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1. For a branching process with X0 = 1 and offspring distribution given by p0 = 1/3, p1 = 1/3, p2 = 1/3,

determine

(a) the probability that the branching process dies by generation 3 but not by generation 1, and

(b) the probability that the process ever dies out.

Solution: (a) The probability generating function of this branching process is given by

φ(s) =
∑

pks
k

=
1

3
(1 + s+ s2).

Probability that the branching process dies out by generation 3 but not by generation 1 is

φ(φ(φ(0)))− φ(0) = φ(φ(1/3))− 1

3

= φ(13/27)− 1

3
≈ 0.238

(b) The probability π0 that the process ever dies out is given by the smallest positive solution of the
equation φ(s) = s. Solving φ(s) = s boils down to solve the following quadratic equation.

1 + s+ s2 = 3s

i.e., s2 − 2s+ 1 = 0

i.e., s = 1.

Therefore π0 = 1 i.e., the process will eventually die out.

Remark: Check that the expected number of offsprings of each individual is µ = 1
3 + 2

3 = 1. We know that
if µ ≤ 1 then π0 = 1.



2. Determine the transient and recurrent classes of the Markov chain with the following transition matrix:
0 1 0 0
0 1/2 1/2 0
0 1/3 1/3 1/3
0 0 0 1


Solution: The following is a visual representation of the transition matrix.
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From the above picture we see that 1 → 2, 2 ←→ 3, 3 → 4, and 4 ←→ 4. Therefore the classes are
{1}, {2, 3}, and {4}. Since 1→ 2 and 3→ 4, the classes {1}, {2, 3} not closed and therefore transient.
The only closed class is {4}. So {4} is the only recurrent class in the given Markov chain.



3. Prove or disprove that the simple symmetric random walk on Z2 is recurrent.

Solution: Let Sn be the position of the simple symmetric random walk at the nth step. Since it is
an irreducible Markov chain, if a single state is recurrent, all states are recurrent. Without loss of
generality, assume S0 = (0, 0) i.e., the random walk has started from the origin. Suppose that at nth
step it has made k many steps along the X- axis and n− k many steps along the Y -axis. Define

Sx
k := X coordinate of Sn

Sy
n−k := Y coordinate of Sn,

Notice that Sx
k and Sy

n−k are independent simple symmetric random walks along the X-axis and Y -axis
respectively. Let N be the number of horizontal steps then

P 4n
(0,0),(0,0) = P(the random walk is at zero at the 4nth step)

=

2n∑
k=0

P(Sx
2k = 0, Sy

4n−2k = 0)P(N = 2k)

=

2n∑
k=0

P(Sx
2k = 0)P(Sy

4n−2k = 0)P(N = 2k)

≥
∑

|k−n|≤
√
n

P(Sx
2k = 0)P(Sy

4n−2k = 0)P(N = 2k) (taking a particular choice n−
√
n ≤ k ≤ n+

√
n).

Since Sx
n is a simple symmetric random walk along the X-axis, Sx

2k = 0 if and only if we have k forward
and k backward steps along the X-axis. So using the Binomial mass function and then the Stirling’s
formula n! ∼

√
2πn(n/e)n we have

P(Sx
2k = 0) =

(
2k

k

)
1

22k
=

(2k)!

(k!)2
1

22k
∼
√

4πk(2k/e)2k

2πk(k/e)2k
1

22k
=

1√
πk
.

Similarly, P(Sy
4n−2k = 0) ∼ 1/

√
π(2n− k). Therefore P(Sx

2k = 0)P(Sy
4n−2k = 0) ∼ 1/π

√
k(2n− k) ≥

1/πn. Every step there is a equal chance to make a horizontal step or a vertical step. So N ∼
Binomial(4n, 1/2). By Central Limit Theorem∑

|k−n|≤
√
n

P(N = 2k)
1

2
P(|N − 2n| ≤ 2

√
n) ≈ 1

2
Φ(2),

where Φ is the CDF of the standard Normal distribution. So P 4n
(0,0),(0,0) ≥ Φ(2)/2πn. It is obvious that

we need even number of steps to comeback to the origin. Therefore

E[number of returns to (0, 0)] =

∞∑
m=0

P 2m
(0,0),(0,0)

≥
∞∑

n=0

P 4n
(0,0),(0,0) (taking a particular choice m = 2n)

≥
∞∑

n=0

Φ(2)

2πn
=∞.

So the simple symmetric random walk on Z2 is recurrent.



