Solutions of one selected problem

Homework 3 (4): Pairwise independent: We need to show that for all $1 \leq i<j \leq n, 1 \leq k<l \leq n$, and $A_{i j} \neq A_{k l}$ we have

$$
\mathbb{P}\left(A_{i j} \cap A_{k l}\right)=\mathbb{P}\left(A_{i j}\right) \mathbb{P}\left(A_{k l}\right)
$$

First of all, using the Bayes theorem

$$
\begin{aligned}
\mathbb{P}\left(A_{i j}\right) & =\mathbb{P}(i \text { th and } j \text { th roll produce the same facevalue }) \\
& =\sum_{k=1}^{6} \mathbb{P}(j \text { th roll produce the facevalue } k \mid i \text { th roll produce the facevalue } k) \mathbb{P}(i \text { th roll produce the facevalue } k)
\end{aligned}
$$

But the i th and j th trials are independent of each other. Therefore

$$
\begin{aligned}
& \mathbb{P}(j \text { th roll produce the facevalue } k \mid i \text { th roll produce the facevalue } k) \\
= & \mathbb{P}(j \text { th roll produce the facevalue } k)=\frac{1}{6}
\end{aligned}
$$

Consequently,

$$
\mathbb{P}\left(A_{i j}\right)=\sum_{k=1}^{6} \frac{1}{6} \cdot \frac{1}{6}=\frac{6}{36}=\frac{1}{6}
$$

Similarly, $\mathbb{P}\left(A_{k l}\right)=\frac{1}{6}$.
$A_{i j} \cap A_{k l}$ denotes the event that i th, j th trial have the same facevalue and k th, l th trial have the same facevalu\& ${ }^{1}$. When we roll a die n times, the total number of outcomes is 6^{n}.

Case 1: Assume that the indices i, j, k, l are different from each other. Let us count the number of events when i th roll $=j$ th roll $=4$ and k th roll $=l$ th roll= 1 . Since the outcomes of i th, j th, k th, and l th rolls have been fixed and the rest of $(n-4)$ outcomes is not fixed, therefore this can happen in 6^{n-4} ways. The same is true if we demand i th roll $=j$ th roll $=\sqrt[3]{ }$ and k th roll $=l$ th roll $=5$. Since we can demand any two numbers (same or different) from $\{1,2,3,4,5,6\}$ for the i th, j th roll and k th, l th roll, therefore the total number of outcomes favorable to the event $A_{i j} \cap A_{k l}$ is $6 \cdot 6 \cdot 6^{n-4}=6^{n-2}$. Consequently $\mathbb{P}\left(A_{i j} \cap A_{k l}\right)=\frac{6^{n-2}}{6^{n}}=\frac{1}{36}$.

Case 2: Assume that there is only one index overlap between $\{i, j\}$ and $\{k, l\}$. For example, $i=k \bigsqcup^{2}$ In this case $A_{i j} \cap A_{k l}$ denotes the event that all of i th, j th, and l th rolls have the same facevalue (we have omitted k because $i=k$). In this case the number of outcomes favorable to $A_{i j} \cap A_{k l}$ is $6 \cdot 6^{n-3}=6^{n-2}$ due to the similar reason as we have discussed in the previous case. Therefore $\mathbb{P}\left(A_{i j} \cap A_{k l}\right)=\frac{6^{n-2}}{6^{n}}=\frac{1}{36}$.

So in any case, $\mathbb{P}\left(A_{i j} \cap A_{k l}\right)=\mathbb{P}\left(A_{i j}\right) \mathbb{P}\left(A_{k l}\right)$.

[^0]Remark: $P\left(A_{i j}\right)=\frac{1}{6}$ could also be proved using the technique described in Case 1 and Case 2 .

Not independent: Consider the events A_{12}, A_{23}, A_{13}. If the events are independent then we should have $\mathbb{P}\left(A_{12} \cap A_{23} \cap A_{13}\right)=\mathbb{P}\left(A_{12}\right) \mathbb{P}\left(A_{23}\right) \mathbb{P}\left(A_{13}\right)$. But we see that $A_{12} \cap A_{23} \cap A_{13}=A_{12} \cap A_{23}$ because both of them indicate the event that the first, second, and the third rolls produce the same number. Now using the technique discussed in the Case 2 above, we have $\mathbb{P}\left(A_{12} \cap A_{23}\right)=\frac{1}{36}$ i.e., $\mathbb{P}\left(A_{12} \cap A_{23} \cap A_{13}\right)=\frac{1}{36}$. On the other hand $\mathbb{P}\left(A_{12}\right) \mathbb{P}\left(A_{23}\right) \mathbb{P}\left(A_{13}\right)=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \neq \mathbb{P}\left(A_{12} \cap A_{23} \cap A_{13}\right)$.

[^0]: ${ }^{1}$ Note that it is different from the event $E:=$ 'all of i th, j th, k th, and l th trail have the same facevalue'. For example, if i th, j th roll produce 4 and k th, l th roll produce 1 , then it is a part the event $A_{i j} \cap A_{k l}$, but it is not a part of the event E.
 ${ }^{2}$ Note that we can not have both $i=k$ and $j=l$. Then it would violate the fact that $A_{i j} \neq A_{k l}$.

