MAT 206 RECAP

Jingyang Shu

1. Let μ be a measure $\mu : \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ such that (i) if $E \subset F$, then $\mu(E) \leq \mu(F)$; (ii) if E_1, E_2, \cdots is a countable collection of disjoint sets, then $\mu(\bigcup E_j) = \sum \mu(E_j)$; (iii) if $E \in \mathcal{P}(\mathbb{R})$ and $F = \{x - \tau : x \in E\}$ for any $\tau \in \mathbb{R}$, have $\mu(E) = \mu(F)$; and (iv) $\mu([0, 1]) = 1$. Then there is no such mapping.

2. Let X be a nonempty set, we call a collection \mathcal{A} of subsets of X an algebra provided: (i) $\emptyset \in \mathcal{A}$; (ii) if $E, F \in \mathcal{A}$, then $E \cup F \in \mathcal{A}$; and (iii) if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.

3. Let X be a nonempty set, we call a collection \mathcal{A} of subsets of X an σ-algebra provided: (i) $\emptyset \in \mathcal{A}$; (ii) if $\{E_j\}_{j=1}^\infty \subset \mathcal{A}$, then $\bigcup_{j=1}^\infty E_j \in \mathcal{A}$; and (iii) if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.

4. If \mathcal{A} is an algebra and it is closed under countable disjoint unions, then \mathcal{A} is a σ-algebra.

5. The intersection of any collection of σ-algebras is a σ-algebra.

6. Suppose X is a metric space, let \mathcal{B}_X be the σ-algebra generated by the open sets of X, we call \mathcal{B}_X the Borel σ-algebra and its elements Borel sets.

7. A countable intersection of open sets is called a G_δ set; a countable union of closed sets is called an F_σ set.

8. We call a collection of subsets of X an elementary family if (i) $\emptyset \in \mathcal{E}$; (ii) if $E, F \in \mathcal{E}$, then $E \cap F \in \mathcal{E}$; and (iii) if $E \in \mathcal{E}$, then E^c is a finite disjoint union of sets in \mathcal{E}.

9. If \mathcal{E} is an elementary family, then the collection of finite disjoint unions of \mathcal{E} is an algebra.

10. Let X be a nonempty subset and \mathcal{M} a σ-algebra of sets of X, we say a function $\mu : \mathcal{M} \to [0, \infty]$ is a measure if (i) $\mu(\emptyset) = 0$; (ii) if $\{E_j\}_{j=1}^\infty$ is a collection of disjoint sets in \mathcal{M}, then $\mu\left(\bigcup_{j=1}^\infty E_j\right) = \sum_{j=1}^\infty \mu(E_j)$. We call the triple (X, \mathcal{M}, μ) a measure space and sets in \mathcal{M} measurable sets.

11. In a measure space (X, \mathcal{M}, μ), we say a measure μ is finite if $\mu(X) < \infty$. We say μ is σ-finite if there exists $\{E_j\}_{j=1}^\infty$ such that $X = \bigcup E_j$ and $\mu(E_j) < \infty$. If for each $E \in \mathcal{M}$ such that $\mu(E) = \infty$, there exists $\emptyset \subsetneq F \subsetneq E$ such that $\mu(F) < \infty$, then we say μ is semifinite.

12. Suppose that (X, \mathcal{M}, μ) is a measure space, then
 (a) if $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$;
 (b) if $\{E_j\}_{j=1}^\infty \subset \mathcal{M}$, then $\mu(\bigcup E_j) \leq \sum \mu(E_j)$;
 (c) if $E_1 \subset E_2 \subset E_3 \subset \cdots$ are measurable, then $\mu(\bigcup E_j) = \lim \mu(E_j)$;
 (d) if $E_1 \supset E_2 \supset E_3 \supset \cdots$ are measurable and $\mu(E_1) < \infty$, then $\mu(\bigcap E_j) = \lim \mu(E_j)$.

