MAT 125B Second Midterm Exam

Last Name (PRINT): _____

First Name (PRINT): _____

Student ID #: _____

Instructions:

- 1. Do not open your test until you are told to begin.
- 2. Use a pen to print your name in the spaces above.
- 3. No notes, books, calculators, or any other electronic devices allowed.
- 4. Show all your work. Unsupported answers will receive NO CREDIT.
- 5. You are expected to do your \underline{own} work.

#1	#2	#3	#4	TOTAL

1. Transform the Laplacian $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ into polar coordinates (i.e. consider the substitution $x = r \cos \theta$, $y = r \sin \theta$).

2. Let $f(x,y) = \frac{x^3 - xy^2}{x^2 + y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Show that f is continuous and has first-order partial derivatives on \mathbb{R}^2 , but is not differentiable at (0,0).

3. Suppose $f, g: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}$. Prove that if f and g are differentiable at $x \in \mathbb{R}^n$, then so too are f + g and af.

4. Prove or disprove the following statement:

Let the Jacobian determinant of a mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(u, v) = (x, y), is never zero (i.e. it does not vanish for all $(u, v) \in \mathbb{R}^2$). Then T must be one-to-one on all of \mathbb{R}^2 .