t, y)Zi Z j ≤ C0g0

i j (y)Z
i Z j if Z ∈ T(�) ,

where g0 is a positive definite metric, then with a constant depending only on g0

and c0,

(A.19) ‖∂k
t α‖Ls(�×[0,T]) ≤ C‖α‖1−a

Lq(�×[0,T]) ‖∂m
t α‖a

L p(�×[0,T]) ,

provided that∂ j
t α(0, ·) = 0 for j = 0, . . . ,m − 1.

PROOF: It remains to prove (A.19), which is done similarly to the proof of
(A.12). Suppose now thatα(0, ·) = ∂tα(0, ·) = 0. By (A.18) we can bound the
norm and the measure from above and below by a measure that is independent of
t . Thus, as before, it follows that∫ T

0

∫
�

|∂tα|s dµ dt ≤ C
∫ T

0

∫
�

|∂tα|s−2|α||∂2
t α|dµ dt + C

∫
�

|∂tα|s−1|α|dµ(T)

∫
�

|∂tα|s−1|α| dµ(T) ≤
∫ T

0

∫
�

|∂tα|s dµ dt

1−2/ts

∫ T

0

∫
�

|∂2
t α|p dµ dt

1/tp∫ T

0

∫
�

|α|q dµ dt

1/tq

,

from which (A.19) follows as before. �

Using Lemma A.2 and the proof of Lemma 5.6, we can get a slightly improved
version of Lemma 5.6:

LEMMA A.7 Let α be (0, r ) tensor, and assume that|θ |L∞(∂�) + 1/ι0 ≤ K and
Vol(�) ≤ V . Then there is C= C(K ,V, r,n) such that

‖α‖L(n−1)p/(n−p)(∂�) ≤ C‖∇α‖L p(�) + C‖α‖L p(�) , 1 ≤ p < n ,(A.20)

‖∇2α‖L2(�) ≤ C
(‖5∇2α‖L2(n−1)/n(∂�) + ‖4α‖L2(�) + ‖∇α‖L2(�)

)
.(A.21)
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