13. We say (X, \mathcal{M}, μ) is complete if whenever $E \in \mathcal{M}$ such that $\mu(E) = 0$ and $N \subset E$, we have $N \in \mathcal{M}$.

1Last updated: June 8, 2015
14. Suppose \((X, \mathcal{M}, \mu)\) is a measure space, let \(\mathcal{N} = \{K : K \subset E \text{ with } E \in \mathcal{M} \text{ and } \mu(E) = 0\}\); \(\overline{\mathcal{M}} = \{E \cup F : E \subset \mathcal{M}, F \subset N \text{ for some } N \in \mathcal{N}\}\). There is a unique extension of \(\mathcal{M}\) to \(\overline{\mathcal{M}}\).

15. Let \(X\) be a nonempty set, an outer measure on \(X\) is a function \(\mu^* : \mathcal{P}(X) \to [0, \infty]\) such that (i) \(\mu^*(\emptyset) = 0\); (ii) \(\mu^*(A) \leq \mu^*(B)\) if \(A \subset B\); and (iii) \(\mu^*(\bigcup A_j) \leq \sum \mu^*(A_j)\).

16. Let \(\mathcal{E} \subset \mathcal{P}(X)\) and \(\rho : \mathcal{E} \to [0, \infty]\) be such that (i) \(\emptyset, X \in \mathcal{E}\) and (ii) \(\rho(\emptyset) = 0\). Then the function \(\mu^* : \mathcal{P}(X) \to [0, \infty]\) defined by \(\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \rho(E_j) : A \subset \bigcup_{j=1}^{\infty} E_j \right\}\) is an outer measure.

17. Suppose that \(\mu^*\) is an outer measure on \(X\), we say that a set \(A \subset X\) is \(\mu^*\)-measurable if \(\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)\) for all \(E \subset X\).

18. Suppose that \(\mu^*\) is an outer measure on a nonempty set \(X\). Then the collection \(\mathcal{M}\) of \(\mu^*\)-measurable sets is a \(\sigma\)-algebra and the restriction \(\mu^*|_E\) is a complete measure.

19. Suppose that \(\mathcal{A} \subset \mathcal{P}(X)\) is an algebra, we say \(\mu_0 : \mathcal{A} \to [0, \infty]\) is a premeasure if (i) \(\mu_0(\emptyset) = 0\); and (ii) \(\mu_0(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu_0(A_j)\) whenever disjoint \(\{A_j\} \subset \mathcal{A}\) and \(\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}\).

20. If \(\mathcal{A}\) is an algebra and \(\mu_0\) is a premeasure on \(\mathcal{A}\). Suppose that \(\mu^*\) is the outer measure induced by \(\mu_0 : \mathcal{A} \to [0, \infty]\). Then (i) \(\mu^*|_{\mathcal{A}} = \mu_0\), and (ii) every set in \(\mathcal{A}\) is \(\mu^*\)-measurable.

21. Suppose that \(\mu_0\) is a premeasure on an algebra \(\mathcal{A}\), and \(\mathcal{M}\) is the \(\sigma\)-algebra generated by \(\mathcal{A}\). Let \(\mu^*\) be the outer measure induced by \(\mu_0\), and \(\mu = \mu^*|_{\mathcal{M}}\). If \(\nu\) is a measure on \(\mathcal{M}\) such that \(\nu|_{\mathcal{A}} = \mu|_{\mathcal{A}}\), then \(\nu(E) \leq \mu(E)\) for all \(E \in \mathcal{M}\). If \(\mu(E) < \infty\), then \(\nu(E) = \mu(E)\). If \(\mu\) is \(\sigma\)-finite, then \(\nu = \mu\).

