MAT 201B RECAP

Jingyang Shu

1. Let Ω be a non-empty set. A collection Σ of subsets of Ω is called σ-algebra if:
 (a) If $A \in \Sigma$, then $A^c \in \Sigma$;
 (b) If A_1, A_2, \cdots is a countable family of sets in Σ, then their union $\bigcup_{i=1}^{\infty} A_i \in \Sigma$;
 (c) $\Omega \in \Sigma$.

2. Let Σ be a σ-algebra on Ω, a measure μ on Ω is a function $\mu : \Sigma \to [0, +\infty]$ satisfying:
 (a) $\mu(\emptyset) = 0$;
 (b) $\mu(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ for $A_i \in \Sigma$ and $A_i \cap A_j = \emptyset$ if $i \neq j$.

3. A measure space is σ-finite if there exist countably many sets $A_i \in \Sigma$ with $\mu(A_i) < \infty$ and $\Omega = \bigcup_{i=1}^{\infty} A_i$.

4. Let (Ω, Σ, μ) be a measure space. If $f : \Omega \to \mathbb{R}$, then we say that f is a measurable function if for every $t \in \mathbb{R}$, the level set: $S_f(t) = \{x \in \Omega | f(x) > t\}$ is measurable. $f : \Omega \to \mathbb{C}$ is measurable if and only if both $\text{Re}(f)$ and $\text{Im}(f)$ are measurable.

5. A real function $f : \Omega \to \mathbb{R}$ is lower semicontinuous on Ω if $S_f(t)$ is open, and is upper semicontinuous if $\{x \in \Omega | f(x) < t\}$ is open. Equivalently, f is lower semicontinuous if $\forall \epsilon > 0, \exists$ open ball $B \subset \Omega$ containing x with $f(y) \geq f(x) - \epsilon$ for every $y \in B$ (equivalently, $f(x) \leq \liminf_{n \to \infty} f(x_n)$ for all $x_n \to x$), and is upper semicontinuous if $f(y) \leq f(x) + \epsilon$ (equivalently, $f(x) \geq \limsup_{n \to \infty} f(x_n)$ for all $x_n \to x$).

6. Consider measure space (\mathbb{R}^n, B, μ), and f is a Borel measurable function. Let $\Omega = \{A \subset \mathbb{R}^n | A$ is open and $f(x) = 0$ for μ-a.e. $x \in A\}$, then the essential support of f is $(\bigcup_{A \in \Omega} A)^c$, which is a closed set.

7. Let (Ω, Σ, μ) be a measure space, and $f : \Omega \to \mathbb{R}^+$ be measurable, then the integral of f is $\int_{\Omega} f(x) d\mu(x) := \int_{0}^{\infty} \mu(%\{x \in \Omega | f(x) > t\}) dt$. If this quantity is less than ∞, we say f is integrable.

8. (Monotone Convergence Theorem) Let (Ω, Σ, μ) be a measure space and $\{f_j\}_{j=1}^{\infty}$ be an increasing sequence of integrable functions. Define $A_j := \{x \in \Omega | f_{j+1}(x) < f_j(x)\} \in \Sigma$ and $A := \bigcup_{j=1}^{\infty} A_j \in \Sigma$. If $f(x) := \begin{cases} \lim_{j \to \infty} f_j(x) & x \in A^c \\ 0 & x \in A \end{cases}$ and $I := \lim_{j \to \infty} \int_{\Omega} f_j(x) d\mu(x)$. Then
 (a) f is measurable;
 (b) I if finite if and only if f is integrable, and in this case, $I = \int_{\Omega} f(x) d\mu(x)$, i.e., $\lim_{j \to \infty} f_j(x) d\mu(x) = \int_{\Omega} f(x) d\mu(x)$.

1 Last updated: March 22, 2015
9. (Fatou’s Lemma) Let \((\Omega, \Sigma, \mu)\) be a measure space, and \(\{f_j\}\) be a sequence of non-negative, integrable functions. Then \(\liminf_{j \to \infty} \int_{\Omega} f_j(x) d\mu(x) \geq \int_{\Omega} \liminf_{j \to \infty} f_j(x) d\mu(x)\).

