MAT 201B Homework 2

February 8, 2016 Indrajit Jana

THE FOLLOWING SOLUTIONS MAY NOT BE COMPLETE, AND SHOULD BE TREATED AS ROUGH SKETCHES

Problem 1.9: Notations: Sy(t) = {x € Q: f(x) > t}, Fr(t) = p(Sf(t)).
(a) Notice Syyq4(t) C Sf(t/2) U Sg(t/2). Consequently,

/f+g</OOOFf(t/2)dt+/0mFg(t)dt:2/f+2/g.

(b) Define

f (k=1)2N if (k—1)/2N < f(x) < k/2N for 1 < k <22V
fN(x)_{ 2N 1ff(5€)22N

The rest follows from the MCT.
(c)
Lemma 1. Let f(z) = >0 aixg, (x) € LY(Q) such that 0 < ay < ay < -+ < ap, then [, f(x) du(z) =
Doy aiu(E).
Proof. Note that

In particular, F(t) = 0 if ¢ > a,. Therefore
oo
[r@ana) = [ Fa
oo

- Z/ dt+/ Fy(t) dt
ay n as n Qn

= / dt+/ ) dt + - +/ w(Ey,) dt

al = 2 Ap—1

= alz,u i) 02—al)ZN(Ei)+"'+(an_an—l)U(En)

= =2

= Z a;p(E;)

Now if f(r) = S axe, (@) € LNQ) and g(x) = S, boxr(x) € LN(Q), then f(x) + g(x) =
doic1 2jei(ai +bj)XEinF, (). From the lemma above,

/f+g ZZaﬁb (EiNFy)

=1 j=1

ZZCM,U(EZ‘ n Fj) + Zij/L(EZ‘ n Fj)

i=1j=1 i=1j=1



= S ad wENF)+Y b Y u(E N F)
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= Zal —i—iju

i)

/f+g—/fN+gN+/fN+gN—/f—/g’
- /f+g/fN+gN+/fN+/gN/f/g‘
Jrofmsalolfin A fo 4o

Let Qf == {z € Q@ : f(z) > g(z)} and Q4 = {z € Q : g(z) > f(z)}. Clearly, Qy N Q; = ¢ and
QrUQ, = Q. Then from the previous parts fo (f—9)+ fo g= fﬂf fand [o (9= f)+ o, = o9
Consequently,

(d) Combining the previous parts

freo-fr- [

IN

[-9 - /(f 9+ /(f g) (since QN9 = 6 and 2, UQ, = Q)

Lo o
Jii= 0

(e) Follows directly.

Problem 1.10: [Completion of measure space] Let (Q, F, u) be the original measure space. Construct
new space (2, F*, u*) as

F*={AUN,A\N:AeF,NcC O,u0) =0},
p(AUN) = p(A) = p(A\N) if N C O such that u(0) = 0.

F* is a sigma algebra

(i) Clearly 2, ¢ € F*.
(ii) Let AUN € F*, then (AUN) = A°NN® = A\N € F*. Similarly, if A\N € CF* then (A\N)° € F*.

(iii) Let A, UN; € F*, ¢ € N, then there exist O; € F such that N; C O; and u(O;) = 0. Clearly
p(U2,0;) < 3002 u(0;) = 0, and U2, N; C U2, 0;. Therefore U2, (A;UN;) = (U2, A;)U(UR N;) €
F*.

w* is a measure: If A; UN; € F*, and A; U N; are disjoint from each other. Then p*(U2,(A; UN;)) =
(U824 A) U (U2 Ny = (U2 Ag) = 3002 pn(Ag) = 2202, 1 (A U ;).




Problem 1.12: If f, > 0 Vn, then the result follows from the MCT.

Problem 1.13: We assume that p < n. We need the following two formula from Wikipedia. The surface
area S,_1(r), and volume V,,(r) of a sphere of radius r in R™ are given by

27T7l/2 _—

Sl = Ty’
,R_’I’L/2 N
Valr) = 7F(n/2+1)r'

(i) Calculus method:

1
flz)dz = / / r P " LdrdS (where S,_1(1) = {x € R" : |z| = 1})
R~ 0 JS,_1(1)
_ 2m/2 1
- T(n/2) n—p

(ii) Lebesgue’s definition: for 1 < a < oo,

Lr{x: f@)>a)) = Lr{e:lal P >a))
= L'{a:]a] <a /7))

n/2
™ _
N ——

I'(n/2+1)

Therefore

,n_n/2 00
_ -n/
/nf(:c)d:c = F(n/2+1)/1 =P dt

/2 n

F'(n/24+1)n—p
2721

'(n/2) n—p

Problem 1.17: Let f(z) = inf,cr g(x). Therefore for any ¢t € R, {z : f(z) > t} = Nger{x : g(x) > t}.
Since g € F are continuous, all {z : g(x) > t} are closed, and so is {z : f(z) > t}. Therefore {z : f(x) < t}
is open. Proved.

