Show all work and label all answers. Also, don’t forget to check your answers.

For the problems 1 through 4, let \(f(x, y) = \sin(2x + y^3) - e^{x-y} \)

1. (3 points) Find \(f(1, 0) \).

2. (3 points) Find \(\frac{\partial f}{\partial y} \).

3. (4 points) Find \(f_x(-1, 2) \).

4. (3 points) Find \(f_{xy}(x, y) \).

5. (2 points) Let \(g(t, u, v, w) \) be a function. What is the largest set that could be the domain of \(g \)?
6. (4 points) Show that \(\lim_{(x,y) \to (2,-1)} (3x^2y + 5xy^2) \) exists, and evaluate it.

7. (3 points) If the limit of a function \(h(x, y) \) as \((x, y) \to (0,0)\) along the line \(x = 0 \) is 2, and the limit along the line \(y = 0 \) is also 2, then what (if anything) can we conclude about \(h \)?

8. (4 points) Compute
\[
\lim_{(x,y) \to (0,0)} \frac{6x^2 + 3y^2}{2x^2 + 3y^2}
\]
along the \(x \)-axis and \(y \)-axis. What can you conclude?

9. (4 points) Let \(w = f(x, y) = x^2e^{3y} \) with \(x(t) = 3e^t \) and \(y(t) = t^4 \). Find the derivative \(\frac{dw}{dt} \) when \(t = 0 \).
10. (3 points) Define continuity of a function \(f(x, y) \) at a point \((x_0, y_0)\).

11. (5 points) Find the linearization of \(h(x, y) = e^{x^2+2y} \) at \((0, 0)\) and use it to approximate \(h(0.1, 0.1) \)

12. (2 points) True or False? If a function \(f(x, y) \) is differentiable and has a horizontal (parallel to \(xy\)-plane) tangent plane at \((x_0, y_0)\), then it has a maximum or minimum value there.

13. (2 points) True or False? If a function \(f(x, y) \) is differentiable and has a maximum or minimum value at \((x_0, y_0)\), then it has a horizontal tangent plane there.

14. (2 points) True or False? Given a function \(f(x, y) \), if \(f_x(x_0, y_0) \) and \(f_y(x_0, y_0) \) exist, then \(f \) is differentiable at \((x_0, y_0)\).

15. (3 points) What information does the direction of the gradient give?
For the next three problems, use \(g(x, y) = 2x^2 - 2y^2 - x^4 \)

16. (6 points) Find all critical points of \(g \) and determine if each point is a relative maximum, relative minimum, or a saddle point.

17. (4 points) Find \(\nabla g(-2, 3) \), the gradient of \(g \) at \((-2, 3)\).

18. (4 points) Find the directional derivative of \(g \) at \((-2, 3)\) in the direction \(\begin{bmatrix} 3 \\ 4 \end{bmatrix} \).
For the next four questions, use the following system of differential equations

\[
\frac{dx_1}{dt} = -4x_1 + 3x_2
\]

\[
\frac{dx_2}{dt} = -5x_2
\]

19. (3 points) Write the system in matrix form.

20. (8 points) Solve the differential equations with the initial values \(x_1(0) = -2 \) and \(x_2(0) = 2 \)
21. (3 points) Analyze the stability of the equilibrium (0, 0)

22. (4 points) Draw a compartment model for the system.

23. (5 points) Suppose two species have a community matrix $\begin{bmatrix} -3 & -5 \\ 0 & -4 \end{bmatrix}$. Describe the relationship between species 1 and species 2. Is the equilibrium associated with this matrix stable?
24. (6 points) Following the Lotka-Volterra model, we have a system for two species:

\[
\frac{dN_1}{dt} = 3N_1 \left(1 - \frac{N_1}{12} - \frac{2N_2}{12} \right)
\]

\[
\frac{dN_2}{dt} = 2N_2 \left(1 - \frac{N_2}{15} - \frac{5N_1}{15} \right)
\]

To save you computation, one of the equilibria is at (10, 10). What happens to these two species over time?
Bonus Questions

25. What is interesting about the answer to problem 16.

26. Who played the main protagonist in the movie *Equilibrium*?

27. Describe a relationship between two specific species which might yield the community matrix from problem 23. Absurdity, fiction, and illustrations highly encouraged.