4. Let Xn be the size of the nth generation in an ordinary branching process with X0 = 1, E(X1) = µ.
Prove that

E(XnXm) = µn−mE(X2
m)

for m ≤ n.
Solution: We know that if X0 = 1 then E[Xl] = µl. Now if X0 = k then it can be treated as
k many independent branching processes have been started together. If we add them up we get
the total population. So E[Xl|X0 = k] = µl + · · ·+ µl︸ ︷︷ ︸

k many

= kµl. Similarly, E[kXl|X0 = k] = k2µl.

Since m ≤ n and if it is given that Xm = k then E[XnXm|Xm = k] can be thought of as the
process has been started with k many individuals and we are looking at the (n−m)th generation. So
E[XnXm|Xm = k] = E[kXn−m] = k2µn−m. So

E[XnXm] =

∞∑
k=1

E[XnXm|Xm = k]P(Xm = k) = µn−m
∞∑
k=1

k2P(Xm = k) = µn−mE[X2
m].

Alternative Solution

Let Wi be the branching distribution of the ith individual in the (n− 1)th generation. In other words

Xn =

Xn−1∑
i=1

Wi.

According to the given information, E[Wi] = µ for all i. Also we know that the offspring distributions of
each individual is independent of each other and it does not depend of the existing size of the population.
In other words Wis are independent of X0, . . . , Xm, . . . , Xn−1. Using conditional expectation we have

E[XnXm] = E

Xm

Xn−1∑
i=1

Wi


=

∞∑
k=1

E

Xm

Xn−1∑
i=1

Wi

∣∣∣∣∣∣Xn−1 = k

P(Xn−1 = k)

=

∞∑
k=1

E

[
Xm

k∑
i=1

Wi

∣∣∣∣∣Xn−1 = k

]
P(Xn−1 = k)

=

∞∑
k=1

k∑
i=1

E [XmWi|Xn−1 = k]P(Xn−1 = k)

=

∞∑
k=1

k∑
i=1

E[Xm|Xn−1 = k]E[Wi|Xn−1 = k]P(Xn−1 = k) (since Wis are independent of Xm)

= µ

∞∑
k=1

k∑
i=1

E[Xm|Xn−1 = k]P(Xn−1 = k) (since Wis are independent of Xn−1)

= µ

∞∑
k=1

E[kXm|Xn−1 = k]P(Xn−1 = k) = µE[Xn−1Xm].

Proceeding in this way, after n−m steps we obtain E[XnXm] = µn−mE[X2
m].



5. Three white and three black balls are distributed in two urns, with three balls per urn. The state of
the system is the number of white balls in the first urn. At each step, we draw at random a ball from
each of the two urns and exchange their places (the ball that was in the first urn is put into the second
and vice versa).

(a) Determine the transition matrix for this Markov chain.

(b) Assume that initially all white balls are in the first urn. Determine the probability that this is also
the case after 6 steps.

Solution: (a) Since the number of white balls in the first urn can be either 0, 1, 2, or 3, the state space
of the Markov chain is {0, 1, 2, 3}.
If the current state is 0 (i.e. the first urn has all three black balls and the second urn has all three
white balls), then the next state must be 1. Because we are definitely going to pick a black ball from
the first urn and a white ball from the second urn and exchange them. After the exchange is made,
the first urn will contain only one white ball. Similarly, if the current state is 3 then the next state is
definitely going to be 2.

For the other two cases, if the current state is i ∈ {1, 2}, then the next state can be i − 1, i or i + 1.
Probabilities of these transitions are discussed below.

Operation Current State Next State Probability
white ball from the first urn and black ball
from the second urn

1 0 1/9

2 1 4/9
black ball from the first urn and black ball
from the second urn

1 1 2/9

2 2 2/9
white ball from the first urn and white ball
from the second urn

1 1 2/9

2 2 2/9
black ball from the first urn and white ball
from the second urn

1 2 4/9

2 3 1/9

Therefore the transition matrix is

P =


0 1 0 0

1/9 4/9 4/9 0
0 4/9 4/9 1/9
0 0 1 0

 .
(b) If initially all white balls are in the first urn then the Markov chain starts at the state 3. In other
words the initial distribution is given by π = [0 0 0 1]. After six steps the distribution of the Markov
chain is given by

[P(X6 = 0) P(X6 = 1) P(X6 = 2) P(X6 = 3)] = [0 0 0 1]P 6

Therefore P(X6 = 3) = (P 6)44.