10. (Dominated Convergence) Let \((\Omega, \Sigma, \mu)\) be a measure space. Let \(\{f_j\}\) be a sequence of (complex-valued,) integrable, and pointwise converging to \(f\) \(\mu\)-a.e., if there exists \(G\) on \((\Omega, \Sigma, \mu)\) which is integrable and \(|f_j(x)| \leq G(x), \forall j \geq 1\). Then \(\lim_{j \to \infty} \int_{\Omega} f_j(x) d\mu(x) = \int_{\Omega} f(x) d\mu(x)\).

11. (Tonelli-Fubini) Let \((\Omega_1, \Sigma_1, \mu_1)\) and \((\Omega_2, \Sigma_2, \mu_2)\) be two \(\sigma\)-finite measure spaces. Let \(f\) be \(\Sigma = \Sigma_1 \times \Sigma_2\) measurable on \(\Omega = \Omega_1 \times \Omega_2\). Then

 (a) (Tonelli) If \(f \geq 0\), then

 \[
 \int_{\Omega_1 \times \Omega_2} f(x, y) d(\mu_1 \times \mu_2)(x, y) = \int_{\Omega_1} \left(\int_{\Omega_2} f(x, y) d\mu_2(y) \right) d\mu_1(x) = \int_{\Omega_2} \left(\int_{\Omega_1} f(x, y) d\mu_1(x) \right) d\mu_2(y)
 \]

 Note: Above three values can be \(\infty\).

 (b) (Fubini) If \(f\) is complex-valued and \(\int_{\Omega_1 \times \Omega_2} |f(x, y)| d(\mu_1 \times \mu_2)(x, y) < \infty\), then all three integrals above are finite and equal.

12. A measurable function \(f : \Omega \to \mathbb{C}\) is said to be a \textbf{simple function} if it takes only finitely many values, i.e., \(\exists N \geq 1, c_1, c_2, \cdots, c_N \in \mathbb{C}\) and \(A_1, A_2, \cdots, A_N \in \Sigma\) with \(f(x) = \sum_{j=1}^{N} c_j \chi_{A_j}\)

13. Let \((\Omega, \Sigma)\) be a non-empty set and \(\sigma\)-algebra.

 (a) Let \(f : \Omega \to [0, \infty]\) be measurable, then \(\exists \{g_n\}\) of simple functions with (i) \(0 \leq g_1 \leq g_2 \leq \cdots \leq f\), (ii) \(g_n \to f\) pointwise and (iii) \(g_n \to f\) uniformly on \(A \in \Sigma\) if \(f\) is bounded on \(A\);

 (b) Let \(f : \Omega \to \mathbb{C}\) be measurable, then \(\{g_n\}\) of simple functions with (i) \(0 \leq |g_1| \leq |g_2| \leq \cdots \leq |f|\), (ii) \(g_n \to f\) pointwise and (iii) \(g_n \to f\) uniformly on any \(A \in \Sigma\) on which \(f\) is bounded.

14. Let \(f, g \in C(\mathbb{T})\), then the \textbf{convolution} of \(f\) and \(g\) is \(f \ast g : \mathbb{T} \to \mathbb{C}\), with \((f \ast g)(x) = \int_{\mathbb{T}} f(x-y)g(y)dy\).

15. \((f \ast g)_n = \sqrt{2\pi} f_n g_n\).

16. A family of functions \(\{\varphi_n\}_{n \geq 1} \subset C(\mathbb{T})\) is an \textbf{approximation identity} if

 (a) \(\varphi_n(x) \geq 0, \forall n, x;\)

 (b) \(\int_{\mathbb{T}} \varphi_n(x) dx = 1;\)

 (c) \(\forall \delta > 0, \lim_{n \to \infty} \int_{|x| \leq \delta} \varphi_n(x) dx = 0.\)

17. If \(f, g \in L^2(\mathbb{T})\), then \(f \ast g \in C(\mathbb{T})\) and \(\|f \ast g\|_\infty \leq \|f\|_2 \|g\|_2\).

