Math 135A, Winter 2011,
March 17, 2011.

\ FINAL EXAM

KEY
" NAME(print in CAPITAL letters, first name first):

NAME((sign):

1D #:

Instructions: Each of the 6 problems has equal worth. Read each question carefully and answer
it in the space provided. YOU MUST SHOW ALL YOUR WORK TO RECEIVE FULL CREDIT.
- Calculators, books or notes are not allowed. Unless you are directed to do so, or it is required for
further work, do not evaluate complicated expressions to give the result as a decimal number.

Make sure that you have a total of 7 pages (including this one) with 6 problems.

Ot = WO DN =

TOTAL




1. A pair (X,Y) of random variables has the joint density
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Recall that [} 2" dr = i forn > -1,
(a) Compute the constant c.
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(b) Compute E(XY).
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(c) Compute the marginal density of X.
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(d) Compute the density of Z = X2,
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2. A group consists of 10 peoiJle: 5 Swedes, 3 Norwegians, and 2 Finns. They are seated in a row of
10 chairs. (Imagine the chairs numbered, from left to right, L2,...,10)
(a) Compute the probability that all the Swedes sit together (i.e., occupy adjacent chairs).
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(b) Compute the probability that all the Swedes and also all the Norwegians sit together.
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(c) A Swede is happy if there is another Swede sitting next to him and on his left. Compute the
expected number of happy Swedes. Give the result as a simple fraction.
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(d) Let N be the number of Swedes that sit to the

left of the leftmost N orwegian. (E.g., if the leftmost
Norwegian sits on seat 4, then N is the number o

f Swedes on seats 1, 2, 3.) Compute EN. Give the
result as a simple fraction.
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3. Roll a fair die 10 times.

(a) Compute the probability that at least one of the six numbers is rolled exactly three times.
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(b) Let X be the number of times an even number is rolled, and Y
Compute the joint probability mass function of (X, 7). (
relevant ¢ and j rather than a large table.)

the number of times 1 is rolled.
Write a formula for P(X =4,Y = j) for all
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4. Alice and Bob play the following game. A deck contains 4 red and 4 black cards. On every round,
four cards are selected from the shuffled deck without replacement, If exactly 2 red cards are selected,
the game is over and Alice wins, If exactly 1 red card is selected, the game is over and Bob wing,
Otherwise, the game is repeated until one of them wins. '

(a) Compute the probability that Alice wins on the first round of this game, and the probability that
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(b) Compute the probability that Alice wins this game.
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(c) Compute the expected number of rounds the game is played.
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5. A casino offers the followin

appear, wins or loses nothing if exactly 2 Head
finally, loses $4 (i.e., wins —8$4) if no Heads appear.
(a) Alice plans to play this game 4 times, Compute
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probability that he winsg at least $1155 (1155 = 1050
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and wins $5 if exactly 3 Heads
$1 if exactly one Heads appears, and,

(All tosses in this problem are independent.)
the expectation and variance of her winnings.
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6. A casino offers the game 200 Balls for the next 19900 “guests.” A bag contains 200 balls, 2 are
black and 198 are white, A player selects two balls from the bag at random, without replacement,

and wins a free night at the hotel if botl selected balls are black, The balls are then put back into
the bag for the next player.

(2) Let X be the number of winners. Determine the ezact distribution (
function) of X
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(b) Ugsing arelevant approximation, compute the probability that there are 1o more than three winners,
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(c) Using a relevant approximation, compute the probability that there are at least t

WO winners among
the first 9950 = 19900/2 players, but there are no more winners among

the second 9950 players.
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