22. Let \(\mathcal{E}\) be the collection of \(h\)-intervals, i.e., sets of the form \((a, b]\) for \(-\infty \leq a < b < \infty\) or \((a, \infty]\) for \(-\infty \leq a \leq b < \infty\) or \((a, \infty)\) for \(-\infty < a < b < \infty\) or \((a, \infty)\) for \(-\infty < a < b < \infty\). Let \(F : \mathbb{R} \to \mathbb{R}\) be increasing and right continuous. Let \(\mathcal{A}\) be the collection of finite disjoint unions of sets in \(\mathcal{E}\). Define \(\mu_0 : \mathcal{A} \to [0, \infty]\) via \(\mu_0(\bigcup (a_j, b_j]) = \sum F(b_j) - F(a_j)\). Then \(\mathcal{A}\) is an algebra and \(\mu_0\) a premeasure on \(\mathcal{A}\). The induced measure is called Lebesgue-Stieltjes measure associated with \(F\).

23. Suppose that \(\mu\) is the Lebesgue measure associated with \(F : \mathbb{R} \to \mathbb{R}\). Then (i) \(\mu\{(a, b]\} = F(b) - F(a]\); (ii) \(\mu((a, b)) = F(b) - F(a)\); (iii) \(\mu([a, b]) = F(b) - F(a)\); (iv) \(\mu((a, b)) = F(b) - F(a)\).

24. If \(E\) is measurable, then \(\mu(E) = \inf \{\sum \mu((a_j, b_j)) : E \subset \bigcup (a_j, b_j)\}\).

25. If \(E\) is measurable, then
\[
\mu(E) = \inf \{\mu(U) : E \subset U \text{ and } U \text{ is open}\} = \sup \{\mu(K) : K \subset E \text{ and } K \text{ is compact}\}
\]

26. If \(E\) is measurable, \(\mu(E) < \infty\) and \(\epsilon > 0\), then there exists a set \(A\) which is a finite union of open intervals such that \(\mu(E \Delta A) < \epsilon\).

27. Lebesgue measure, \(m\), is the Lebesgue-Stieltjes measure associated with \(F(x) = x\). \(m\) is translation invariant and \(m(rE) = |r| \cdot m(E)\).

28. Suppose \((X, \mathcal{M}, \mu)\) and \((Y, \mathcal{N}, \nu)\) are measure spaces. We say \(f : X \to Y\) is \((\mathcal{M}, \mathcal{N})\)-measurable if \(f^{-1}(E) \in \mathcal{M}\) whenever \(E \in \mathcal{N}\).

29. The set \(\{f^{-1}(E) | E \in \mathcal{N}\}\) is a \(\sigma\)-algebra assuming \(\mathcal{N}\) is a \(\sigma\)-algebra.
30. \(f : X \to \mathbb{R} \) (or \(\mathbb{C} \)) is measurable if and only if \(f^{-1}((a, \infty)) \in \mathcal{M} \) for all \(a \in \mathbb{R} \).

31. A function \(f : \mathbb{R} \to \mathbb{R} \) is **Borel measurable** if it is \((B_{\mathbb{R}}, B_{\mathbb{R}})\)-measurable. And it is **Lebesgue measurable** if it is \((\mathcal{L}, B_{\mathbb{R}})\)-measurable, where \(\mathcal{L} \) is Lebesgue \(\sigma \)-algebra, the completion of Borel \(\sigma \)-algebra.

32. If \(f_n : \mathbb{R} \to \mathbb{R} (= \mathbb{R} \cup \{\pm \infty\}) \) is a sequence of measurable functions, then \(\limsup f_n \) and \(\liminf f_n \) are measurable.

33. If \((X, \mathcal{M}, \mu)\) is complete, \(f : X \to \mathbb{R} \) is measurable, and \(g : X \to \mathbb{R} \) is such that \(f(x) = g(x) \) \(\mu \)-a.e., then \(g \) is measurable.

34. Let \((X, \mathcal{M}, \mu)\) be a measure space, we say \(\phi : X \to \mathbb{R} \) is a **simple function** if there exists a collection of disjoint measurable sets \(E_1, E_2, \ldots, E_n \) and real numbers \(a_1, a_2, \ldots, a_n \) such that \(\phi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x) \).

