MAT 201B

February 8, 2016

Indrajit Jana

The following solutions may not be complete, and should be treated as rough sketches

Problem 7.1: (a)

$$\begin{aligned} \frac{1}{c_n} &= 2 \int_0^{\pi} 2^n \cos^{2n} \frac{x}{2} \, dx \\ &= 4 \int_0^{\pi/2} 2^n \cos^{2n} y \, dy \\ &= 2^{n+1} \frac{\Gamma(1/2)\Gamma((2n+1)/2)}{\Gamma(n+1)} \\ &\sim 2 \frac{2^n}{\sqrt{n}} \text{ as } n \to \infty, \text{ (by Stirling's approximation).} \end{aligned}$$

Note that for any $0 < \delta < \pi$ if $x \in [-\pi, -\delta] \cup [\delta, \pi]$, then we have $(1 + \cos x) \le 1 + \cos \delta < 2$. Therefore $\frac{\sqrt{n}}{2^n}(1 + \cos \delta)^n \to 0$ as $n \to \infty$ i.e, $\phi_n(x) = c_n(1 + \cos x)^n \to 0$ for $\delta \le |x| \le \pi$. Also $|\phi_n(x)\mathbf{1}_{\{\delta \le |x| \le \pi\}}| \le 1000 \frac{1 + \cos \delta}{2} \in L^1[\delta, \pi]$. So by DCT we have $\int_{\delta \le |x| \le \pi} \phi_n(x) dx \to 0$.

ALTERNATIVELY

$$c_n \int_{\delta \le |x| \le \pi} (1 + \cos x)^n dx = \frac{\int_{\delta \le |x| \le \pi} (1 + \cos x)^n dx}{\int_{-\pi}^{\pi} (1 + \cos x)^n dx}$$
$$\le \frac{\int_{\delta \le |x| \le \pi} (1 + \cos x)^n dx}{\int_{-\pi}^{\pi} (1 + \cos x)^n dx}$$
$$\le \frac{2(\pi - \delta)(1 + \cos \delta)^n}{\int_{|x| \le \delta/2} (1 + \cos x)^n dx}$$
$$\le \frac{2(\pi - \delta)(1 + \cos \delta)^n}{\delta (1 + \cos(\delta/2))^n}$$
$$= \frac{\pi - \delta}{\delta} \left(\frac{1 + \cos \delta}{1 + \cos(\delta/2)}\right)^n \to 0.$$

(b) Continuous functions on \mathbb{T} are periodic continuous, and therefore can be uniformly approximated by the trigonometric polynomials. As a consequence (of uniform convergence) we have L^2 convergence.

I think the actual question would be prove that \mathcal{P} is dense in the space of continuous functions on $[0, 2\pi]$ with the L^2 -norm.

Let $f \in C([0, 2\pi])$. Since f is continuous on a compact interval, there exists M > 0 such that $|f(x)| \leq M$ for all $x \in [0, 2\pi]$. Let us take $\epsilon > 0$ and define $\delta = \epsilon^2/M^2$. Now define $\tilde{f}(x) = f(x)\mathbf{1}_{(\delta, 2\pi-\delta)}(x) + \delta$ $\frac{f(\delta)}{\delta}x\mathbf{1}_{[0,\delta]}(x) + \frac{f(2\pi-\delta)}{\delta}(2\pi-x)\mathbf{1}_{[2\pi-\delta,2\pi]}(x). \quad (i.e, \ \tilde{f} = f \ on \ [\delta, 2\pi-\delta] \ and \ then \ linearly \ join \ to \ 0 \ after \ that).$ Notice that $\|f - \tilde{f}\|_{2,<} 2\epsilon$.

Also $\tilde{f}(0) = 0 = \tilde{f}(2\pi)$, i.e., it is periodic continuous on \mathbb{T} and hence can be uniformly approximated by elements in \mathcal{P} . Let $\phi \in \mathcal{P}$ such that $\|\phi - \tilde{f}\|_{\infty} < \epsilon$. Then $\|\phi - f\|_2 \le \|\phi - \tilde{f}\|_2 + \|\tilde{f} - f\|_2 < \sqrt{2\pi\epsilon} + 2\epsilon$. Hence \mathcal{P} is dense in $C([0, 2\pi])$.

(c) If $f(0) \neq f(2\pi)$, then it is discontinuous as a function on \mathbb{T} . And hence can not be uniformly approximated by continuous functions on \mathbb{T} .

