Homework 4

Solution of one selected problem

Problem 1: Let $\# H$ and $\# T$ denote the number of heads and tails respectively in n tosses of a fair coin. We are interested in the random variable $X=|\# H-\# T|$.

First of all, we observe that if n is an even number then the lowest value of X is zero. Because we can have $\frac{n}{2}$ heads and $\frac{n}{2}$ tails. In general, let $\# H-\# T=k$. Since $\# H+\# T=n$, we have $\# H=\frac{n+k}{2}$ and $\# T=\frac{n-k}{2}$. But $\# H$ (=the number of heads) must be an integer. Therefore $\frac{n+k}{2}$ is an integer i.e., $n+k$ is an even number. So if n is even, k is also even and if n is odd, k is also odd.

We also know that $0 \leq \# H \leq n$. Therefore $0 \leq \frac{n+k}{2} \leq n$ i.e., $-n \leq k \leq n$. So if n is even then $\# H-\# T=k=0, \pm 2, \pm 4, \ldots, \pm n$ and if n is odd then $k= \pm 1, \pm 3, \pm 5, \ldots, \pm n$. So $|\# H-\# T| \in$ $\{0,2,4, \ldots, n\}$ if n is even and $|\# H-\# T| \in\{1,3,5, \ldots, n\}$ if n is odd.

When n is odd

$$
\begin{aligned}
\mathbb{P}(X=k) & =\mathbb{P}(\# H-\# T=k)+\mathbb{P}(\# T-\# H=k) \\
& =\mathbb{P}(\# H=(n+k) / 2)+\mathbb{P}(\# H=(n-k) / 2) \\
& =\binom{n}{\frac{n+k}{2}} \frac{1}{2^{n}}+\binom{n}{\frac{n-k}{2}} \frac{1}{2^{n}}=\binom{n}{\frac{n+k}{2}} \frac{1}{2^{n-1}}, \quad k=1,3,5, \ldots, n .
\end{aligned}
$$

When n is even,

$$
\begin{aligned}
\mathbb{P}(X=0) & =\mathbb{P}(\# H=n / 2)=\binom{n}{\frac{n}{2}} \frac{1}{2^{n}} \\
\mathbb{P}(X=k) & =\mathbb{P}(\# H-\# T=k)+\mathbb{P}(\# T-\# H=k) \\
& =\mathbb{P}(\# H=(n+k) / 2)+\mathbb{P}(\# H=(n-k) / 2) \\
& =\binom{n}{\frac{n+k}{2}} \frac{1}{2^{n}}+\binom{n}{\frac{n-k}{2}} \frac{1}{2^{n}}=\binom{n}{\frac{n+k}{2}} \frac{1}{2^{n-1}}, \quad k=2,4,6, \ldots, n .
\end{aligned}
$$

Remark: If the coin is unfair i.e., $\mathbb{P}(H)=p$ where $0 \leq p \leq 1$ but p is not necessarily $\frac{1}{2}$, then

$$
\begin{aligned}
& \mathbb{P}(X=0)=\mathbb{P}(\# H=n / 2)=\binom{n}{\frac{n}{2}} p^{n / 2}(1-p)^{n / 2}, \quad \text { if } n \text { is even } \\
& \mathbb{P}(X=k)=\binom{n}{\frac{n+k}{2}} p^{(n+k) / 2}(1-p)^{(n-k) / 2}+\binom{n}{\frac{n-k}{2}} p^{(n-k) / 2}(1-p)^{(n+k) / 2}
\end{aligned}
$$

where $k \in\{2,4,6, \ldots, n\}$ if n is even and $k \in\{1,3,5, \ldots, n\}$ if n is odd.