35. Suppose \((X, \mathcal{M}, \mu)\) is a measure space and \(f : X \to [0, \infty] \) is measurable. Then there exists a sequence \(\{\phi_n\} \) of simple functions such that \(0 \leq \phi_1 \leq \phi_2 \leq \cdots \leq f \) and \(\phi_n \to f \) pointwise. If \(f \) is bounded on \(E \in \mathcal{M} \), then \(\sup_{x \in E} |f(x) - \phi_n(x)| \to 0 \) as \(n \to \infty \).

36. Suppose \((X, \mathcal{M}, \mu)\) is a measure space and \(f : X \to \mathbb{C} \) is measurable. Then there exists a sequence \(\{\phi_n\} \) of simple functions such that \(0 \leq |\phi_1| \leq |\phi_2| \leq \cdots \leq |f| \) and \(\phi_n \to f \) pointwise. If \(f \) is bounded on \(E \in \mathcal{M} \), then \(\sup_{x \in E} |f(x) - \phi_n(x)| \to 0 \) as \(n \to \infty \).

37. If \(c \geq 0 \) and \(\phi \) and \(\psi \) are simple, then (i) \(\int \phi = \int c \phi \); (ii) \(\int \phi + \psi = \int \phi + \int \psi \); (iii) If \(\phi \leq \psi \), then \(\int \phi \leq \int \psi \); (iv) The map \(A \to \int_A \phi \equiv \int \phi \chi_A \) is a measure.

38. (Monotone Convergence Theorem) If \(\{f_n\} \) is a sequence of measurable functions in \(L^+ = \{f : X \to [0, \infty] \mid f \text{ is measurable}\} \) and \(0 \leq f_1 \leq f_2 \leq \cdots \leq f \) and \(\lim_{n \to \infty} f_n = f \), then \(\lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n = \int f \).

39. If \(f \in L^+ \), then \(\int f = 0 \) if and only if \(\mu(\{x : f(x) > 0\}) = 0 \).

40. (Fatou’s Lemma) Suppose \(\{f_n\} \subset L^+ \), then \(\int \liminf f_n \leq \liminf \int f_n \).

41. If \(f \in L^+ \) and \(\int f < \infty \), then \(m(\{x : f(x) = \infty\}) = 0 \) and \(\{x : f(x) > 0\} \) is \(\sigma \)-finite.

42. (Dominated Convergence Theorem) If \(\{f_n\} \) is a sequence of measurable functions such that (i) \(\lim f_n \to f \) a.e., and (ii) there exists \(g \in L^1(X) \) with \(|f_n| \leq g \), then \(f \in L^1(X) \) and \(\int f_n \to \int f \).

43. Suppose \(f : X \to \mathbb{C} \) is in \(L^1(X) \), for every \(\epsilon > 0 \), there exists a simple function \(\phi \) such that \(\int |f - \phi| < \epsilon \).

44. Suppose \(\mu \) is a Lebesgue-Stieltjes measure and that \(f : X \to \mathbb{C} \) is in \(L^1(X) \). Then for any \(\epsilon > 0 \), there exists a simple function \(\phi \) of the form \(\phi = \sum_{j=1}^{n} a_j \chi_{E_j} \) with \(\{E_j\} \) open intervals such that \(\int |f - \phi| < \epsilon \).

45. Suppose \(f : X \times [a, b] \to \mathbb{C} \) and \(f(\cdot, t) \) is measurable for each \(t \). Suppose also that \(f(x, \cdot) \) is continuous for each \(x \), and there exists \(g \in L^1(X) \) such that \(|f(x, t)| < g(x) \) for all \(x \) and \(t \), then \(F(t) = \int f(x, t)dx \) is continuous.
46. Suppose \(f : X \times [a,b] \to \mathbb{C} \) and \(f(\cdot, t) \) is integrable for each \(t \). Suppose also that \(\frac{\partial f}{\partial t} \) exists for each \(x \) and that there exists \(g \in L^1(X) \) such that \(\left| \frac{\partial f}{\partial t}(x,t) \right| < g(x) \) for all \(x \) and \(t \), then
\[
\frac{d}{dt} \int f(x,t)dx = \int \frac{\partial f}{\partial t}(x,t)dx.
\]

