
MAT 201B Homework 3

February 8, 2016 Indrajit Jana

The following solutions may not be complete, and should be treated as rough sketches

Problem 7.1: (a)

1

cn
= 2

∫ π

0

2n cos2n
x

2
dx

= 4

∫ π/2

0

2n cos2n y dy

= 2n+1 Γ(1/2)Γ((2n+ 1)/2)

Γ(n+ 1)

∼ 2
2n√
n

as n→∞, (by Stirling’s approximation).

Note that for any 0 < δ < π if x ∈ [−π,−δ] ∪ [δ, π], then we have (1 + cosx) ≤ 1 + cos δ < 2.

Therefore
√
n

2n (1 + cos δ)n → 0 as n → ∞ i.e, φn(x) = cn(1 + cosx)n → 0 for δ ≤ |x| ≤ π. Also

|φn(x)1{δ≤|x|≤π}| ≤ 1000 1+cos δ
2 ∈ L1[δ, π]. So by DCT we have

∫
δ≤|x|≤π φn(x) dx→ 0.

Alternatively

cn

∫
δ≤|x|≤π

(1 + cosx)n dx =

∫
δ≤|x|≤π(1 + cosx)n dx∫ π
−π(1 + cosx)n dx

≤

∫
δ≤|x|≤π(1 + cos δ)n dx∫ π
−π(1 + cosx)n dx

≤ 2(π − δ)(1 + cos δ)n∫
|x|≤δ/2(1 + cosx)n dx

≤ 2(π − δ)(1 + cos δ)n

δ(1 + cos(δ/2))n

=
π − δ
δ

(
1 + cos δ

1 + cos(δ/2)

)n
→ 0.

(b) Continuous functions on T are periodic continuous, and therefore can be uniformly approximated by
the trigonometric polynomials. As a consequence (of uniform convergence) we have L2 convergence.

I think the actual question would be prove that P is dense in the space of continuous functions on [0, 2π]
with the L2-norm.

Let f ∈ C([0, 2π]). Since f is continuous on a compact interval, there exists M > 0 such that |f(x)| ≤M
for all x ∈ [0, 2π]. Let us take ε > 0 and define δ = ε2/M2. Now define f̃(x) = f(x)1(δ,2π−δ)(x) +
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f(δ)
δ x1[0,δ](x) + f(2π−δ)

δ (2π−x)1[2π−δ,2π](x). (i.e, f̃ = f on [δ, 2π− δ] and then linearly join to 0 after that).

Notice that ‖f − f̃‖2 < 2ε.
Also f̃(0) = 0 = f̃(2π), i.e., it is periodic continuous on T and hence can be uniformly approximated by

elements in P. Let φ ∈ P such that ‖φ − f̃‖∞ < ε. Then ‖φ − f‖2 ≤ ‖φ − f̃‖2 + ‖f̃ − f‖2 <
√

2πε + 2ε.
Hence P is dense in C([0, 2π]).

(c) If f(0) 6= f(2π), then it is discontinuous as a function on T. And hence can not be uniformly approx-
imated by continuous functions on T.

Problem 7.2: (a) Note that

N∑
n=−N

einx = e−iNx
1− ei(2N+1)x

1− eix

= e−iNx
1− cos(2N + 1)x− i sin(2N + 1)x

1− cosx− i sinx

= e−iNx
2 sin(N + 1/2)x[sin(N + 1/2)x− i cos(N + 1/2)x]

2 sin(x/2)[sin(x/2)− i cos(x/2)]

= 2πDn(x)e−iNx
−iei(N+1/2)x

−ieix/2
= 2πDn(x).

Therefore

SN =
1√
2π

N∑
n=−N

f̂ne
inx

=
1

2π

N∑
n=−N

∫
T
f(y)ein(x−y) dy

= (DN ∗ f)(x).

(b) Note that

N∑
n=0

sin(n+ 1/2)x =
1

2i

N∑
n=0

[exp{i(n+ 1/2)x} − exp{−i(n+ 1/2)x}]

=
1

2i

[
1− exp{i(N + 1)x}

exp{−ix/2} − exp{ix/2}
+

1− exp{−i(N + 1)x}
exp{−ix/2} − exp{ix/2}

]
=

1

2i

4 sin2(N + 1)x/2

−2i sin(x/2)

=
sin2(N + 1)x/2

sin(x/2)
.

Therefore TN = 1
N+1

(∑N
n=0Dn

)
∗ f = FN ∗ f , where

FN (x) =
1

2π(N + 1)

(
sin(N + 1)x/2

sin(x/2)

)2

.

(c) DN could be negative (e.g. D1(π) = −1/2π), and thus can not be approximate identities.
On the other hand,

2



(i) FN (x) ≥ 0.

(ii) Notice from the description of TN and SN∫ π

−π
FN (x) dx =

1

2π(N + 1)

N∑
n=−N

(N + 1− n)

∫ π

−π
einx dx = 1.