18. Fourier coefficients: \(\hat{f}_n = \langle e_n, f \rangle = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{T}} e^{-inx} f(x) dx\), where \(e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}\). Then \(f(x) = \sum_{n=-\infty}^{\infty} \hat{f}_n e^{inx}.\)
19. If \(f \in C^k(\mathbb{T}) \), then \(\hat{f}^{(k)}(n) = (in)^k \hat{f}(n) \).

20. The **Sobolev space** \(H^1(\mathbb{T}) \) consists of all functions \(f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{inx} \in L^2(\mathbb{T}) \) such that
\[
\sum_{n=-\infty}^{\infty} n^2 |\hat{f}(n)|^2 < \infty.
\]
For such \(f \) we define the **weak derivative** of \(f \): \(f'(x) = \sum_{n=-\infty}^{\infty} in\hat{f}(n) e^{inx} \).

This Sobolev space is a Hilbert space with respect to \(\langle f, g \rangle_{H^1} = \langle f, g \rangle_{L^2} + \langle f', g' \rangle_{L^2} = \sum_{n \in \mathbb{Z}} (1 + n^2) \hat{f}(n) \bar{\hat{g}}(n) \).

21. The Sobolev space \(H^k(\mathbb{T}) \) is defined by: \(H^k(\mathbb{T}) := \{ f \in L^2(\mathbb{T}) | \sum_{n \in \mathbb{Z}} n^{2k} |\hat{f}(n)|^2 < \infty \} \). If \(k > \frac{1}{2} \), set \(S_N(x) := \sum_{n=-N}^{N} \hat{f}(n) e_n(x) \), then there exists \(c_k < \infty \) independent of \(f \) for which
\[
\|S_N - f\|_\infty \leq \frac{c_k}{N^{k-\frac{1}{2}}} \left(\sum_{n \in \mathbb{Z}} n^{2k} |\hat{f}(n)|^2 \right)^{\frac{1}{2}}.
\]

22. (Sobolev Embedding Theorem) If \(f \in H^k(\mathbb{T}) \) for \(k > \frac{1}{2} \), then \(f \in C(\mathbb{T}) \).

23. The **circle map** is a map \(F_\gamma : \mathbb{T} \to \mathbb{T} \) with \(F_\gamma(x) = x + 2\pi \gamma \). For each \(x_0 \in \mathbb{T} \), the iterated application of \(F_\gamma \) generates a sequence of points \((x_n)_{n=0}^\infty \), where \(x_n = F_\gamma(x_{n-1}) \). The set \(\{x_n\} \) is called the **orbit** or **trajectory** of \(x_0 \) under \(F_\gamma \).

24. Let \(f : \mathbb{T} \to \mathbb{C} \) be a continuous function on \(\mathbb{T} \). The **time average** is \(\langle f \rangle_t(x_0) = \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} f(x_n) \).

The **phase-space average** is \(\langle f \rangle_{\text{ph}} = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) dx \).

25. (Weyl’s Ergodic Theorem) If \(\gamma \) is irrational, then \(\langle f \rangle_t(x_0) = \langle f \rangle_{\text{ph}} \) for all \(f \in C(\mathbb{T}) \) and all \(x_0 \in \mathbb{T} \).

26. Suppose that \(\gamma \) is irrational and \(I \) is an interval in \(\mathbb{T} \) of length \(\lambda \). Then
\[
\lim_{N \to \infty} \frac{\#\{ n | 0 \leq n \leq N, x_n \in I \} }{N+1} = \frac{\lambda}{2\pi}.
\]

27. An **orthogonal projection** on a Hilbert space \(\mathcal{H} \) is a linear map \(P : \mathcal{H} \to \mathcal{H} \) that satisfies \(P^2 = P \) and \(\langle Px, y \rangle = \langle x, Py \rangle \) for all \(x, y \in \mathcal{H} \). If \(P \) is a nonzero orthogonal projection, then \(\|P\| = 1 \).

28. (Riesz Representation) If \(\varphi \) is a bounded linear functional on a Hilbert space \(\mathcal{H} \), then there is a unique vector \(y \in \mathcal{H} \) such that \(\varphi(x) = \langle y, x \rangle \) for all \(x \in \mathcal{H} \).

29. If \(A : \mathcal{H} \to \mathcal{H} \) is a bounded linear operator, then \(\text{ran } A = (\ker A^*)^\perp \) and \(\ker A = (\text{ran } A^*)^\perp \).