Problem 1.18: (a) If it holds for all a € R, obviously it holds for all a € Q.
Conversely, let b € R\Q, and {a,} C Q such that a,, | b. Then {z : f(z) > b} = U2 {z: f(z) > an}.
Thus {z : f(x) > b}, being a union of measurable sets, is measurable.

(b) Clearly, Upeg {z : f(z) > b} n{xz:g(z) >a—0b}) C {z: f(z) + g(x) > a}. Conversely, let u € {z :
f(x) + g(x) > a} and choose a b € QN (a — g(u), f(u)]. Then f(u) > b and g(u) > a —b. And thus
Upeq ({z = f(z) > b} N{z : g(x) > a—b}) D {x: f(z) + g(x) > a}.


https://en.wikipedia.org/wiki/N-sphere#Volume_and_surface_area

(c) In a similar way, {z : f(z)g(x) > a} = Upeq\joy({z : f(z) > b} U{z : g(x) > a/b}). Alternatively,
define ® : @ — R?, and ¥ : R? —» R as ®(z) = (f(z),g9(z)) and ¥(u,v) = uv. Then f(z)g(xz) = (¥ o ®)(x),
being a composition of measurable functions, is measurable [Problem 1.3].

Problem (HN) 6.1: Let d = inf,cg ||z|| and {x,} C S such that ||z, || — d. Using polarization identity,
convexity of S, and the definition of d,

2

1
fon =gl = 2enl? + 2zl ~ 4o +00)

IN

2|z ||* + 2||zm]|* — 4d* = 0 as m,n — oo.

Thus {x,} is Cauchy. Completeness of H and closedness of S implies z,, — = € S for some unique x € S.

Problem (HN) 6.3: (From 201A) First of all if S C T, then from the definition of the orthogonal

complement, we have T+ C S+. Consequently, at C At. Conversely, if u € AL and v € A, then we can
find a sequence {v, }, C A such that v, —v|| = 0 and (u,v,) = 0. As a result [(u,v)| = [{u,v) — (u,v,)| <

llull[[v — vn|| — 0. Which implies that u € A~ is orthogonal to any vector v € A4 i.e., A+ C A" and thus
L

At =A".

Second part: From the corollary 6.15, we can write H = M@HJ—. Therefore M = MJ'J' = M+ (using
previous part).

Problem (HN) 6.8: (From 201A) A more general question: When does > -, n~*x,, converges uncon-
ditionally but not absolutely?

Answer: Since {z,,} forms an ONB, > | a,x,, converges absolutely iff > | |a,| < co. In this case, the
requirement boils down to Y ;2 n~™* < oo i.e., a > 1. Therefore the series >~ | a,x;, does not converge
absolutely if a < 1.

Since {xn}, is an orthogonal set in the Hilbert space H, we have

2
Zanxn :Z|an|2:2n720‘, I CN.

nel nel nel

Therefore ~>° | n~*z,, converges unconditionally if >>° | n™2% < coi.e.,if @ > £. So the series Yo" |, n %z,
converges unconditionally but not absolutely if % <a<l.

Problem (HN) 6.5: Try to prove that @ ;H,, = S+, where S = N3 ;H;-. And use the fact that for
any S C H, St is a closed linear subspace of H.

OR

Take {z™V}n C ®°;H, a Cauchy sequence. Then there exists Ny € N such that ||z} — 2V ||y < € for all
M,N > N.

Also notice that {z2}y C H, are Cauchy sequences in H,. Since H, are closed, 22 — =z, € H, as
N — 0.



Now

P P
lim E |z, — 202 = lim [ lim E |z — gNoj2
p—+00 p—o0 \ N—oo 1
n=

n=1

< lim € = €%,
p*}OO

which proves that 2V — z = {z,} € > H,, and [|z2 < |20 — 2|2 + 2™ ]|]2 < € + 20|z < .

