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1. The only information you have about a random variable X is that its moment generating function φ(t)

satisfies the inequality φ(t) ≤ et2 for all t ≤ 0. Find the upper bound for P (X ≤ −10).

Solution: For t ≤ 0, we have

P(X ≤ −10) = P(tX ≥ −10t)

= P
(
etX ≥ e−10t

)
≤ e10tE[etX ] (using Markov’s inequality)

= e10tφ(t)

≤ e10t+t
2

(since φ(t) ≤ et
2

for t ≤ 0)

To find the best upper bound, we need to find inf
t≤0

e10t+t
2

. Differentiating e10t+t
2

with respect to t and

setting it to zero, we find that the infimum is attained at t = −5 and inf
t≤0

e10t+t
2

= e−50+25 = e−25.

Therefore

P(X ≤ −10) ≤ e−25.

Grading Rubric:

• (+3 points) for writing ‘P(X ≤ −10) = P(etX ≥ e−10t) when t ≤ 0’.

• (+2 points) for the correct version of the Markov’s inequality.

• (+2 points) for applying ‘φ(t) ≤ et2 when t ≤ 0’.

• (+2 points) for optimizing over t ≤ 0.

• (+1 points) Final answer

(only 1 or 2 points) if ‘P(Sn ≤ −10n) ≤ exp(−nI(10))’ is used.



2. Prove that for any fixed x ≥ 0

∑
k:|k−n|≤x

√
n

nk

k!
∼ en

∫ x

−x

1√
2π
e−u

2/2du,

where the notation ∼ means that the ratio of the left hand side and the right hand side goes to 1 as
n→∞.

Solution: First of all, we notice that if Sn ∼ Poisson(n) then P(Sn = k) = e−n n
k

k! for all 0 ≤ k <∞.
Therefore for any x ≥ 0 ∑

k:|k−n|≤x
√
n

e−n
nk

k!
=

∑
k:|k−n|≤x

√
n

P(Sn = k)

= P(|Sn − n| ≤ x
√
n)

= P(−x
√
n ≤ Sn − n ≤ x

√
n)

= P
(
−x ≤ Sn − n√

n
≤ x

)
.

We know that if Y1 ∼ Poisson(λ1) and Y2 ∼ Poisson(λ2) are independent, then Y1+Y2 ∼ Poisson(λ1+

λ2). So we can write Sn =
∑n
i=1Xi where Xi

i.i.d.∼ Poisson(1). We know that E[Xi] = 1 and
V ar[Xi] = 1. Therefore E[Sn] = n and V ar(Sn) = n. Using the central limit theorem we can conclude
that

Sn − n√
n

d→ N(0, 1), as n→∞.

In other words, as n→∞

P
(
−x ≤ Sn − n√

n
≤ x

)
→
∫ x

−x

1√
2π
e−u

2/2 du

i.e.,
P
(
−x ≤ Sn−n√

n
≤ x

)
∫ x
−x

1√
2π
e−u2/2 du

→ 1

i.e.,

∑
k:|k−n|≤x

√
n
nk

k!

en
∫ x
−x

1√
2π
e−u2/2 du

→ 1

i.e.,
∑

k:|k−n|≤x
√
n

nk

k!
∼ en

∫ x

−x

1√
2π
e−u

2/2 du.

Grading Rubric:

• (+3 points) for identifying Poisson(n).

• (+2 points) for writing the mean and variance of Poisson(n).

• (+2 points) for writing a form similar to P
(
−x ≤ Sn−n√

n
≤ x

)
.

• (+2 points) for applying the CLT.

• (+1 points) Final answer



3. A fair coin is tossed n times, showing heads Hn times and tails Tn times. Let Sn = Hn − Tn. Show
that

P (Sn > an)1/n → 1√
(1 + a)1+a(1− a)1−a

if 0 < a < 1.

Solution: Let us define a sequence of random variables {Xi} as

Xi =

{
1 if the ith outcome is a head
−1 if the ith outcome is a tail

Since the coin is a fair coin, P(Xi = 1) = 1
2 = P(Xi = −1) for all 1 ≤ i ≤ n. Since the tosses are

independent of each other, Xis are independent of each other. Also notice that
∑n
i=1Xi = Hn − Tn =

Sn. Since a > 0 = E[Xi], using the large deviation technique we have

P(Sn ≥ an) ≤ exp[−nI(a)],

where I(a) = supt≥0{at− log φ(t)}, and φ(t) = E[etXi ] is the moment generating function of Xi. It is

easy to see that φ(t) = 1
2 (et + e−t). Define the function h(t) = at − log

[
1
2 (et + e−t)

]
. Differentiating

h(t) with respect to t and setting h′(t) = 0 we have

a− et − e−t

et + e−t
= 0

i.e., a(et + e−t) = et − e−t

i.e., (a− 1)et = −(1 + a)e−t

i.e., e2t =
1 + a

1− a

i.e., t =
1

2
log

1 + a

1− a
.

Also notice that h′′(t) = − 4
(et+e−t)2 < 0. Therefore t = 1

2 log 1+a
1−a is a maxima of h. So

I(a) = h

(
1

2
log

1 + a

1− a

)
=

a

2
log

1 + a

1− a
− log

[
1

2

√
1 + a

1− a
+

1

2

√
1− a
1 + a

]

=
a

2
log

1 + a

1− a
− log

[
1

2
√

1− a2
[√

(1 + a)2 +
√

(1− a)2
]]

= log

(
1 + a

1− a

) a
2

− log
1√

1− a2

= log

[√(
1 + a

1− a

)a√
1− a2

]
= log

[√
(1 + a)1+a(1− a)1−a

]
.