Problem 7.2: (a) Note that

$$\sum_{n=-N}^{N} e^{inx} = e^{-iNx} \frac{1 - e^{i(2N+1)x}}{1 - e^{ix}}$$

$$= e^{-iNx} \frac{1 - \cos(2N+1)x - i\sin(2N+1)x}{1 - \cos x - i\sin x}$$

$$= e^{-iNx} \frac{2\sin(N+1/2)x[\sin(N+1/2)x - i\cos(N+1/2)x]}{2\sin(x/2)[\sin(x/2) - i\cos(x/2)]}$$

$$= 2\pi D_n(x) e^{-iNx} \frac{-ie^{i(N+1/2)x}}{-ie^{ix/2}}$$

$$= 2\pi D_n(x).$$

Therefore

$$S_N = \frac{1}{\sqrt{2\pi}} \sum_{n=-N}^N \hat{f}_n e^{inx}$$
$$= \frac{1}{2\pi} \sum_{n=-N}^N \int_{\mathbb{T}} f(y) e^{in(x-y)} dy$$
$$= (D_N * f)(x).$$

(b) Note that

$$\sum_{n=0}^{N} \sin(n+1/2)x = \frac{1}{2i} \sum_{n=0}^{N} [\exp\{i(n+1/2)x\} - \exp\{-i(n+1/2)x\}]$$

$$= \frac{1}{2i} \left[\frac{1 - \exp\{i(N+1)x\}}{\exp\{-ix/2\} - \exp\{ix/2\}} + \frac{1 - \exp\{-i(N+1)x\}}{\exp\{-ix/2\} - \exp\{ix/2\}} \right]$$

$$= \frac{1}{2i} \frac{4 \sin^2(N+1)x/2}{-2i \sin(x/2)}$$

$$= \frac{\sin^2(N+1)x/2}{\sin(x/2)}.$$

Therefore $T_N = \frac{1}{N+1} \left(\sum_{n=0}^N D_n \right) * f = F_N * f$, where

$$F_N(x) = \frac{1}{2\pi(N+1)} \left(\frac{\sin(N+1)x/2}{\sin(x/2)}\right)^2.$$

(c) D_N could be negative (e.g. $D_1(\pi) = -1/2\pi$), and thus can not be approximate identities. On the other hand,

- (i) $F_N(x) \ge 0$.
- (ii) Notice from the description of T_N and S_N

$$\int_{-\pi}^{\pi} F_N(x) \, dx = \frac{1}{2\pi(N+1)} \sum_{n=-N}^{N} (N+1-n) \int_{-\pi}^{\pi} e^{inx} \, dx = 1$$

- (iii) For any $\delta > 0$, $F_N(x) \le 1/[2\pi(N+1)\sin^2(\delta/2)]$ for all $\delta \le |x| \le \pi$. It follows that $\int_{\delta \le |x| \le \pi} F_N(x) dx \to 0$.
- So $\{F_N\}$ are approximation to identity.

From theorem 7.2, $T_N \to f$ uniformly. However S_N may not converge uniformly.

Problem 7.3: We know that $\{e^{inx} : n \in \mathbb{Z}\}$ forms an orthogonal basis of $L^2[-\pi,\pi]$. Let $f \in L^2[0,\pi]$. (i) Extend f to an odd function $F \in L^2[-\pi,\pi]$. Say $F(x) = f(x)\mathbf{1}_{[0,\pi]}(x) - f(-x)\mathbf{1}_{[-\pi,0]}(x)$. Notice that $\hat{F}_n = -\hat{F}_{-n}$. So $F(x) = \sum_{n \in \mathbb{Z}} \hat{F}_n e^{inx} = 2i \sum_{n=1}^{\infty} \hat{F}_n \sin nx$. So $F \in L^2[-\pi,\pi]$ can be approximated by $\{\sin nx : n \ge 1\}$. In particular, $f = F|_{[0,\pi]}$ can also be approximated by $\{\sin nx : n \ge 1\}$. Which proves the result [Need to normalize by $\sqrt{2/\pi}$ so that we have an ONB].

(ii) Extend f to an even function $G \in L^2[-\pi,\pi]$, and repeat the above procedure.

Problem 7.4: (a) $T(x) = \sum_{n \in \mathbb{Z}} \hat{T}_n e^{inx}$, and $S(x) = \sum_{n \in \mathbb{Z}} \hat{S}_n e^{inx}$, where $\hat{T} = -\frac{1}{2} \int_{-1}^{\pi} \frac{1}{1 + 1} \int_{-1}^{\pi} \frac{1}{1 + 1} \frac{1}{2} \int_{-1}^{\pi$

$$\hat{T}_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} x [e^{-inx} + e^{inx}] dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \begin{cases} \frac{\pi}{2} & \text{if } n = 0\\ 0 & \text{if } n \text{ is even}\\ -\frac{2}{n^2 \pi} & \text{if } n \text{ is odd} \end{cases}$$

and

$$\hat{S}_n = \frac{1}{2\pi} \left[\int_0^\pi e^{-inx} dx - \int_{-\pi}^0 e^{-inx} dx \right]$$
$$= -\frac{i}{\pi} \int_0^\pi \sin nx \, dx$$
$$= \begin{cases} 0 & \text{if } n = 0\\ 0 & \text{if } n \text{ is even}\\ -\frac{2i}{n\pi} & \text{if } n \text{ is odd} \end{cases}$$

