A Dynamic Monte Carlo Algorithm for Sampling Grid Diagrams of Knots

Shawn Witte¹, Reuben Brasher², and Mariel Vazquez¹,³

¹UC Davis Mathematics, ²Microsoft, ³UC Davis Microbiology and Molecular Genetics

Motivation

A knot is chiral if it is not isotopic to its mirror image. For example, the following trefoils are not isotopic.

One feature that changes in a mirror image of a knot is a value called projected writhe. Projected writhe is the sum over the crossings of a planar projection of a knot using the following convention: \(\check{1} = -1 \), \(\check{3} = +1 \).

This yields a projected writhe of +3 for the trefoil on the left and −3 for the trefoil on the right. Projected writhe is not a topological invariant, however.

Proposition 1

If \(w(D) \) is the writhe of a knot diagram \(D \), and \(D^* \) is its mirror image, it is always true that \(w(D) = -w(D^*) \).

What this gives is that if most of the diagrams of a knot have positive projected writhe, then most of the diagrams of its mirror have negative projected writhe. To formalize this notion into a classification of chiral knots, we turn to grids and a modification of conjectures from [3]:

Theorem 1

Every knot can be represented in a grid diagram.

Theorem 2

If \(g \) and \(g' \) are two grid diagrams of the same knot, then there exists a finite sequence of “Cromwell Moves” which takes \(g \) to \(g' \).

Purpose of the Algorithm

For an initial test of the conjectures, we seek significant numerical results. The algorithm is meant to sample random grids of a specific knot type. This algorithm mimics the BFACF algorithm (detailed in [2]), which is another Monte Carlo algorithm used to sample knots represented in \(\mathbb{Z}^2 \). The benefit of using grids and a grid algorithm is that projected writhe behaves in predictable ways under Cromwell moves, whereas measures of writhe are less predictable under BFACF moves.

Conjecture 1

The average of the writhes of all \(n \times n \) grids of a specific knot type is contained in a finite interval \((a, b)\).

Conjecture 2

If a knot is chiral, then the interval \((a, b)\) in the first conjecture does not contain 0.

Grid Diagrams

A grid representation of a knot is an \(n \times n \) lattice where each row and each column has exactly one ‘O’ and one ‘X’, where the entries in every row and column are connected so the vertical lines are over-crossings and the horizontal lines are under-crossings. The following is an example of a trefoil in a 5 x 5 grid.

Cromwell Moves

There are four “Cromwell” moves:

1. Translation: Moving each element of a grid cyclically up/down/left/right:

2. Commutation: Swapping two adjacent rows or columns of a grid:

3. Stabilization: Replacing an entry in the grid with a 2 x 2 subgrid with three entries:

Note that stabilization increases the grid size and destabilization decreases it.

Distribution and Probabilities

The following is a proposed Monte Carlo algorithm for sampling random grids of a specific knot type to numerically test the conjectures:

1. Start with any initial grid \(g_0 \) with knot type \(K \), let \(t = 0 \), and set sampling frequency \(n \).
2. Choose a vertex of \(g_t \) with knot type \(K \) and uniform probability.
3. Choose a non-translation cromwell move \(\sigma \) with probability \(p(\sigma) \).
4. If \(\sigma \) is a valid Cromwell move, then set \(g_{t+1} = \sigma(g_t) \), else \(g_{t+1} = g_t \).
5. Increase \(t \) by one.
6. If \(t \) is a multiple of \(n \), then choose two random integers \(0 \leq i, j \leq |g_t| \), and sample \(g_t \) translated \(i \) units horizontally and \(j \) units vertically.
7. Return to step 2.

Theorem 2 considers the grid size of a knot with the probability \(\pi(g) \) of \(g \). So we may choose the following distribution:

\[
\pi(g) = \frac{1}{2^{|G(z)|}} \left(\frac{|G(z)|}{n!(n-1)!} \right)^{|G(z)|}
\]

with

\[
N(z) = \sum_{n=0}^{\infty} \frac{2^{zn}|G_n(K)|}{n!(n-1)!}
\]

To satisfy detailed balance, guaranteeing convergence to this distribution, we choose the probabilities from 3 to satisfy

\[
p(+1) = \frac{2}{(|G(z)|+1)}p(-1), \quad p(+1) \leq \frac{1}{4}, \quad p(-1) \geq \frac{1}{4} + \frac{2p(0)}{3}.
\]

Optimal choices for these probabilities are not yet known.

References

Acknowledgements

- Funding from NSF DMS 1057284 grant
- UC Davis department of mathematics