30. A bounded linear operator \(A : \mathcal{H} \to \mathcal{H} \) on a Hilbert space \(\mathcal{H} \) satisfies the **Fredholm alternative** if one of the following holds:
(a) \(Ax = 0 \), \(A^*x = 0 \) have only the zero solution, and the equations \(Ax = y \), \(A^*x = y \) have a unique solution \(x \in \mathcal{H} \) for every \(y \in \mathcal{H} \);
33. If \(A \) is Fredholm and \(K \) is compact, then \(A + K \) is Fredholm, and \(\text{ind} \ (A + K) = \text{ind} \ A \).

34. Suppose that \(A : \mathcal{H} \to \mathcal{H} \) is a bounded linear operator on a Hilbert space \(\mathcal{H} \) with closed range. Then the equation \(Ax = y \) has a solution for \(x \) if and only if \(y \) is orthogonal to \(\ker A^* \).

35. If \(A \) is a bounded self-adjoint operator on a Hilbert space \(\mathcal{H} \), then \(\| A \| = \sup \langle x, Ax \rangle \).

36. If \(A \) is a bounded self-adjoint operator on a Hilbert space \(\mathcal{H} \), then polarization identity:

\[
\langle y, Ax \rangle = \frac{1}{4} \left(\langle x + y, A(x + y) \rangle - \langle x - y, A(x - y) \rangle - i \langle x + iy, A(x + iy) \rangle - i \langle x - iy, A(x - iy) \rangle \right).
\]

37. A linear mapping \(U : \mathcal{H}_1 \to \mathcal{H}_2 \) between (real or) complex Hilbert spaces is said to be (orthogonal or) unitary if \(U \) is invertible and \(\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1}, \forall x, y \in \mathcal{H}_1 \). For unitary operators, \(\|U\| = 1 \). An operator \(U : \mathcal{H} \to \mathcal{H} \) is unitary if and only if \(U^*U = I \).

38. Let \(T : \mathcal{H} \to \mathcal{H} \) is said to be \textbf{normal} if it commutes with its adjoint, i.e., \(TT^* = T^*T \).

39. (Mean Ergodic Theorem) Let \(\mathcal{H} \) be a Hilbert space and \(U \) unitary on \(\mathcal{H} \). Let \(\mathcal{M} = \{ x \in \mathcal{H} | Ux = x \} \) called invariant subspace for \(U \). Let \(P \) be the orthogonal projection onto \(\mathcal{M} \). Then

\[
\forall x \in \mathcal{H}, \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} U^n x = Px.
\]

40. A one-to-one, onto, and measurable (i.e., \(T^{-1}(A) \in \Sigma, \forall A \in \Sigma \)) mapping \(T : \Omega \to \Omega \) is said to be \textbf{measure preserving} if \(P(T^{-1}(A)) = P(A) \) for all \(A \in \Sigma \).

41. A mapping \(f : \Omega \to \mathbb{C} \) that is measurable is called a \textbf{random variable}. A measure preserving mapping \(T \) on a probability space \((\Omega, \Sigma, P) \) is said to be \textbf{ergodic} if the only functions \(f \in L^2(\Omega, dP) \) satisfying \(f \circ T = f \) are the constants.

42. A one-to-one, onto, measure preserving map \(T : \Omega \to \Omega \) on a probability space \((\Omega, P) \) is ergodic if and only if for every \(f \in L^2(\Omega, P) \),

\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} f \circ T^n = \int_{\Omega} f dP,
\]

where the convergence is in the \(L^2 \)-norm.

43. (Banach-Steinhaus Theorem) Suppose that \(\{ \varphi_n : X \to \mathbb{C} | n \in \mathbb{N} \} \) is a set of linear functionals on a Banach space \(X \) such that the set of complex numbers \(\{ \varphi_n(x) | n \in \mathbb{N} \} \) is bounded for each \(x \in X \). Then \(\{ ||\varphi_n|| | n \in \mathbb{N} \} \) is bounded.

