MAT 201B

February 16, 2016

Indrajit Jana

The following solutions may not be complete, and should be treated as rough sketches

Problem 7.9:

$$(u_t^2 + c^2 u_x^2)_t - (2c^2 u_t u_x)_x = 2u_t u_{tt} + 2c^2 u_x u_{tx} - 2c^2 u_{xt} u_x - 2c^2 u_t u_{xx}$$

= 0

u(0,t) = 0 = (1,t) implies that $u_t(0,t) = 0 = u_t(1,t)$. Consequently form the above equation, $\int_0^1 (u_t^2 + c^2 u_x^2)_t dx = 0$ and thus $\int_0^1 (u_t^2 + c^2 u_x^2)_t dx = \text{constant}.$

Problem 7.10: Simple direct verification.

Problem 7.14: Denote $f(\theta) = \sin^2 \theta$, $S(\theta) = 2\theta \mod 2\pi$, T(x) = 4x(1-x).

<u>First Part</u>: If $\mu = 1$, then a simple calculation will show that $4\sin^2\theta_n(1-\cos^2\theta_n) = \sin^2 2\theta_n$.

<u>Second part:</u> (a)<u>Orbits:</u> [The question asks "what can you say about the orbits?". It did not ask me to find the orbits] Let us denote the orbit of x under the transformation T by $\mathcal{O}_T(x)$ i.e., $\mathcal{O}_T(x) = \{x\} \cup \{T^n(x) : n \in \mathbb{N}\}$. Notice that $\mathcal{O}_T(0) = \{0\}, \mathcal{O}_T(1) = \{1, 0\}, \mathcal{O}_T(1/2) = \{1/2, 1, 0\}$. So we observe that if the trajectory of x ever hits 1/2, then in the next steps it looks like $1/2 \to 1 \to 0$, and stays at 0 forever.

Observation 2: Let us look at the transformation $S : [0, 2\pi] \to [0, 2\pi]$ defined as $S(\theta) \equiv 2\theta \mod 2\pi$. According to the (generalized) Fermat's little theorem, any odd number (2k+1) divides $2^{\phi(2k+1)} - 1$, where ϕ is the Euler's phi function. Therefore for any $m \in \mathbb{N}$, there exists $q \in \mathbb{N}$ such that $2(2^q - 1)$ is divisible by m. And thus for any rational $\frac{n}{m} \in \mathbb{N}$, $2^{p+q} \frac{n}{m} \pi \equiv 2^p \frac{n}{m} \pi \mod 2\pi$ for some $p, q \in \mathbb{N}$. Which show that the $\mathcal{O}_S(\alpha\pi)$ is finite iff $\alpha \in \mathbb{Q}$.

Observation 3: We can transform the above information to the space [0, 1] via the map $f(\theta) = \sin^2 \theta$. So we conclude that $\mathcal{O}_T(x)$ is finite iff $x = \sin^2 2\alpha\pi$ for some rational $\alpha \in \mathbb{Q}$.

(b)<u>Invariant measure</u>: It is easy to see that the Lebesgue measure \mathcal{L} on $[0, 2\pi]$ is invariant under the transformation S.

Now we'll construct an invariant measure for T. Consider the measure \mathcal{P} on [0, 1] defined as

$$\mathcal{P}([a,b]) = \int_{a}^{b} \frac{1}{2\sqrt{x(1-x)}} \, dx = \sin^{-1}\sqrt{b} - \sin^{-1}\sqrt{a}.$$
(1)

Let $t^- \in [0, 1]$ be the smallest root of the quadratic equation T(x) = t.

[Note that if $T(t^{-}) = t = T(t^{+})$, then $1/2 - t^{-} = t^{+} - 1/2$. Also a simple calculation would yield that $\sin^{-1}\sqrt{t} = 2\sin^{-1}\sqrt{t^{-}}$].

The graph of T is symmetric with respect to x = 1/2. So a simple picture would yield

$$\mathcal{P}(T^{-1}[a,b]) = 2\mathcal{P}([a^-,b^-])$$

$$= 2 \int_{a^{-}}^{b^{-}} \frac{1}{2\sqrt{x(1-x)}} dx$$

= $2 \sin^{-1} \sqrt{b^{-}} - 2 \sin^{-1} \sqrt{a^{-}}$
= $\sin^{-1} \sqrt{b} - \sin^{-1} \sqrt{a}$
= $\mathcal{P}([a, b]).$

So the measure \mathcal{P} on [0,1] is invariant under T.

Motivation: The above solution may look not so intuitive. However here is the motivation of the construction of the measure \mathcal{P} .

<u>Observation 1:</u> The Lebesgue measure \mathcal{L} on $[0, 2\pi]$ is invariant under the transformation $S(\theta) = 2\theta$. <u>Observation 2:</u> $(T \circ f)(\theta) = 4\sin^2\theta(1 - \sin^2\theta) = \sin^2 2\theta = (f \circ S)(\theta)$. So we have the following picture.

[In the picture, μ is same as the \mathcal{P} (the picture was drawn before writing up the solution).] Now we are going to use the invariance of the Lebesgue measure \mathcal{L} on $[0, 2\pi]$ to construct an invariant measure \mathcal{P} on [0, 1].

Let \mathcal{P} be a measure on [0,1] such that

$$\mathcal{P}(B) = \mathcal{L}(f^{-1}(B)). \tag{2}$$

Then for any measurable set $B \subset [0, 1]$.

$$\mathcal{P}(T^{-1}(B)) = \mathcal{L}(f^{-1}(T^{-1}(B)))$$

= $\mathcal{L}((T \circ f)^{-1}(B))$
= $\mathcal{L}((f \circ S)^{-1}(B))$
= $\mathcal{L}(S^{-1}(f^{-1}(B)))$
= $\mathcal{L}(f^{-1}(B))$ (since \mathcal{L} is invariant under S)
= $\mathcal{P}(B).$

Which proves that \mathcal{P} is invariant under T.

