The following solutions may not be complete, and should be treated as rough sketches.

Problem 7.9:

\[
(u^2_t + c^2 u_x^2)_t - (2c^2 u_t u_x)_x = 2u_t u_{tt} + 2c^2 u_x u_{tx} - 2c^2 u_{tx} u_x - 2c^2 u_t u_{xx}
\]

\[= 0\]

\[u(0, t) = 0 = (1, t)\) implies that \(u_t(0, t) = 0 = u_t(1, t)\). Consequently form the above equation, \(\int_0^1 (u^2_t + c^2 u_x^2)_t \, dx = 0\) and thus \(\int_0^1 (u^2_t + c^2 u_x^2)_t \, dx = \) constant.

Problem 7.10: Simple direct verification.

Problem 7.14: Denote \(f(\theta) = \sin^2 \theta\), \(S(\theta) = 2\theta \mod 2\pi\), \(T(x) = 4x(1 - x)\).

First Part: If \(\mu = 1\), then a simple calculation will show that \(4\sin^2 \theta_n (1 - \cos^2 \theta_n) = \sin^2 2\theta_n\).

Second part: (a) **Orbits:** [The question asks “what can you say about the orbits?”]. It did not ask me to find the orbits. Let us denote the orbit of \(x\) under the transformation \(T\) by \(\mathcal{O}_T(x)\) i.e., \(\mathcal{O}_T(x) = \{x\} \cup \{T^n(x) : n \in \mathbb{N}\}\). Notice that \(\mathcal{O}_T(0) = \{0\}\), \(\mathcal{O}_T(1) = \{1, 0\}\), \(\mathcal{O}_T(1/2) = \{1/2, 1, 0\}\). So we observe that if the trajectory of \(x\) ever hits 1/2, then in the next steps it looks like 1/2 → 1 → 0, and stays at 0 forever.

Observation 2: Let us look at the transformation \(S : [0, 2\pi] \rightarrow [0, 2\pi]\) defined as \(S(\theta) \equiv 2\theta \mod 2\pi\). According to the (generalized) Fermat’s little theorem any odd number \((2k + 1)\) divides \(2^p(2^{k+1}) - 1\), where \(\phi\) is the Euler’s phi function. Therefore for any \(m \in \mathbb{N}\), there exists \(q \in \mathbb{N}\) such that \(2(2^q - 1)\) is divisible by \(m\). And thus for any rational \(\frac{p}{m} \in \mathbb{Q}\), \(2^{p+q} \cdot \frac{p}{m} \equiv 2^p \cdot \frac{p}{m} \mod 2\pi\) for some \(p, q \in \mathbb{N}\). Which show that the \(\mathcal{O}_S(\alpha \pi)\) is finite iff \(\alpha \in \mathbb{Q}\).

Observation 3: We can transform the above information to the space \([0, 1]\) via the map \(f(\theta) = \sin^2 \theta\). So we conclude that \(\mathcal{O}_T(x)\) is finite iff \(x = \sin^2 2\alpha \pi\) for some rational \(\alpha \in \mathbb{Q}\).

(b) **Invariant measure:** It is easy to see that the Lebesgue measure \(\mathcal{L}\) on \([0, 2\pi]\) is invariant under the transformation \(S\).

Now we’ll construct an invariant measure for \(T\). Consider the measure \(\mathcal{P}\) on \([0, 1]\) defined as

\[
\mathcal{P}([a, b]) = \int_a^b \frac{1}{2\sqrt{x(1-x)}} \, dx = \sin^{-1} \sqrt{b} - \sin^{-1} \sqrt{a}.
\]

(1)

Let \(t^- \in [0, 1]\) be the smallest root of the quadratic equation \(T(x) = t\).

[Note that if \(T(t^-) = t = T(t^+),\) then \(1/2 - t^- = t^+ - 1/2\). Also a simple calculation would yield that \(\sin^{-1} \sqrt{t} = 2\sin^{-1} \sqrt{T^-}\).]

The graph of \(T\) is symmetric with respect to \(x = 1/2\). So a simple picture would yield

\[
\mathcal{P}(T^{-1}[a, b]) = 2\mathcal{P}([a^-, b^-])
\]
\begin{align*}
&= 2 \int_{a}^{b} \frac{1}{2 \sqrt{x(1-x)}} \, dx \\
&= 2 \sin^{-1} \sqrt{b} - 2 \sin^{-1} \sqrt{a} \\
&= \sin^{-1} \sqrt{b} - \sin^{-1} \sqrt{a} \\
&= \mathcal{P}([a, b]).
\end{align*}

So the measure \(\mathcal{P} \) on \([0, 1]\) is invariant under \(T \).

Motivation: The above solution may look not so intuitive. However here is the motivation of the construction of the measure \(\mathcal{P} \).

Observation 1: The Lebesgue measure \(\mathcal{L} \) on \([0, 2\pi]\) is invariant under the transformation \(S(\theta) = 2\theta \).

Observation 2: \((T \circ f)(\theta) = 4 \sin^2 \theta (1 - \sin^2 \theta) = \sin^2 2\theta = (f \circ S)(\theta) \). So we have the following picture.