Problem (HN) 6.12: (From 201A) Let f,g : R — R have continuous derivatives up to the order n,
then the nth derivative of fg is given by the Leibniz rule

(™) = Y- (1) 10w,

k=0

where f*)(z) = %f(w), and f(© = f. We’ll use this rule several times in this problem.

(a)

Po(x) =1
Py(x) x
Py(z) = %(3.%2—1)
From GM orthogonalizations of monomials
folz) =1
_ _ <1‘,f0> _
f1(13) = Z <f0,f0>f0(z) =z
_ 2 <J)2,f1> _ <$2,f0>
) = Ty O T gy o)
= xz 1

3

As we see, P;s are scalar multiples of f;s.

(e) Let h(z) = (2% — 1)" = (x + 1)"(x — 1)". Differentiating h with respect to x, we have
(1—2)hM(z) = —2nzh(x).
Differentiating once again we have

(1 — 22)h D (z) — 220V (2) + 2nh(z) + 2nehV(z) = 0
i.e., (1 —22)h P () + 22(n — 1)AY (2) + 2nh(z) = 0



Differentiating the above equation with respect to x, and using the Leibniz rule we obtain

[—2 (;‘) h2Hn=2) () — 22 (T) R =D (z) 4 (1 — 22)h ) ()

+2(n —1) [(’D R+ (z) 4 xh<1+n>(x)] +2nh™ (z) =0

e, (1 —22)h2 — 20+ (1) 4 n(n + 1AM (z) =0
ie, (1—2?)P® —20PM(x)+n(n+1)P,(x)=0
d

ie, = —— [(1 - J:Q)den(x)} =n(n+1)P, ().

The above proves that LP, = A\, P,, where A, = n(n + 1).

(b) From part (e) we obtain LP,, = A\, P, and LP, = A\, P,. Therefore (\,, — A\p)P, P, = P, LP,, —
P,,LP,, and thus

om — /\n)/l PPy () de = | Pow)L {(1 —xz)dPn(x)] dz — /1 Pn(m)% {(1 )L p ()] de

1 -1 dx

- / (1= 2®) Py (2) Pl(z) — (1 — 22) Pl (2) Pl ()] da
= 0.

Since A, # A, whenever m # n, the above proves that fil P, (z)P,(x) = 0 whenever m # n. Therefore
{P,}» are orthogonal to each other.

Using the Leibniz rule, we see that P, is a polynomial of degree n. Therefore span{l,z,...,a"} =
span{ Py, P, ..., P,} for alln > 0. So from the above, we can conclude that P, is orthogonal to span{1,x,...,2" 1}.
Consequently, we can claim that the Legendre polynomials are obtained by the Gram-Schmidt orthogonal-
ization of the monomials up to a normalization constant.

(¢) Recall the function h(z) = (22 —1)" = (z + 1)"(z — 1)" from the part (d). Using the Leibniz rule we
obtain

Jehie) - n!<x+1>"<x”+§(2> e+ ] [t 1] s a0

From the above, have ;f;i,_llh(x) =0= %h(w) . Using the same method we can also prove that

rx=—1

r=1

Using the above observation and integration by parts, we have

/1 d- (x? — 1)”d—n(x2 - )"de = (-1)" /1 (x? — 1)”d2—n(x2 - 1" dx

1 dzm dx™ 1 dx2m

1
= (—1)”(2n)!/ (z2 = 1)" dz (since (z® — 1)™ = 2®™ + lower degree)
-1

= (—1)2"(271)!/ sin? 'y du, x=cosu
0



/2
= 2(2n)!/ sin?" 1y du
0

T'(n+1)I(1/2)

= T
~ (20 nl2ntl
Cn+1)2n—1)2n—3)...5-3-1
nl2nplontl
T T oan+1

Using the above fact we obtain the result

/n (Po(2))? da = ﬁ/ dar (22 — 1) dn (@ — 1) da = 2

-1 1dx7” dl'n 2n+1

(d) We know that the continuous functions are dense in L?[—1,1] (w.r.to the || - |2 norm) and the
polynomials are dense in the set of continuous functions (both w.r.to the || - ||coc and || - ||2 norm). Therefore
span{l,x,...} = L?[—1,1]. Then from part (a) we can say that the Legendre polynomials form an orthogonal
basis of L?[-1,1].



