
MATH 125B, HW2, Solution

5.3.2(a) Change the variable t =
√
x, and dx = 2tdt. then∫ 4

1

f(
√
x)dx =

∫ 2

1

f(t)2tdt = 2

∫ 2

1

f(t)tdt = 12

5.3.2(b) Change the variable t = 1
x2 , and dx = − 1

2 t
− 3

2 dt. then∫ 1

√
2

2

f(
1

x2
)dx =

∫ 1

2

f(t)

(
−1

2
t−

3
2

)
dt =

1

2

∫ 2

1

f(t)t−
3
2 dt.

Since t ≥ 1,
∫ 2

1
f(x)dx = 5, then

1

2

∫ 2

1

f(t)t−
3
2 dt ≤ 1

2

∫ 2

1

f(t)dt =
5

2
.

5.3.5 Assume F ∈ C1[a, b]. Define F ′ = f and f is continous. By the First Mean Theorem for Integrals,
choose g(x) = 1, since f is continous on [a, b], then there exists an x0 ∈ [a, b], such that∫ b

a

f(x)dx = f(x0)(b− a).

By the Fundamental Theorem of Caculus, we have

F (b)− F (a) = F ′(x0)(b− a).

5.3.6 Define the function

F (x) = α

∫ x

a

f(t)dt+ β

∫ b

x

f(t)dt = 0

Then by Fundamental Theorem of Caculus, for all x ∈ [a, b],

F ′(x) = αf(x)− βf(x) = (α− β)f(x) = 0.

Since α 6= β, then f(x) = 0 for all x ∈ [a, b].

5.3.9 Define G(x) = xf(x), then G′(x) = f(x) + xf ′(x). Then by Fundamental Theorem of Caculus, we
have ∫ b

a

G′(x)dx = G(b)−G(a),∫ b

a

f(x)dx+

∫ b

a

xf ′(x)dx = bf(b)− af(a).

Change the variable f(x) = t, x = f−1(t), f ′(x)dx = dt, then∫ b

a

xf ′(x)dx =

∫ f(b)

f(a)

f−1(t)dt.

5.4.0 (a) False. To use comparison theorem for improper integrals, we need f to be locally integrable.

(b) True. Since f, g are contiuous, and g is never zero on [a, b], then f
g is continuous on [a, b], thus

locally integrable. Since |g| are contiuous and is never zero on [a, b], there exist 0 < c < C, such that
c ≤ |g(x)| ≤ C.Thus,

|f
g
| ≤ |f |

c
.
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Then using Comparison Theorem for Improper Integrals, we can show that f
g is absolute integrable.

(c) True. f is continuous implies that
√
f is also continuous, thus locally integrable. Since we have the

inequality that
√
f ≤ f+100, by using Comparison Theorem for Improper Integrals, we can prove it.

(d) True. max{f, g} = |f−g|+f+g
2 , and min{f, g} = −|f−g|+f+g

2 , thus locally integrable. |min{f, g}| ≤
|f |, and |max{f, g}| ≤ |f |+ |g|.

5.4.3 (a) For p > 1,

| sinx
xp
| ≤ 1

xp
.

By using Comparison Theorem for Improper Integrals, sinxxp is absolute integrable and thus improper
integrable.
For 0 < p ≤ 1, using integration by parts,∫ ∞

1

sinx

xp
dx = −

∫ ∞
1

1

xp
d cosx = −cosx

xp
|∞1 +

∫ ∞
1

cosxd
1

xp

= cos 1− lim
x→∞

cosx

xp
− p

∫ ∞
1

cosx

xp+1
dx.

Since p+ 1 > 1, then | cos xxp+1 | is improper integrable on [1,∞]. And limx→∞
cos x
xp = 0. Therefore, for

all p > 0, sin x
xp is improper integrable on [1,∞].

(b) Using integration by parts,∫ ∞
e

cosx

logp x
dx =

∫ ∞
e

1

logp x
d(sinx) =

sinx

logp x
|∞e + p

∫ ∞
e

sinx

x logp+1 x
dx

= lim
x→∞

sinx

logp x
− sin e+ p

∫ ∞
e

sinx

x logp+1 x
dx.

Since p > 0, limx→∞
sin x
logp x = 0. Also,

| sinx

x logp+1 x
| ≤ 1

x logp+1 x
.

For the integral above, change the variable log x = u, then∫ ∞
e

1

x logp+1 x
dx = lim

b→∞

∫ b

e

1

x logp+1 x
dx = lim

b→∞

∫ log b

1

1

up+1
du =

∫ ∞
1

1

up+1
du.

Since p+ 1 > 1, cos x
logp x is improper integrable for p > 0.

5.4.5 Choose f(x) = g(x) = 1√
x

on the interval (0, 1).

5.4.8 Change the variable t = xn, dx = 1
n t

1
n−1dt,∫ ∞

1

f(xn)dx = lim
b→∞

∫ b

1

f(xn)dx = lim
b→∞

∫ bn

1

f(t)
1

n
t

1
n−1dt =

1

n

∫ ∞
1

f(t)t
1
n−1dt.

Since t ≤ 1,

lim
n→∞

∫ ∞
1

f(xn)dx ≤ lim
n→∞

1

n

∫ ∞
1

f(t)dt.

Since f is absolute integrable on [1,∞], then
∫∞
1
f(xn)dx <∞, therefore the limit goes to 0.

Extra (a) By Intermediate Value Theorem for Derivatives, for any x 6= y, the exists a c ∈ (x, y), such that

sin(x)− sin(y)

x− y
= cos(c),

thus

| sin(x)− sin(y)| ≤ |x− y|.
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Thus
| sin(f(x))− sin(f(y))| ≤ |f(x)− f(y)|. (1)

Since f is integrable on the interval [a, b], then for all ε > 0, there exsit a parition P = {a =
x0, x1, · · · , xn = b}, such that ∑

k

(Mk(f)−mk(f)) ∆k <
ε

2
.

For any ε > 0, there exists ck, dk ∈ [xk−1, xk], such that

sin(f(ck)) ≥Mk(sin(f))− ε

4(b− a)
,

sin(f(dk)) ≤ mk(sin(f)) +
ε

4(b− a)
.

Thus

Mk(sin(f))−mk(sin(f)) ≤ sin(f(ck))−sin(f(dk))+
ε

2(b− a)
≤ f(ck)−f(dk)+

ε

2(b− a)
≤Mk(f)−mk(f)+

ε

2(b− a)
.

Therefore, ∑
k

(Mk(sin(f))−mk(sin(f))) ∆k ≤
ε

2
+ (b− a)× ε

2(b− a)
= ε.

(b) We could find a counterexample f(x) = x, a = 0, b = π
2 . Since tanx is not bounded on [0, π2 ],

then it’s not integrable.
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