[In the picture, \(\mu \) is same as the \(\mathcal{P} \) (the picture was drawn before writing up the solution).] Now we are going to use the invariance of the Lebesgue measure \(\mathcal{L} \) on \([0, 2\pi]\) to construct an invariant measure \(\mathcal{P} \) on \([0, 1]\).

Let \(\mathcal{P} \) be a measure on \([0, 1]\) such that

\[\mathcal{P}(B) = \mathcal{L}(f^{-1}(B)). \tag{2} \]

Then for any measurable set \(B \subset [0, 1] \),

\[
\mathcal{P}(T^{-1}(B)) = \mathcal{L}(f^{-1}(T^{-1}(B))) \\
= \mathcal{L}((T \circ f)^{-1}(B)) \\
= \mathcal{L}(f \circ S)^{-1}(B) \\
= \mathcal{L}(S^{-1}(f^{-1}(B))) \\
= \mathcal{L}(f^{-1}(B)) \text{ (since } \mathcal{L} \text{ is invariant under } S) \\
= \mathcal{P}(B).
\]
From the discussion about the orbits, we hope to have ergodic theorem for irrational \(\alpha \). Letting \(u \) be the beginning point. Note that \(\psi \) is invariant under \(T \). Since \(\psi \) are the simple functions supported on disjoint intervals, they are orthogonal to each other. Notice \(\alpha \left\lfloor \frac{k}{2^n} \right\rfloor \) happens only for null set of full set. So \(\alpha \) is ergodic. We notice that \(\alpha = \frac{1}{2}(1 + \sqrt{5}) \), then \(1 - \alpha = \frac{1}{2}(1 - \sqrt{5}) = -\frac{1}{\alpha} \). Using these relations and letting \(u_n = \alpha^n + (1 - \alpha)^n \), we have

\[
\begin{align*}
u_n + u_{n-1} &= \alpha^n + (1 - \alpha)^n + \alpha^{n-1} + (1 - \alpha)^{n-1} \\
&= \alpha^{n-1}(1 + \alpha) + (1 - \alpha)^{n-1}(1 - \alpha + 1) \\
&= \alpha^{n-1} \left(1 - \frac{1}{1 - \alpha} \right) + (1 - \alpha)^{n-1} \left(-\frac{1}{\alpha} + 1 \right) \\
&= -\frac{\alpha^n}{1 - \alpha} \left(1 - \frac{-(1 - \alpha)^n}{\alpha} \right) \\
&= \alpha^{n+1} + (1 - \alpha)^{n+1} \\
&= u_{n+1}.
\end{align*}
\]

Note that \(u_0 = 2, u_1 = 1 \), and hence all \(u_n \) are integers. We also notice that \((1 - \alpha)^n \to 0 \) as \(n \to \infty \). Therefore \(\alpha^n \) is getting close to \(u_n \), which is an integer. As a result, \(\lim_{n\to\infty}(\alpha^n \mod 1) = 0 \). In other words, \(\lim_{n\to\infty}(x_n \mod 1) = 0 \).

Problem 7.15: We notice that

\[
\psi_{n,k} = \begin{cases}
2n/2 & \text{if } k/2^n \leq x < k/2^n + 1/2^{n+1} \\
-2n/2 & \text{if } k/2^n + 1/2^{n+1} \leq x < (k + 1)/2^n \\
0 & \text{otherwise.}
\end{cases}
\]

Since \(\psi_{n,k} \) are the simple functions supported on disjoint intervals, they are orthogonal to each other. Notice that \(\int_0^1 \psi_{n,k}(x) \, dx = 0 \), and for \(m < n \), \(\psi_{m,*}(x) \) are constant on the support of \(\phi_{n,*}(x) \). So \(\langle \psi_{n,i}, \psi_{n,k} \rangle = 0 \) for \(m \neq n \). Therefore \(\bigcup_{n=1}^N B_n \) is an orthogonal set of vectors. We have

\[
V_N = \{ f : f \text{ is constant on } [k/2^n, (k + 1)/2^n) \text{ for all } 0 \leq k \leq 2^N - 1 \}.
\]
Dimension of V_N is the same as that of $\bigcup_{n=0}^N B_n$.

Problem 7.18:

(a) Simple change of variables, \(\int_a^{a+1} e_n(x-a)e_m(x-a) \, dx = \int_0^1 e_n(x)e_m(x) \, dx = \delta_{m,n} \). Similarly, show the completeness.

(b) Similar to part (a).

(c) The elements of B are orthonormal among themselves and so are the elements of B_1. Due to having disjoint support, the elements from B are orthonormal to the elements of B_1.

\[f(x) = f_1(x) + f_2(x) = \sum_{i=1}^{\infty} \langle e_n, f_1 \rangle e_n(x) + \sum_{i=1}^{\infty} \langle e_n, f_2 \rangle e_n(x) \] (all the equalities are in L^2 sense), where $e_n(x) = e_n(x-1)$.

(d) Similar to part (c)