MAT 201B Homework 4

February 16, 2016 Indrajit Jana

THE FOLLOWING SOLUTIONS MAY NOT BE COMPLETE, AND SHOULD BE TREATED AS ROUGH SKETCHES
Problem 7.9:

2, 2.2 2 2 2 2
(ui + c“uy)e — (2cUusty )y = 2Ugtp + 2C°Up UL — 20 Uy — 267Uy,
= 0

u(0,t) = 0 = (1,t) implies that u:(0,¢) = 0 = u,(1,t). Consequently form the above equation, fol (u? +

c?u2)y dor = 0 and thus fol (u? + c?u?); dr =constant.
Problem 7.10: Simple direct verification.
Problem 7.14: Denote f(0) = sin?6, S(0) = 20 mod 27, T(x) = 4a(1 — z).
First Part: If p =1, then a simple calculation will show that 4 sin? 0, (1 — cos? 0,) = sin® 26,,.

Second part: (a) Orbits: [The question asks “what can you say about the orbits?”. It did not ask me to find
the orbits] Let us denote the orbit of « under the transformation T by Or(z) i.e., Or(x) = {x}U{T"(x) : n €
N}. Notice that O7(0) = {0}, Or(1) = {1,0},Or(1/2) = {1/2,1,0}. So we observe that if the trajectory of
x ever hits 1/2; then in the next steps it looks like 1/2 — 1 — 0, and stays at 0 forever.

Observation 2: Let us look at the transformation S : [0,27] — [0,27] defined as S(f) = 20 mod 2.
According to the (generalized) Fermat’s little theorem, any odd number (2k 4 1) divides 2¢(2*+1) — 1, where
¢ is the Euler’s phi function. Therefore for any m € N, there exists ¢ € N such that 2(2¢ — 1) is divisible
by m. And thus for any rational > € N, 2r+a sem = 2P 2 m mod 2w for some p,q € N. Which show that the
Og(am) is finite iff a € Q.

Observation 3: We can transform the above information to the space [0, 1] via the map f(6) = sin? 6. So
we conclude that Op(z) is finite iff 2 = sin? 2a7 for some rational o € Q.

(b) Invariant measure: It is easy to see that the Lebesgue measure £ on [0,27] is invariant under the
transformation S.
Now we’ll construct an invariant measure for 7. Consider the measure P on [0, 1] defined as

b
P([a,b]) = / 2x(11—a:) dz = sin"* Vb — sin~! \/a. (1)

Let t~ € [0, 1] be the smallest root of the quadratic equation T'(z) = t.
[Note that if T(t™) =t = T(t"), then 1/2 —t~ =tT —1/2. Also a simple calculation would yield that
sin~!'vt =2sin"! v t—].

The graph of T is symmetric with respect to x = 1/2. So a simple picture would yield

P(T  a,b) = 2P(fa",b7])


https://en.wikipedia.org/wiki/Fermat's_little_theorem#Generalizations
https://en.wikipedia.org/wiki/Euler's_totient_function

b 1
= 2/@_ 72\/@ dz
= 2sin" ' Vb~ — 2sin"' Va—
sin™' Vb —sin~' Va
= P(a,b]).

So the measure P on [0, 1] is invariant under 7.

Motivation: The above solution may look not so intuitive. However here is the motivation of the
construction of the measure P.
Observation 1: The Lebesgue measure £ on [0, 27] is invariant under the transformation S(0) = 26.
Observation 2: (T o f)(#) = 4sin®0(1 — sin? ) = sin®20 = (f o S)(#). So we have the following
picture.
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[In the picture, u is same as the P (the picture was drawn before writing up the solution).] Now we
are going to use the invariance of the Lebesque measure L on [0,27] to construct an invariant measure
P on [0,1].

Let P be a measure on [0, 1] such that

P(B) = L(f~1(B)). (2)
Then for any measurable set B C [0, 1].

P(TY(B)) = L




Which proves that P is invariant under 7.

Ezplicit construction of P: The function f : [0,2n] — [0, 1] defined as f(#) = sin? @ is not onto, and
for any a € [0,1), f~!(a) has four solutions on [0, 27], one on each of [0, 7/2), [ /2, ), [, 37 /2), [37 /2, 27]
[Drawing a picture might be helpful]. Let 6, € [0,7/2] be the smallest solution. Then from our motiva-
tion and the symmetry, we have

P([a,0]) = L(f'[a,b])

AL([0a, b))

4(9b - ea)

= 4(sin"' Vb —sin~! /a)

b 1
= 4/ ——— dx,
a 2¢/x(1—x)

which is same as the measure P that we had used in our solution above [The constant 4 does not
play any role here].

(c) Ergodic theorem: From the discussion about the orbits, we hope to have ergodic theorem for irrational
beginning point. Note that S is ergodic because S7!([a,b]) = [a,b] iff @ = 0,b = 27. In other words
S71(E) = E happens only for null set of full set. So S is lergodic.

Problem 7.15: Note that if @ = 3(1 4+ V/5), then 1 —a = £(1 — v/5) = —1. Using these relations and
letting u, = @™ + (1 — @)™, we have
Up + Up_q = a” + (1 _a)n +a7l—1 + (1 _ a)n—l
= " Ml+a)+(1-a)" (1 -a+1)

= ot (1 1ia> +(1-a)! (i+1)

_ o (1—a)”
- l—« «

— an+1 =+ (1 _ a)n—i—l
= Up41-

Note that ug = 2,u; = 1, and hence all u, are integers. We also notice that (1 — a)” — 0 as n — 0.
Therefore o™ is getting close to w,,, which is an integer. As a result, lim,,_, (@™ mod 1) = 0. In other words,
lim,, 00 (2, mod 1) =0

Problem 7.17: We notice that

2n/2 if k/2" <z < k2" +1/27F)
Ungp =4 =272 ifk/2n+1/2" T <z < (k+1)/2"
0 otherwise.

Since vy, 1, are the simple functions supported on disjoint intervals, they are orthogonal to each other. Notice

that fol Ynk(x) de =0, and for m < n, ¥,,,.(z) are constant on the support of ¢, .(z). So (Y1, ¥Yn k) =0
for m # n. Therefore UY_,B,, is an orthogonal set of vectors. We have

Vi = {f : f is constant on [k/2V, (k+1)/2V) for all 0 < k < 2V —1}.


https://en.wikipedia.org/wiki/Ergodic_theory#Ergodic_transformations

Dimension of Vi is the same as that of UY_B,,.

Problem 7.18:

(a) Simple change of variables, f;ﬂ

completeness.

en(z—a)en(x—a) dr = fol en(z)em (z) de = 6y . Similarly, show the

(b) Similar to part (a).

(¢) The elements of B are orthonormal among themselves and so are the elements of B;. Due to having
disjoint support, the elements from B are orthonormal to the elements of Bj.
Any function f € L?[0,2] can be written as f(z) = fi(x) + fa(z), where fi(z) = f(x)1p,(x), and
fa(z) = f(z)1(1(x). Due to having disjoint support, ||f|\%2[072] = ||f1||%2[071] + ||f2||%2[172]. Now
f@) = fi(@)+ fa(z) = 2oy (en, i) fr(@) + D52 ek, f2) f2(z) (all the equalities are in L* sense), where
el(r) =e,(z —1).

(d) Similar to part (c)