44. Let \(\mathcal{H} \) be a Hilbert space, \(D \subset \mathcal{H} \) is a dense subset, and \(\{ x_n \} \) is a sequence of vectors in \(\mathcal{H} \). Then \(x_n \rightharpoonup x \) if and only if (a) \(\exists M < \infty \) with \(\| x_n \| \leq M, \forall n \geq 1 \), and (b) \(\langle x_n, y \rangle \to \langle x, y \rangle, \forall y \in D \).
45. Let \mathcal{H} be a Hilbert space. (a) If $x_n \to x$, then $\|x\| \leq \lim \inf_{n \to \infty} \|x_n\|$; (b) If $x_n \to x$ and $\lim_{n \to \infty} \|x_n\| = \|x\|$, then $x_n \to x$.

46. (Banach-Alaoglu Theorem) The closed unit ball of a Hilbert space is weakly compact. (A set is weakly precompact if and only if it is bounded.)

47. A function $f : K \to \mathbb{R}$ on a weakly closed set K is said to be weakly sequentially lower semicontinuous if $f(x) \leq \lim \inf_{n \to \infty} f(x_n)$ for every sequence (x_n) in K such that $x_n \to x$.

48. Suppose that $f : K \to \mathbb{R}$ is a weakly lower semicontinuous function on a weakly closed, bounded subset K of a Hilbert space. Then f is bounded form below and attains its infimum.

49. Let $f : C \to \mathbb{R}$ be a real-valued function on a convex subset C of a real or complex linear space. Then f is convex if $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$ for all $x, y \in C$ and $0 \leq t \leq 1$.

50. (Mazur’s Theorem) If $\{x_n\}$ converges weakly to x in a Hilbert space, then there is a sequence $\{y_n\}$ of finite convex combinations of $\{x_n\}$ such that $\{y_n\}$ converges strongly to x.

51. Suppose that $f : C \to \mathbb{R}$ is a strongly lower semicontinuous convex function on a strongly closed, convex, bounded subset C of a Hilbert space. Then f is bounded from below and attains its infimum. If f is strictly convex, then the minimizer is unique.

52. The resolvent set of an operator $A \in \mathcal{B}(\mathcal{H})$, denoted by $\rho(A)$, is the set of complex numbers λ such that $(A - \lambda I) : \mathcal{H} \to \mathcal{H}$ is one-to-one and onto. The spectrum of A, denoted by $\sigma(A)$, is the complement of the resolvent set in \mathbb{C}, meaning that $\sigma(A) = \mathbb{C} \setminus \rho(A)$.

53. Suppose that A is a bounded linear operator on a Hilbert space \mathcal{H}.

(a) The point spectrum of A consists of all $\lambda \in \sigma(A)$ such that $A - \lambda I$ is not one-to-one. In this case λ is called an eigenvalue of A.

(b) The continuous spectrum of A consists of all $\lambda \in \sigma(A)$ such that $A - \lambda I$ is one-to-one but not onto, and ran $(A - \lambda I)$ is dense in \mathcal{H}.

(c) The residual spectrum of A consists of all $\lambda \in \sigma(A)$ such that $A - \lambda I$ is one-to-one but not onto, and ran $(A - \lambda I)$ is not dense in \mathcal{H}.

54. An operator-valued function $F : \Omega \to \mathcal{B}(\mathcal{H})$, defined on an open subset Ω of the complex plane \mathbb{C}, is said to be analytic at $z_0 \in \Omega$ if there are operators $F_n \in \mathcal{B}(\mathcal{H})$ and a $\delta > 0$ such that $F(z) = \sum_{n=0}^{\infty} (z - z_0)^n F_n$, where the power series on the right-hand side converges with respect to the operator norm on $\mathcal{B}(\mathcal{H})$ in a disc $|z - z_0| < \delta$ for some $\delta > 0$.

55. If λ belongs to the resolvent set $\rho(A)$ of a linear operator A, then $A - \lambda I$ has an everywhere defined, bounded inverse. The operator $R_\lambda = (\lambda I - A)^{-1}$ is called the resolvent of A at λ.