47. We say a sequence \(\{f_n\} \) of measurable complex-valued functions on \((X, \mathcal{M}, \mu)\) is **Cauchy in measure** if for every \(\epsilon > 0 \), \(\mu\left(\left\{ x : |f_n(x) - f_m(x)| \geq \epsilon \right\} \right) \to 0 \) as \(m, n \to \infty \), and that \(\{f_n\} \) **converges in measure** to \(f \) if for every \(\epsilon > 0 \), \(\mu\left(\left\{ x : |f_n(x) - f(x)| \geq \epsilon \right\} \right) \to 0 \) as \(n \to \infty \).

48. If \(f_n \to f \) in \(L^1(X) \), then \(f_n \to f \) in measure.

49. If \(f_n \to f \) in measure, then \(\{f_n\} \) is Cauchy in measure.

50. If \(\{f_n\} \) is Cauchy in measure, then there exists a subsequence \(\{f_{n_j}\} \) of \(\{f_n\} \) and a measurable function \(f \) such that \(f_{n_j} \to f \) a.e..

51. (Egoroff’s Theorem) Suppose that \(\mu(X) < \infty \), and \(f_1, f_2, \cdots \) and \(f \) are measurable complex-valued functions on \(X \) such that \(f_n \to f \) a.e.. Then for every \(\epsilon > 0 \), there exists \(E \subset X \) such that \(\mu(E) < \epsilon \) and \(f_n \to f \) uniformly on \(E^c \).

52. (Lusin’s Theorem) Suppose \(f : [a,b] \to \mathbb{C} \) is measurable. Then for all \(\epsilon > 0 \), there exists a set \(E \subset [a,b] \) such that \(m([a,b] \setminus E) < \epsilon \) and \(f|_E \) is continuous.

53. Let \((X, \mathcal{M}, \mu) \) and \((Y, \mathcal{N}, \nu) \) be measure spaces. We have product \(\sigma \)-algebra \(\mathcal{M} \otimes \mathcal{N} \subset \mathcal{P}(X \times Y) \) and product \(\mu \times \nu : \mathcal{M} \otimes \mathcal{N} \to [0, \infty] \) with \(\mu \times \nu(A \times B) = \mu(A)\nu(B) \) for all \(A \in \mathcal{M} \) and \(B \in \mathcal{N} \). We call a set of the form \(A \times B \) with \(A \in \mathcal{M} \) and \(B \in \mathcal{N} \) a **(measurable) rectangle**. If \(E \subset X \times Y \), for \(x \in X \) and \(y \in Y \) we define the \(x \)-**section** \(E_x \) and the \(y \)-**section** \(E_y \) of \(E \) by \(E_x = \{ y \in Y : (x, y) \in E \} \), and \(E_y = \{ x \in X : (x, y) \in E \} \).

54. \(B_{\mathbb{R}^n} \simeq B_{\mathbb{R}} \otimes \cdots \otimes B_{\mathbb{R}} = \mathcal{L} \otimes \cdots \otimes \mathcal{L} = \mathcal{L}^p \)

55. Suppose \(E \in \mathcal{M} \otimes \mathcal{N} \) and \(f : X \times Y \to \mathbb{C} \) is measurable, then \(E_x \in \mathcal{N} \) for all \(x \), and \(E^y \in \mathcal{M} \) for all \(y \).

56. A **monotone class** on a space \(X \) is a subset \(\mathcal{C} \) of \(\mathcal{P}(X) \) that is closed under countable increasing unions and countable decreasing intersections. \(\sigma \)-algebra is a monotone class, so for any \(\mathcal{E} \subset \mathcal{P}(X) \) there is a unique smallest monotone class containing \(\mathcal{E} \), called monotone class \(\mathcal{C} \) generated by \(\mathcal{E} \).

