MAT135a

Homework 6 (Due in class on March 6, 2015).

Reading: Please read pages 72-104 of the Gravner's notes.

Problem 1.

Joint density of (X, Y) is given by

$$
f_{1}(x, y)=x \exp (x+y), \quad x, y>0
$$

(and zero otherwise).
a) Are X and Y independent?
(b) Repeat with joint density

$$
f_{2}(x, y)=2, \quad 0<x<y<1
$$

(and zero otherwise).

Problem 2.

Assume that X_{1}, \ldots, X_{10} are independent $\operatorname{Exponential}(\lambda)$ random variables. Compute the densities of $H=\max \left(X_{1}, \ldots, X_{10}\right)$, and $L=\min \left(X_{1}, \ldots, X_{10}\right)$.

Problem 3.

A coin has probability p of Heads. Toss this coin n times, and let X be the number of tosses, from toss 2 on, that have different outcome than the previous toss. Compute $E X$.

Problems 4.

The annual rainfall figures in Bandrika are independent identically distributed continuous random variables $\left\{X_{n}: n \geq 1\right\}$. Find the probability that
(a) $X_{1}<X_{2}<X_{3}<X_{4}$.
(b) $X_{1}>X_{2}<X_{3}<X_{4}$.

Problems 5.

Find the density function of $Z=X+Y$ when X and Y have joint probability density function

$$
\frac{1}{2}(x+y) e^{-(x+y)}, \quad x, y \geq 0
$$