(iii) For any δ > 0, FN (x) ≤ 1/[2π(N+1) sin2(δ/2)] for all δ ≤ |x| ≤ π. It follows that
∫
δ≤|x|≤π FN (x) dx→

0.

So {FN} are approximation to identity.

From theorem 7.2, TN → f uniformly. However SN may not converge uniformly.

Problem 7.3: We know that {einx : n ∈ Z} forms an orthogonal basis of L2[−π, π]. Let f ∈ L2[0, π].
(i) Extend f to an odd function F ∈ L2[−π, π]. Say F (x) = f(x)1[0,π](x) − f(−x)1[−π,0](x). Notice

that F̂n = − ˆF−n. So F (x) =
∑
n∈Z F̂ne

inx = 2i
∑∞
n=1 F̂n sinnx. So F ∈ L2[−π, π] can be approximated by

{sinnx : n ≥ 1}. In particular, f = F |[0,π] can also be approximated by {sinnx : n ≥ 1}. Which proves the

result [Need to normalize by
√

2/π so that we have an ONB].
(ii) Extend f to an even function G ∈ L2[−π, π], and repeat the above procedure.

Problem 7.4: (a) T (x) =
∑
n∈Z T̂ne

inx, and S(x) =
∑
n∈Z Ŝne

inx, where

T̂n =
1

2π

∫ π

−π
|x|e−inx dx

=
1

2π

∫ π

0

x[e−inx + einx] dx

=
1

π

∫ π

0

x cosnx dx

=


π
2 if n = 0
0 if n is even
− 2
n2π if n is odd

and

Ŝn =
1

2π

[∫ π

0

e−inx dx−
∫ 0

−π
e−inx dx

]
= − i

π

∫ π

0

sinnx dx

=


0 if n = 0
0 if n is even
− 2i
nπ if n is odd

(b) Since
∑∞
n=−∞ n2T̂ 2

n ≤
∑∞
n=−∞,n6=0

1
n2 <∞, T ∈ H1(T).

Let φ ∈ C1(T). Then∫ π

−π
T (x)φ′(x) dx = −

∫ 0

−π
xφ′(x) dx+

∫ π

0

xφ′(x) dx
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= −πφ(−π) +

∫ 0

−π
φ(x) dx+ πφ(π)−

∫ π

0

φ(x) dx

= −
∫ π

−π
S(x)φ(x) dx (since φ(−π) = φ(π)).

Therefore T ′ = S.

(c) From part (a),
∑
n∈Z n

2Ŝ2
n =∞. So S /∈ H1(T).

Problem 7.5: Follow the same method as in Lemma 7.8. Let M = (M1, . . . ,Md) ∈ Nd and N =
(N1, . . . , Nd) ∈ Nd, and define SM (x) =

∑
−M≤k≤M ane

ik·x, where −M ≤ k ≤ M indicates that −mi ≤
ki ≤ mi ∀ 1 ≤ i ≤ d. Then

‖SN − SM‖∞ ≤
∑

M<n≤N

|an|

=
∑

M<n≤N

|n|k|an|
1

|nk|

≤

 ∑
M<n≤N

|n|2k|an|2
1/2  ∑

M<n≤N

1

|n|2k

1/2

= C

 ∑
M<n≤N

1

|n|2k

1/2

.

Let m = miniMi, then ∑
M<n≤N

1

|n|2k
≤

∫ ∞
m

∫
Sd−1

1

r2k
rd−1dSdr

= C0

∫ ∞
m

1

r2k−d+1
dr

= C1
1

m2k−d .

Which proves that ‖SN − SM‖∞ → 0 as m→∞ i.e, M →∞.

Problem 7.6: (i) If f ∈ H1(T) such that
∫
T f(x) dx = 0, then f̂0 = 0, and consequently ‖f‖22 =∑

n∈Z |f̂n|2 ≤
∑
n∈Z n

2|f̂n|2 = ‖f ′‖22.

(ii) If f ∈ H1([0, π]) such that f(0) = f(π) = 0, then we can extend f to an odd function F on [−π, π],
and thus

∫
T F (x) dx = 0. Consequently, ‖F‖22 ≤ ‖F ′‖22. Note that ‖F‖22 = 2‖f‖22, and ‖F ′‖2 = 2‖f ′‖22.

Therefore ‖f‖22 ≤ ‖f ′‖22.

(iii) In general, if f ∈ H1([a, b]) such that f(a) = 0 = f(b), then define g ∈ H1([0, π]) as g(x) =
f(a+ (x(b− a)/π)). Note that g′(x) = f ′(a+ (x(b− a)/π)) · (b− a)/π. And the result follows from (ii).
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Problem 7.7: Without loss of generality let us assume that L = π. According to the initial condition
f(0) = 0 = f(π). Extend f to an odd function on [−π, π]. Then f−n = −fn, where fn = 1

2π

∫ π
−π f(x)e−inx dx.

Now following the same method as described in section 7.3, we obtain the solution as

u(x, t) =

∞∑
n=1

fne
−n2t

[
einx − e−inx

]
= 2i

∞∑
n=1

fne
−n2t sinnx.
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