57. (The Monotone Class Lemma) If \(\mathcal{A} \) is an algebra of subsets of \(X \), then the monotone class \(\mathcal{C} \) generated by \(\mathcal{A} \) coincides with the \(\sigma \)-algebra \(\mathcal{M} \) generated by \(\mathcal{A} \).

58. (The Fubini-Tonelli Theorem) Suppose that \((X, \mathcal{M}, \mu) \) and \((Y, \mathcal{N}, \nu) \) are \(\sigma \)-finite measure spaces.

(a) (Tonelli) If \(f \in L^+(X \times Y) \), then the functions \(g(x) = \int f_x d\nu \) and \(h(y) = \int f^y d\mu \) are in \(L^+(X) \) and \(L^+(Y) \), respectively, and \(\int f d(\mu \times \nu) = \int \int f(x,y) d\nu(y) d\mu(x) = \int \int f(x,y) d\mu(x) d\nu(y) \).

(b) (Fubini) If \(f \in L^1(\mu \times \nu) \), then \(f_x \in L^1(\nu) \) for a.e. \(x \in X \), \(f^y \in L^1(\mu) \) for a.e. \(y \in Y \), the a.e.-defined functions \(g(x) = \int f_x d\nu \) and \(h(x) = \int f^x d\mu \) are in \(L^1(\mu) \) and \(L^1(\nu) \), respectively, and \(\int f d(\mu \times \nu) = \int \int f(x,y) d\nu(y) d\mu(x) = \int \int f(x,y) d\mu(x) d\nu(y) \) holds.
59. The Lebesgue measure on \(\mathbb{R}^n \) is translation invariant.

60. Suppose \(E \subset \mathbb{R}^n \) is Lebesgue measurable, then (i) \(m(E) = \sup \{ m(K) | K \subset E \text{ and } K \text{ is compact} \} \); (ii) \(m(E) = \inf \{ m(U) | E \subset U \text{ and } U \text{ is open} \} \); (iii) If \(m(E) < \infty \), then for all \(\epsilon > 0 \), there exists a finite disjoint collection \(\{ R_j \}_{i=1}^N \) of sets whose sides are open intervals such that \(m(E \triangle (\cup R_j)) < \epsilon \).

61. Suppose that \(T : \mathbb{R}^n \to \mathbb{R}^n \) is an invertible linear mapping, if \(f : \mathbb{R}^n \to \mathbb{R}^n \) is measurable, then \(f \circ T \) is measurable. If \(f \geq 0 \) or \(f \in L^1(\mathbb{R}^n) \), then \(\int_{\mathbb{R}^n} f(x) = |\det T| \int_{\mathbb{R}^n} f(T(x))dx \).

62. Suppose that \(\Omega \subset \mathbb{R}^n \) is open and that \(T : \Omega \to \mathbb{R}^n \) is 1-1 and continuously differentiable. If \(f : \mathbb{R}^n \to \mathbb{R} \) is Lebesgue measurable, then \(f \circ T : \Omega \mathbb{R} \) is as well. If \(f \geq 0 \) or \(f \in L^1(\mathbb{R}^n) \), then \(\int_{T(\Omega)} f = \int_\Omega f(T(x))|dT(x)|dx \).

63. A signed measure on \((X, \mathcal{M})\) is a function \(\nu : \mathcal{M} \to [\mathbb{R}, \mathbb{R}] \) such that (i) \(\nu(\varnothing) = 0 \), (ii) \(\nu \) assumes at most one of the values \(\pm \infty \), and (iii) if \(\{E_j\} \) is a sequence of disjoint sets in \(\mathcal{M} \), then \(\nu(\cup E_j) = \sum \nu(E_j) \) where the latter sum converges absolutely if \(\nu(\cup E_j) \) is finite.