(b) Since $\sum_{n=-\infty}^{\infty} n^2 \hat{T}_n^2 \leq \sum_{n=-\infty, n \neq 0}^{\infty} \frac{1}{n^2} < \infty, T \in H^1(\mathbb{T}).$

Let $\phi \in C^1(\mathbb{T})$. Then

$$\int_{-\pi}^{\pi} T(x)\phi'(x) \, dx = -\int_{-\pi}^{0} x\phi'(x) \, dx + \int_{0}^{\pi} x\phi'(x) \, dx$$

$$= -\pi\phi(-\pi) + \int_{-\pi}^{0} \phi(x) \, dx + \pi\phi(\pi) - \int_{0}^{\pi} \phi(x) \, dx$$
$$= -\int_{-\pi}^{\pi} S(x)\phi(x) \, dx \quad (\text{since } \phi(-\pi) = \phi(\pi)).$$

Therefore T' = S.

(c) From part (a), $\sum_{n \in \mathbb{Z}} n^2 \hat{S}_n^2 = \infty$. So $S \notin H^1(\mathbb{T})$.

Problem 7.5: Follow the same method as in Lemma 7.8. Let $M = (M_1, \ldots, M_d) \in \mathbb{N}^d$ and $N = (N_1, \ldots, N_d) \in \mathbb{N}^d$, and define $S_M(x) = \sum_{-M \leq k \leq M} a_n e^{ik \cdot x}$, where $-M \leq k \leq M$ indicates that $-m_i \leq k_i \leq m_i \forall 1 \leq i \leq d$. Then

$$\begin{split} \|S_N - S_M\|_{\infty} &\leq \sum_{M < n \leq N} |a_n| \\ &= \sum_{M < n \leq N} |n|^k |a_n| \frac{1}{|n^k|} \\ &\leq \left[\sum_{M < n \leq N} |n|^{2k} |a_n|^2 \right]^{1/2} \left[\sum_{M < n \leq N} \frac{1}{|n|^{2k}} \right]^{1/2} \\ &= C \left[\sum_{M < n \leq N} \frac{1}{|n|^{2k}} \right]^{1/2}. \end{split}$$

Let $m = \min_i M_i$, then

$$\sum_{M < n \le N} \frac{1}{|n|^{2k}} \le \int_m^\infty \int_{S^{d-1}} \frac{1}{r^{2k}} r^{d-1} dS dr$$
$$= C_0 \int_m^\infty \frac{1}{r^{2k-d+1}} dr$$
$$= C_1 \frac{1}{m^{2k-d}}.$$

Which proves that $||S_N - S_M||_{\infty} \to 0$ as $m \to \infty$ i.e, $M \to \infty$.

Problem 7.6: (i) If $f \in H^1(\mathbb{T})$ such that $\int_{\mathbb{T}} f(x) dx = 0$, then $\hat{f}_0 = 0$, and consequently $||f||_2^2 = \sum_{n \in \mathbb{Z}} |\hat{f}_n|^2 \le \sum_{n \in \mathbb{Z}} n^2 |\hat{f}_n|^2 = ||f'||_2^2$.

(ii) If $f \in H^1([0,\pi])$ such that $f(0) = f(\pi) = 0$, then we can extend f to an odd function F on $[-\pi,\pi]$, and thus $\int_{\mathbb{T}} F(x) \, dx = 0$. Consequently, $\|F\|_2^2 \leq \|F'\|_2^2$. Note that $\|F\|_2^2 = 2\|f\|_2^2$, and $\|F'\|_2 = 2\|f'\|_2^2$. Therefore $\|f\|_2^2 \leq \|f'\|_2^2$.

(iii) In general, if $f \in H^1([a,b])$ such that f(a) = 0 = f(b), then define $g \in H^1([0,\pi])$ as $g(x) = f(a + (x(b-a)/\pi))$. Note that $g'(x) = f'(a + (x(b-a)/\pi)) \cdot (b-a)/\pi$. And the result follows from (ii).

Problem 7.7: Without loss of generality let us assume that $L = \pi$. According to the initial condition $f(0) = 0 = f(\pi)$. Extend f to an odd function on $[-\pi, \pi]$. Then $f_{-n} = -f_n$, where $f_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$. Now following the same method as described in section 7.3, we obtain the solution as

$$u(x,t) = \sum_{n=1}^{\infty} f_n e^{-n^2 t} \left[e^{inx} - e^{-inx} \right]$$

= $2i \sum_{n=1}^{\infty} f_n e^{-n^2 t} \sin nx.$