56. Let $A \in \mathcal{B}(\mathcal{H})$, then (a) $\rho(A)$ is open, (b) $\{\lambda \in \mathbb{C} : ||\lambda|| > ||A||\} \subset \rho(A)$, and (c) R_λ is an operator valued analytic function on $\rho(A)$. As a consequence, $\sigma(A)$ is closed, $\sigma(A) \subset \{\lambda \in \mathbb{C} : ||\lambda|| \leq ||A||\}$, and therefore, $\sigma(A)$ is compact.

57. If A is a bounded linear operator, then $r(A) = \lim_{n \to \infty} ||A^n||^{1/n}$. If A is self-adjoint, then $r(A) = ||A||$.

5
58. The spectrum of a bounded linear operator on a Hilbert space is nonempty.

59. Let \(\mathcal{H} \) be a Hilbert space, for any \(A \in \mathcal{B}(\mathcal{H}) \), a subspace \(\mathcal{M} \subset \mathcal{H} \) is called an **A-invariant subspace** if \(\forall x \in \mathcal{M}, Ax \in \mathcal{M} \).

60. Let \(A \in \mathcal{B}(\mathcal{H}) \) be self-adjoint, and \(\mathcal{M} \) is an \(A \)-invariant subspace, then \(\mathcal{M}^\perp \) is also an \(A \)-invariant subspace.

61. Let \(A \in \mathcal{B}(\mathcal{H}) \), if \(\lambda \) is in the residual spectrum of \(A \), then \(\overline{\lambda} \) is an eigenvalue of \(A^* \).

62. If \(A \in \mathcal{B}(\mathcal{H}) \) is a self-adjoint operator on a Hilbert space, then the spectrum of \(A \) is real and is contained in the interval \([-\|A\|,\|A\|]\).

63. If \(A \in \mathcal{B}(\mathcal{H}) \) satisfying \(A^* = A \), then the residual spectrum of \(A \) is empty.

64. Let \(A \in \mathcal{B}(\mathcal{H}) \) satisfying \(A \) is self-adjoint and compact. If \(\lambda \neq 0 \) is an eigenvalue of \(A \), then \(\lambda \) has finite multiplicity. If \(A \) has countably many non-zero eigenvalues, then zero is the only accumulative point.

65. (Spectral Theorem) Let \(A : \mathcal{H} \to \mathcal{H} \) be a compact, self-adjoint operator on a Hilbert space \(\mathcal{H} \). There is an orthonormal basis of \(\mathcal{H} \) consisting of eigenvectors of \(A \). The nonzero eigenvalues of \(A \) form a finite or countably infinite set \(\{\lambda_k\} \) of real numbers, and \(A = \sum_k \lambda_k P_k \), where \(P_k \) is the orthogonal projection onto the finite-dimensional eigenspace of eigenvectors with eigenvalue \(\lambda_k \). If the number of nonzero eigenvalues is countably infinite, then the series converges to \(A \) in the operator norm.

66. Let \(E \) be a subset of an infinite-dimensional, separable Hilbert space \(\mathcal{H} \). (a) If \(E \) is precompact, then for every orthonormal set \(\{e_n|n \in \mathbb{N}\} \) and every \(\epsilon > 0 \), there is an \(N \) such that \(\sum_{n=N+1}^{\infty} |\langle e_n, x \rangle|^2 < \epsilon \) for all \(x \in E \). (b) If \(E \) is bounded and there is an orthonormal basis \(\{e_n\} \) of \(\mathcal{H} \) with the property that for every \(\epsilon > 0 \) there is an \(N \) such that \(\sum_{n=N+1}^{\infty} |\langle e_n, x \rangle|^2 < \epsilon \) for all \(x \in E \), then \(E \) is precompact.

67. A bounded linear operator \(A \) on a separable Hilbert space \(\mathcal{H} \) is **Hilbert-Schmidt** if there is an orthonormal basis \(\{e_n|n \in \mathbb{N}\} \) such that \(\sum_{n=1}^{\infty} \|Ae_n\|^2 < \infty \). If \(A \) is a Hilbert-Schmidt operator, then \(\|A\|_{HS} = \sqrt{\sum_{n=1}^{\infty} \|Ae_n\|^2} \) is called the **Hilbert-Schmidt norm** of \(A \).

