
MATH 125B, HW1, Solution

5.1.1(b) Since f(x) = 3− x2 is decreasing on the interval [0, 2], then

U(f, P ) = f(
1

2
)(

1

2
− 0) + f(1)(1− 1

2
) + f(2)(2− 1);

L(f, P ) = f(0)(
1

2
− 0) + f(

1

2
)(1− 1

2
) + f(1)(2− 1).

Graph and use geometric interpretation of integrals to explain.

5.1.3 Note that limn→∞
1
n = 0. For any ε > 0, there exist N0 ∈ N, for all n > N0, we have 1

n <
ε
2 . Split

the set E into two parts, EN0 =
{

1
n , n > N0

}
, and E − EN0 =

{
1
n , 1 ≤ n ≤ N0

}
. All points in EN0

belong to the interval (0, ε2 ). Define the partition as

P =

{
0,

1

N0 + 1
,

1

N0
− ε

4N0
,

1

N0
+

ε

4N0
, · · · , 1

2
− ε

4N0
,

1

2
+

ε

4N0
, 1− ε

2N0

}
.

Then

U(f, P )− L(f, P ) <
ε

2
+N0 ×

ε

2N0
= ε.

Remark: The partition P must be a FINITE set.

5.1.5
∫ c
a
f(x)dx = 0 for all c ∈ [a, b] implies that for all [c, d] ⊂ [a, b], we have

∫ d
c
f(x)dx = 0. Assume

that there exists some point x0 ∈ (a, b), with f(x0) 6= 0. Without loss of generality, suppose
f(x0) = L > 0. Since f is continuous at x = x0, for any ε > 0, there exists δε > 0, for all
0 < |x−x0| < δ, |f(x)−L| < ε. Then on the interval (x0−δε, x0+δε)−x0, we have L−ε < f(x) < L+ε.
Choose ε = L

2 > 0, then

0 <
L

2
< f(x) <

3L

2
.

Choose c = x0−δL
2
, d = x0+δL

2
, then (L)

∫ d
c
f(x)dx > L

2 (d−c) > 0. Then we find the contradiction,

thus f(x) = 0 for all x ∈ (a, b). Similarly, we can prove f(a) 6= 0 and f(b) 6= 0.
Remark: If x0 =a or b, need to be more careful, the value of x cannot be out of [a,b].

5.1.9 Since f : [a, b]→ [c, d], with 0 < c < d, then for any x, y ∈ [a, b],√
f(x)−

√
f(y) =

f(x)− f(y)√
f(x) +

√
f(y)

.

Note 0 < c ≤ f(x), f(y) ≤ d, then if f(x) > f(y),√
f(x)−

√
f(y) ≤ f(x)− f(y)

2
√
c

.

Since f is integrable on [a,b], this implies that for any ε > 0, there exists a partition P = {a = x0, x1, · · · , xn = b, },
such that U(f, P )− L(f, P ) =

∑n
k=1(Mk(f)−mk(f))∆k ≤ 2

√
cε. Thus

U(
√
f, P )− L(

√
f, P ) =

n∑
k=1

(Mk(
√
f)−mk(

√
f))∆k ≤

n∑
k=1

(Mk(f)−mk(f))

2
√
c

∆k ≤ ε.

Therefore,
√
f is integrable.

5.1.10 Use the definition of Riemann Integrable and note that for all partitions, U(f, P ) > L(f, P ).
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5.2.2 (a)Since n is even, xn ≥ 0, and f is continuous function, by First Mean Value Theorem for Integrals,
there exist c ∈ [a, b], such that

0 =

∫ b

a

f(x)xndx = f(c)

∫ b

a

xndx.

Since [a,b] is non-degenerate, then
∫ b
a
xndx is positive, thus f(c) = 0.

(b)We can find a counterexample by choosing f(x) = 1, a = −1, b = 1, n = 3.

5.2.5 Since f is integrable on [0,1], f must be bounded, say there exist M, such that f(x) ≤ M . By
comparison theorem of integrals,∫ 1

nβ

0

f(x)dx ≤
∫ 1

nβ

0

Mdx =
M

nβ
.

Therefore, nα
∫ 1

nβ

0 f(x)dx ≤ M
nβ−α

→ 0 as β > α.

5.2.8 (a)Since M = supx∈[a,b]|f(x)|, then for all x ∈ [a, b], we have |f(x)| ≤ M , thus |f(x)|p ≤ Mp. By
comparison theorem for integrals, we can prove that∫ b

a

|f(x)|pdx ≤Mp(b− a).

Also, for any ε > 0, there exists x0 ∈ [a, b], such that,

|f(x0)| ≥M − ε

2
.

Since f is continuous at x = x0, so is |f |. For any ε > 0, there exists δ > 0, for all 0 < |x− x0| < δ,

||f(x)| − |f(x0)|| ≤ ε

2
.

Then on the interval (x0 − δ, x0 + δ)− x0,

|f(x)| ≥ |f(x0)| − ε

2
≥M − ε.

By using comparison theorem for integrals, I = [x0 − δ, x0 + δ] ⊂ [a, b], and |f |p is non-negative,∫ b

a

|f(x)|pdx ≥
∫
I

(M − ε)pdx = (M − ε)p|I|.

(b) Since

(M − ε)p|I| ≤
∫ b

a

|f(x)|pdx ≤Mp(b− a),

(M − ε)|I|
1
p ≤

(∫ b

a

|f(x)|pdx

) 1
p

≤M(b− a)
1
p ,

then

lim inf
p

(∫ b

a

|f(x)|pdx

) 1
p

≥M − ε,

and

lim sup
p

(∫ b

a

|f(x)|pdx

) 1
p

≤M.

Therefore,

lim
p→∞

(∫ b

a

|f(x)|pdx

) 1
p

= M.
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