MAT135a

Homework 4 (Due in class on February 13, 2015).

Reading: Please read pages 45-69 of the Gravner's notes.
Problem 1. Let X be the difference between the number of Heads and the number of Tails in n tosses of a fair coin. Compute the probability mass function of X.

Problem 2. A bag contains 5 red and 5 blue balls. Select two at random without replacement. If they are of the same color you win $\$ 1.10$ otherwise you lose $\$ 1$. Let X be your winnings. Compute $E X$ and $\operatorname{Var}(X)$.

Problem 3. A multiple choice exam has 5 questions, with three choices for each question. The passing score is at least four correct answers. (a) What is the probability that a student who answers each question at random passes the test? (b) Assuming a class has 50 students, and all answer each question at random, what is the expected number of students that pass the tesst?

Problem 4. Assume the suicide rate is 1 per 100,000 people per month, and a city has 400,000 inhabitants. (a) Find the probability that there will be 8 or more suicides next month in this city. (b) Find the probability that next year there will be at least two months with 8 or more suicides. (c) Counting the next month as month 1 , what is the probability that the first month to have 8 or more suicides will be month i ?

Problem 5.

Is it generally true that $E(1 / X)=1 / E(X)$? Is it ever true that $E(1 / X)=1 / E(X)$?
Problem 6. Let $X_{i}, 1 \leq i \leq n$, be independent random variables which are symmetric about 0; that is X_{i} and $-X_{i}$ have the same distributions. Show that, for all $x, P\left(S_{n} \geq x\right)=$ $P\left(S_{n} \leq-x\right)$ where $S_{n}=\sum_{i=1}^{n} X_{i}$. Is the conclusion necessarily true without the assumption of independence?

Problem 7.

Let X have probability mass function

$$
f(x)=\frac{1}{x(x+1)}, \quad x=1,2,3, \ldots
$$

(X takes values in the set of positive integers). For what values of $a \in R$ we have

$$
E\left(X^{a}\right)<\infty ?
$$

