NAME(print in	CAPITAL letters, first name first):
NAME(sign):	
ID#:	
	There are four problems. Make sure that you have all 4 problems. You must show a receive full credit. Do not simplify complicated expressions unless instructed to
Points received:	
1	
2	
3	
4	
TOTAL	

- 1. (25 points.) Suppose that X and Y are independent and uniform on [0,1].
 - (a) Find $\mathbf{E}(X^3)$.

$$= \int_{0}^{3} x^{3} f_{x}(x) dx$$

$$= \int_{0}^{3} x^{3} \cdot 1 dx$$

$$= \left[\frac{1}{4} x^{4} \right]_{0}^{1} = \frac{1}{4}$$

(b) Find $P(|X - Y| \le \frac{1}{2})$.

(c) Find the density f_W of the random variable W = |X - Y|.

$$P(W = \omega) = 1 - (1 - \omega)^2$$
area $\left(\frac{1}{\omega} \right) = 1 - (1 - \omega)^2$

- 2. (25 points.) A coin is tossed 1600 times.
 - (a) Find the probability that exactly 800 of the tosses land heads.

$$(1600)$$
 $(\frac{1}{2})^{1600}$

(b) Using a relevant approximation, find the probability that there are less than 820 heads.

Let
$$S_n = \# \text{ head}$$
 $h=1600$, $P=1/2$
 $ES_n = np = 800$
 $SD(S_n) = \overline{mp(1-p)} = 20$
 $P(S_n < 820) = P(S_n - 800 < \frac{820 - 800}{20})$
 $P(Z < 1) = \phi(1)$

(c) Suppose that each toss lands in your beer with probability 1/1000, independently of all the other tosses. Using a relevant approximation, find the probability that exactly two tosses land in your beer.

approximately Poisson())
For
$$\lambda = 1600 \cdot 7000 = 1.6$$

$$e^{-1.6} \frac{1.6^{2}}{2}$$

3. (25 points.) Suppose that Y is exponential(1), X is uniform on [0,1], and X and Y are independent.

(a) Compute
$$Var(X)$$
.

$$EX = |S_{\chi}dx| = \left[\frac{1}{2}x^{2}\right]_{0}^{1} = \frac{1}{2}$$

$$Var x = Ex^2 - (Ex)^2 = \frac{1}{12}$$

(b) Find
$$P(Y > X)$$
.

$$P(Y>X) = \frac{1}{3} \int_{x}^{\infty} S e^{-y} dy dx$$
$$= \frac{1}{3} e^{-x} dx$$

$$= \underbrace{1-e^{-1}}_{0}$$

(c) Find
$$P(Y > X \mid X \ge \frac{1}{2})$$

(c) Find
$$P(Y > X \mid X \ge \frac{1}{2})$$
. $(X \ge \frac{1}{2})$ $(X \ge \frac{1}{2})$

$$P(Y>X, X\geq /2) = \frac{15^{\circ}Se^{-7}dydx}{12^{\circ}x}$$

$$= \frac{15e^{-x}dx}{h}$$

$$=\bar{e}^{1/2}-\bar{e}^{-1}$$

HUSNET

$$\frac{1}{P(X = \frac{1}{2}X = \frac{1}{2})} = 2(e^{-\frac{1}{2}} - e^{-\frac{1}{2}})$$

- 4. (25 points.) A die is rolled twice. Let X be the number of 5's in the two rolls and let Y be the number of 6's.
 - (a) Write down the joint probability mass function of X and Y.

- $\frac{0}{10/36}$ $\frac{8}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $\frac{8}{36}$ $\frac{2}{36}$ $\frac{8}{36}$ $\frac{2}{36}$ $\frac{1}{36}$ $\frac{1}{3$
- (b) Are X and Y independent? Explain.
 - No. $P(X=2) = \frac{1}{36}$ $P(Y=1) = \frac{10}{36}$
- But $P(X=2,Y=1)=0\neq \frac{1}{36}=\frac{10}{36}$
 - (c) Find P(X = 1 | X + Y = 2).

$$\frac{P(X=1,Y=1)}{P(X+Y=2)} = \frac{\frac{2}{36}}{\frac{1}{36} + \frac{2}{36} + \frac{1}{36}} = \frac{1}{2}$$