Homework 6

March 4, 2015
Indrajit Jana

Solution of one selected problem

Problem 5: The joint density function is given by

$$
f(x, y)=c\left(x^{2}+x y / 2\right), \quad 0<x<1,0<y<2
$$

(a) Since $f(x, y)$ is a probability density function, we must have $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$. We can evaluate

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y & =c \int_{0}^{1} \int_{0}^{2}\left(x^{2}+x y / 2\right) d y d x \\
& =c \int_{0}^{1}\left[x^{2} y+x y^{2} /\left.4\right|_{0} ^{2}\right] d x \\
& =c \int_{0}^{1}\left(2 x^{2}+x\right) d x \\
& =c\left[\frac{2 x^{3}}{3}+\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right] \\
& =\frac{7 c}{6}
\end{aligned}
$$

Therefore $c=\frac{6}{7}$.
(b) The marginal density is given by

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\frac{6}{7} \int_{0}^{2}\left(x^{2}+x y / 2\right) d y \\
& =\frac{6}{7}\left[x^{2} y+x y^{2} /\left.4\right|_{0} ^{2}\right] \\
& =\frac{6}{7}\left(2 x^{2}+x\right), \quad 0<x<1
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathbb{P}(X>Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{x} f(x, y) d y d x \\
& =\frac{6}{7} \int_{0}^{1} \int_{0}^{x}\left(x^{2}+x y / 2\right) d y d x \\
& =\frac{6}{7} \int_{0}^{1}\left[x^{2} y+x y^{2} /\left.4\right|_{0} ^{x}\right] \\
& =\frac{6}{7} \int_{0}^{1} \frac{5 x^{3}}{4} d x \\
& =\frac{6}{7}\left[\left.\frac{5 x^{4}}{16}\right|_{0} ^{1}\right]=\frac{6}{7} \cdot \frac{5}{16}=\frac{15}{56}
\end{aligned}
$$