68. A Hilbert-Schmidt operator is compact.

69. A bounded linear operator on a Hilbert space is compact if and only if it maps weakly convergent sequences into strongly convergent sequences.

70. (Spectral Mapping) Let \(A \) be compact and self-adjoint. If \(f : \sigma(A) \to \mathbb{C} \) is continuous, then \(\sigma(f(A)) = f(\sigma(A)) \).

71. A function \(f : (a, b) \to X \) from an open interval \((a, b) \) into a Banach space \(X \) is **differentiable** at \(a < t < b \), with derivative \(f'(t) \in X \), if the following limit exists in \(X \): \(f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \).

The function \(f \) is differentiable in \((a, b) \) if it is differentiable at each point in \((a, b) \), and continuously differentiable in \((a, b) \) if \(f' : (a, b) \to X \) is continuous.

72. If \(f : (a, b) \to X \) is differentiable in \((a, b) \) and \(f' = 0 \), then \(f \) is a constant function.
73. (Fundamental Theorem of Calculus) Suppose that X is a Banach space. (a) If $f : [a, b] \to X$ is continuous, then $F(t) = \int_a^t f(s)ds$ is continuously differentiable in (a, b) and $F' = f$. (b) If f is continuously differentiable in an open interval containing $[a, b]$, then $f(b) - f(a) = \int_a^b f'(t)dt$.

74. (Mean Value) If f is continuously differentiable in an open interval that contains the closed, bounded interval $[a, b]$, with values in a Banach space, then $\|f(b) - f(a)\| \leq M(b - a)$ where $M = \sup_{a \leq t \leq b} \|f'(t)\|$.

75. A map $f : U \subset X \to Y$ whose domain U is an open subset of a Banach space X and whose range is a Banach space Y is **differentiable** at $x \in U$ if there is a bounded linear map $A : X \to Y$ such that $\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|}{\|h\|} = 0$ (i.e., $f(x + h) = f(x) + Ah + o(h)$). The linear operator A is called the **Fréchet derivative** of f at $x \in U$.

76. (Chain Rule) Suppose that X, Y, Z are Banach spaces, and $f : U \subset X \to Y$, $g : V \subset Y \to Z$ where U and V are open subsets of X and Y, respectively. If f is differentiable at $x \in U$ and g is differentiable at $f(x) \in V$, then $g \circ f$ is differentiable at x and $(g \circ f)'(x) = g'(f(x))f'(x)$.

77. Let X and Y be Banach spaces with $f : U \subset X \to Y$ and U open, the **directional derivative** of f at $x \in U$ in the direction of $h \in X$ is $\delta f(x; h) = \lim_{t \to 0} \frac{f(tx + th) - f(tx)}{t}$ if this limit exists in Y. If this limit exists for all $h \in X$ and $f_G'(x) : X \to Y$ defined by $f_G'(x)h = \delta f(x; h)$ is linear, then we say that f is **Gâteaux differentiable** at x and $f_G'(x)$ is the **Gâteaux derivative** of f at x.

78. Let $f : X \to Y$ be Gâteaux differentiable for all $x \in U \subset X$ with U open. If $x, y \in U$ and the line segment $\{tx + (1-t)y | 0 \leq t \leq 1\} \subset U$, then $\|f(x) - f(y)\| \leq M\|x - y\|$ where $M = \sup_{0 \leq t \leq 1} \|f_G''(tx + (1-t)y)\|$.

79. Let $f : U \subset X \to Y$ be Gâteaux differentiable, and U is a convex open set. If the Gâteaux derivative: $f_G' : U \to \mathcal{B}(X, Y)$ is continuous at $x \in U$, then f is Fréchet differentiable at x and $f'(x) = f_G'(x)$.

80. (Inverse Function Theorem) Let X and Y be Banach spaces, let $f : U \subset X \to Y$ be differentiable on U. If f is continuously differentiable on U and $f'(x)$ has a bounded inverse at $x \in U$, then there are open sets $x \in V \subset U$ and $W \subset Y$ with $f(x) \in W$ such that $f : V \to W$ is one-to-one and onto. Moreover, $f^{-1} : W \to V$ is continuously differentiable at $f(x)$ with $(f^{-1})'(f(x)) = (f'(x))^{-1}$.