Therefore

lim
n→∞

[P(Sn ≥ an)]
1/n ≤ exp[−I(a)] =

1√
(1 + a)1+a(1− a)1−a

. (1)



To obtain the lower bound, we notice that

P(Sn ≥ an) ≥ P(Sn = an)

= P(Hn − Tn = an)

= P(Hn = n(a+ 1)/2)

=

(
n

n(1+a)
2

)
1

2n

=
n!

(n(1 + a)/2)!(n(1− a)/2)!

1

2n
.

By Stirling’s approximation formula we know that k! ∼
√

2πk(k/e)k for large k. Applying the Stirling’s
approximation on n!, (n(1 + a)/2)! and (n(1− a)/2)! we obtain

lim
n→∞

[P(Sn ≥ an)]
1/n ≥ lim

n→∞

1

2

[
n!

(n(1 + a)/2)!(n(1− a)/2)!

]1/n
=

1

2
lim
n→∞

[
2πn

π2n2(1− a2)

]1/2n
n/e

(n(1 + a)/2e)(1+a)/2(n(1− a)/2e)(1−a)/2

=
1

2

2

(1 + a)(1+a)/2(1− a)(1−a)/2
(since lim

n→∞
n1/n = 1)

=
1√

(1 + a)1+a(1− a)1−a
(2)

Combining (1) and (2) we have the result

lim
n→∞

[P(Sn ≥ an)]
1/n

=
1√

(1 + a)1+a(1− a)1−a



4. A coin has probability p of Heads. Adam flips it first, then Becca, then Adam, etc., and the winner is
the first to flip Heads. Compute the probability that Adam wins.

Solution: Let f(p) be the probability that Adam wins. Using the Bayes theorem we have

f(p) = P(Adam wins|The first toss is a head)P(The first toss is a head)

+P(Adam wins|The first toss is a tail)P(The first toss is a tail)

= 1 · p+ P(Adam wins|The first toss is a tail)(1− p).

But if the first toss is a tail, then Adam may win the game only if Becca toss a tail (i.e., the second
toss is a tail) and then the game restarts again. So

P(Adam wins|The first toss is a tail) = (1− p)f(p).

Combining all the above equations we get

f(p) = p+ (1− p)2f(p).

Solving the above equation we obtain f(p) = 1
2−p .



5. A die is rolled repeatedly. Which of the following are Markov chains? For those that are, supply the
transition matrix.
(a) The largest number Xn shown up to the nth roll.
(b) The number Nn of sixes in n rolls.
(c) At time n, the time Cn since the most recent six.
(d) At time n, the time Bn until the next six.

Solution: A stochastic process {Zn}n is a Markov chain if

P(Zn+1 = in+1|Zn = in, Zn−1 = in−1, . . . , Z1 = i1) = P(Zn+1 = in+1|Zn = in).

(a) The largest number up to nth roll is a number from the set {1, 2, 3, 4, 5, 6}. Therefore if {Xn}n is a
Markov chain then the state space is {1, 2, 3, 4, 5, 6}. SinceXn+1 = max{Xn, outcome of the (n+ 1) th toss},
Xn+1 depends only on Xn and not on the past.

P(Xn+1 = j|Xn = i) =


i
6 if j = i and 1 ≤ i ≤ 6
1
6 if j > i and 1 ≤ i < j ≤ 6
0 if j < i and 1 ≤ i ≤ 6.

So {Xn}n is a Markov chain whose state space is {1, 2, 3, 4, 5, 6} and the transition matrix is given by
P = {pij}1≤i,j≤6, where pij = P(Xn+1 = j|Xn = i) ∀ 1 ≤ i, j ≤ 6.

(b) Number of sixes in n rolls can be 0, 1, 2, . . . , n. Since n can go up to infinity, if {Nn}n is a Markov
chain then the state space is the set of positive integers N. Since Nn+1 = Nn + I{(n+ 1)th roll is a ‘six’},
we have

P(Nn+1 = j|Nn = i) =


5
6 if j = i
1
6 if j = i+ 1
0 otherwise.

Therefore {Nn}n is a Markov chain with state space N and the transition matrix P = {pij}i,j∈N, where
pij = P(Nn+1 = j|Nn = i) ∀ i, j ∈ N.

(c) The time Cn since the most recent six can be any positive integer. So the state space of this
(possibly) Markov chain is N. Observe that Cn+1 = Cn + I{(n+1)th roll is not a ‘six’}. Let us compute the
transition probabilities

P(Cn+1 = j|Cn = i) =


5
6 if j = i+ 1
1
6 if j = i
0 otherwise.

{Cn}n is a Markov chain with the transition matrix P = {pij}i,j∈N, where pij = P(Cn+1 = j|Cn =
i) ∀ i, j ∈ N.

(d) In this case, notice that if Bn = 2, 3, 4, 5, . . . then Bn+1 = Bn − 1. For example at time n, if it is
given that the next ‘six’ is going to come at the 8th roll from now, then at time (n+ 1) we definitely



know that the next six will come at the 7th roll. The only notrivial case is when Bn = 1 i.e., at time n
we know that the next six will come in the next roll (i.e, n+ 1th roll). In that case the process restarts
at time (n + 1) and then Bn+1 follows the Geomertic(1/6). So combining all the above information
we have

P(Bn+1 = j|Bn = i) =


1 if j = i− 1 and i = 2, 3, 4, . . .

1
6

(
5
6

)j−1
if i = 1 and j = 1, 2, 3, . . .

0 otherwise.

So {Bn}n is a Markov chain with the state space N and transition matrix P = {pij}i,j∈N, where
pij = P(Bn+1 = j|Bn = i) ∀ i, j ∈ N.