64. If \(\nu \) is a signed measure on \((X, \mathcal{M})\), a set \(E \in \mathcal{M} \) is called positive (resp. negative, null) for \(\nu \) if \(\nu(F) \geq 0 \) (resp. \(\nu(F) \leq 0, \nu(F) = 0 \)) for all \(F \in \mathcal{M} \) such that \(F \subset E \).

65. (Hahn Decomposition Theorem) If \(\nu \) is a signed measure on \((X, \mathcal{M})\), there exist a positive set \(P \) and a negative set \(N \) for \(\nu \) such that \(P \cup N = X \) and \(P \cap N = \varnothing \). If \(P', N' \) is another such pair, then \(P \triangle P' = (N \triangle N') \) is null for \(\nu \).

66. Two signed measures \(\mu \) and \(\nu \) on \((X, \mathcal{M})\) are mutually singular, if there exist \(E, F \in \mathcal{M} \) such that \(E \cap F = \varnothing, E \cup F = X, E \) is null for \(\mu \), and \(F \) is null for \(\nu \), denoted by \(\mu \perp \nu \).

67. (Jordan Decomposition Theorem) If \(\nu \) is a signed measure, there exist unique positive measures \(\nu^+ \) and \(\nu^- \) such that \(\nu = \nu^+ - \nu^- \) and \(\nu^+ \perp \nu^- \).

68. Suppose \(\nu \) is a signed measure and \(\mu \) is a positive measure on \((X, \mathcal{M})\). We say that \(\nu \) is absolutely continuous with respect to \(\mu \) and write \(\nu \ll \mu \) if \(\nu(E) = 0 \) for every \(E \in \mathcal{M} \) for which \(\mu(E) = 0 \).

69. Let \(\nu \) be a finite signed measure and \(\mu \) a positive measure on \((X, \mathcal{M})\). Then \(\nu \ll \mu \) if and only if for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|\nu(E)| < \epsilon \) whenever \(\mu(E) < \delta \).

70. If \(f \in L^1(\mu) \), for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|\int_E f d\mu| < \epsilon \) whenever \(\mu(E) < \delta \).

71. Suppose that \(\nu \) and \(\mu \) are finite measures on \((X, \mathcal{M})\), either \(\nu \perp \mu \), or there exists \(\epsilon > 0 \) and \(E \in \mathcal{M} \) such that \(\mu(E) > 0 \) and \(\nu \geq \epsilon \mu \) on \(E \) (that is, \(E \) is a positive set for \(\nu - \epsilon \mu \)).

72. (Lebesgue-Radon-Nikodym Theorem) Let \(\nu \) be a \(\sigma \)-finite signed measure and \(\mu \) a \(\sigma \)-finite positive measure on \((X, \mathcal{M})\). There exist unique \(\sigma \)-finite signed measures \(\lambda, \rho \) on \((X, \mathcal{M})\) such that \(\lambda \perp \mu, \rho \ll \mu \), and \(\nu = \lambda + \rho \). Moreover, there is an extended \(\mu \)-integrable function \(f : X \to \mathbb{R} \) such that \(d\rho = fd\mu \), and any two such functions are equal \(\mu \text{-a.e.} \).

73. We say \(f : \mathbb{R}^n \to \mathbb{R} \) is locally integrable if \(\int_K |f| < \infty \), where \(K \) is a bounded measurable set. We call the set of such functions \(L^1_{loc}(\mathbb{R}^n) \).

74. We denote \(A_r[f](x) := \frac{1}{m(B_r(x))} \int_{B_r(x)} f(u)du \), then \(A_r[f] \) is continuous in \(r \) and \(x \).
75. The **Hardy-Littlewood maximal function** \(H[f] \) is defined for \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \) via \(H[f](x) = \sup_{r>0} A_r([f])(x) \).