<u>Explicit construction of \mathcal{P} </u>: The function $f: [0, 2\pi] \to [0, 1]$ defined as $f(\theta) = \sin^2 \theta$ is not onto, and for any $a \in [0, 1)$, $f^{-1}(a)$ has four solutions on $[0, 2\pi]$, one on each of $[0, \pi/2)$, $[\pi/2, \pi)$, $[\pi, 3\pi/2)$, $[3\pi/2, 2\pi]$ [Drawing a picture might be helpful]. Let $\theta_a \in [0, \pi/2]$ be the smallest solution. Then from our motivation (2) and the symmetry, we have

$$\mathcal{P}([a,b]) = \mathcal{L}(f^{-1}[a,b])$$

$$= 4\mathcal{L}([\theta_a,\theta_b])$$

$$= 4(\theta_b - \theta_a)$$

$$= 4(\sin^{-1}\sqrt{b} - \sin^{-1}\sqrt{a})$$

$$= 4\int_a^b \frac{1}{2\sqrt{x(1-x)}} dx,$$

)

which is same as the measure \mathcal{P} that we had used in our solution above (1) [The constant 4 does not play any role here].

(c)<u>Ergodic theorem</u>: From the discussion about the orbits, we hope to have ergodic theorem for irrational beginning point. Note that S is ergodic because $S^{-1}([a,b]) = [a,b]$ iff $a = 0, b = 2\pi$. In other words $S^{-1}(E) = E$ happens only for null set of full set. So S is ergodic.

Problem 7.15: Note that if $\alpha = \frac{1}{2}(1+\sqrt{5})$, then $1-\alpha = \frac{1}{2}(1-\sqrt{5}) = -\frac{1}{\alpha}$. Using these relations and letting $u_n = \alpha^n + (1-\alpha)^n$, we have

$$u_n + u_{n-1} = \alpha^n + (1 - \alpha)^n + \alpha^{n-1} + (1 - \alpha)^{n-1}$$

= $\alpha^{n-1}(1 + \alpha) + (1 - \alpha)^{n-1}(1 - \alpha + 1)$
= $\alpha^{n-1}\left(1 - \frac{1}{1 - \alpha}\right) + (1 - \alpha)^{n-1}\left(-\frac{1}{\alpha} + 1\right)$
= $-\frac{\alpha^n}{1 - \alpha} - \frac{(1 - \alpha)^n}{\alpha}$
= $\alpha^{n+1} + (1 - \alpha)^{n+1}$
= u_{n+1} .

Note that $u_0 = 2, u_1 = 1$, and hence all u_n are integers. We also notice that $(1 - \alpha)^n \to 0$ as $n \to \infty$. Therefore α^n is getting close to u_n , which is an integer. As a result, $\lim_{n\to\infty} (\alpha^n \mod 1) = 0$. In other words, $\lim_{n\to\infty} (x_n \mod 1) = 0$

Problem 7.17: We notice that

$$\psi_{n,k} = \begin{cases} 2^{n/2} & \text{if } k/2^n \le x < k/2^n + 1/2^{n+1} \\ -2^{n/2} & \text{if } k/2^n + 1/2^{n+1} \le x < (k+1)/2^n \\ 0 & \text{otherwise.} \end{cases}$$

Since $\psi_{n,k}$ are the simple functions supported on disjoint intervals, they are orthogonal to each other. Notice that $\int_0^1 \psi_{n,k}(x) \, dx = 0$, and for m < n, $\psi_{m,\cdot}(x)$ are constant on the support of $\phi_{n,\cdot}(x)$. So $\langle \psi_{n,l}, \psi_{n,k} \rangle = 0$ for $m \neq n$. Therefore $\bigcup_{n=0}^N B_n$ is an orthogonal set of vectors. We have

$$V_N = \{f : f \text{ is constant on } [k/2^N, (k+1)/2^N) \text{ for all } 0 \le k \le 2^N - 1\}.$$

Dimension of V_N is the same as that of $\bigcup_{n=0}^N B_n$.

Problem 7.18:

- (a) Simple change of variables, $\int_{a}^{a+1} e_n(x-a)e_m(x-a) dx = \int_{0}^{1} e_n(x)e_m(x) dx = \delta_{m,n}$. Similarly, show the completeness.
- (b) Similar to part (a).
- (c) The elements of B are orthonormal among themselves and so are the elements of B_1 . Due to having disjoint support, the elements from B are orthonormal to the elements of B_1 .

Any function $f \in L^2[0,2]$ can be written as $f(x) = f_1(x) + f_2(x)$, where $f_1(x) = f(x)\mathbf{1}_{[0,1]}(x)$, and $f_2(x) = f(x)\mathbf{1}_{(1,2]}(x)$. Due to having disjoint support, $||f||^2_{L^2[0,2]} = ||f_1||^2_{L^2[0,1]} + ||f_2||^2_{L^2[1,2]}$. Now $f(x) = f_1(x) + f_2(x) = \sum_{i=1}^{\infty} \langle e_n, f_1 \rangle f_1(x) + \sum_{i=1}^{\infty} \langle e_n^1, f_2 \rangle f_2(x)$ (all the equalities are in L^2 sense), where $e_n^1(x) = e_n(x-1)$.

(d) Similar to part (c)