Homework 5

Solution of one selected problem

Problem 3: We know that $A \sim U[0,5]$, therefore the pdf of A is given by

$$
f_{A}(a)= \begin{cases}\frac{1}{5}, & \text { if } 0 \leq a \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

The quadratic equation $4 x^{2}+4 A x+(A+2)=0$ has two real roots if and only if the Discriminant is positive, i.e., $(4 A)^{2}-4 \cdot 4 \cdot(A+2)>0$. So the probability that the given quadratic equation has two real root is

$$
\begin{aligned}
\mathbb{P}\left((4 A)^{2}-4 \cdot 4 \cdot(A+2)>0\right) & =\mathbb{P}\left(A^{2}-A-2>0\right) \\
& =\mathbb{P}((A-2)(A+1)>0) \\
& =\mathbb{P}((A-2)>0 \&(A+1)>0)+\mathbb{P}((A-2)<0 \&(A+1)<0) \\
& =\mathbb{P}(A>2)+\mathbb{P}(A<-1) \\
& =\int_{2}^{5} \frac{1}{5} d a+0 \\
& =\frac{3}{5} .
\end{aligned}
$$

Remark: If $A \sim U[-3,3]$, then the above probability would be

$$
\mathbb{P}(A>2)+\mathbb{P}(A<-1)=\int_{2}^{3} \frac{1}{6} d a+\int_{-3}^{-1} \frac{1}{6} d a=\frac{1}{6}+\frac{2}{6}=\frac{1}{2}
$$

Moral: $A^{2}-A-2>0$ can happen in two possible ways, namely $A>2$ or $A<-1$. You should consider both of the cases.