76. If \(H[f] \in L^1 \), then \(f = 0 \) a.e.

77. Suppose that \(\mathcal{C} \) is a collection of open balls in \(\mathbb{R}^n \) and let \(U = \bigcup_{B \in \mathcal{C}} B \). If \(c < mU \), then there exists disjoint balls \(B_1, B_2, \ldots, B_k \) in \(\mathcal{C} \) such that \(\sum_{j=1}^k m(B_j) > 3^{-n}c \).

78. (The Maximal Theorem) There is a constant \(C > 0 \) such that for all \(f \in L^1 \) and all \(\alpha > 0 \),
\[
m(\{x: H[f](x) > \alpha \}) \leq \frac{C \int |f(x)| dx}{\alpha}.
\]

79. If \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), then \(\lim_{r \to 0} A_r[f](x) = f(x) \) for almost all \(x \in \mathbb{R}^n \).

80. If \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), then we call the set \(L_f = \left\{ x: \lim_{r \to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - f(y)| dy = 0 \right\} \) the **Lebesgue set** of \(f \).

81. We say a collection \(\{E_r\}_{r>0} \) of sets **shrinks nicely** to \(x \) if (i) \(E_r \subset B_r(x) \) for all \(r > 0 \), and (ii) there exists \(\alpha > 0 \) such that \(m(E_r) > \alpha m(B_r(x)) \) for all \(r > 0 \).

82. If \(x \in L_f \) and \(\{E_r\}_{r>0} \) shrinks nicely to \(x \), then \(\lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r} f(y) dy = f(x) \).

83. Suppose \(F: \mathbb{R} \to \mathbb{R} \) is increasing and that \(G \) is defined by \(G(x) = F(x+) = \lim_{y \to x^+} F(y) \), then (i) the set of discontinuities of \(F \) is countable, and (ii) \(F \) and \(G \) are differentiable almost everywhere and \(F' = G' \) almost everywhere.

84. We say a signed or complex measure \(\nu \) on \(\mathbb{R}^n \) is **regular** if (i) \(\nu(K) < \infty \) whenever \(K \) is compact, and (ii) \(\nu(E) = \inf\{\nu(U) | E \subset U, U \text{ open}\} \).

85. If \(\nu \perp m \) and \(\lambda \) is regular, then \(\lim_{r \to 0} \frac{\lambda(E_r)}{m(E_r)} = 0 \) whenever \(\{E_r\} \) shrinks nicely to \(x \).

86. If \(F: \mathbb{R} \to \mathbb{C} \) and \(x \in \mathbb{R} \), we define \(T[F](x) = \sup \left\{ \sum_{j=1}^n |F(x_j - x_{j-1})|: n \in \mathbb{N}, -\infty < x_0 < \cdots < x_n = x \right\} \) to be the **total variation function** of \(F \). If \(T[f](\infty) = \lim T[f](x) \) is finite, we say \(F \) is of **bounded variation** on \(\mathbb{R} \). We denote the space of all such \(F \) by \(BV \). **Normalized bounded variation** functions form Banach space \(NBV = \{ F \in BV | F \text{ is right continuous and } F(-\infty) = 0 \} \).

87. If \(F \in BV \) is real-valued, then \(T_F + F \) and \(T_F - F \) are increasing.

88. If \(F: \mathbb{R} \to \mathbb{R} \), then \(F \in BV \) if and only if \(F \) is the difference of two bounded increasing functions.

89. If \(F \in BV \), then \(F(-\infty) = 0 \). If \(F \) is also right continuous, then so is \(T_F \).

90. If \(-\infty < a < b < \infty \) and \(F: [a, b] \to \mathbb{C} \), the following are equivalent:

 (a) \(F \) is absolute continuous on \([a, b]\).

 (b) \(F(x) - F(a) = \int_a^x f(t) dt \) for some \(f \in L^1([a, b], m) \).

 (c) \(F \) is differentiable almost everywhere, on \([a, b] \), \(F' \in L^1([a, b], m) \), and \(F(x) - F(a) = \int_a^x F'(t) dt \).