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The following solutions may not be complete, and should be treated as rough sketches

Problem 8.2: Follows from the definition.

Problem 8.3: (a) implies (b): Since M,N ⊂ H are closed subspaces of H, we can write M⊕M⊥ =

H = N ⊕ N⊥. So any x ∈ H can be decomposed as x = xM + (x − xM) = xN + (x − xN ), where
xM ∈ M, xN ∈ N and xM⊥(x− xM), xN⊥(x− xN ). Now if M ⊂ N , then Qy = y for all y ∈ M. Which
in particular implies that (QP )x = Q(xM) = xM = Px.

(b) implies (a): Let x ∈ M, then Px = x, and thus Qx = QPx = Px = x. Therefore x ∈ N i.e.,
M⊂ N .

(a) implies (c): SinceM⊂ N , we can writeN =M⊕(M⊥∩N ). And we also haveH = N⊕N⊥. There-

foreH =M⊕(M⊥∩N )⊕N⊥ and these three components are orthogonal to each other. So any x ∈ H can be
orthogonally decomposed as x = xM+xM⊥∩N +xN⊥ . Consequently PQx = P (xM+xM⊥∩N ) = xM = Px.

(c) implies (d): Since P,Q are orthogonal projection operators, ‖P‖, ‖Q‖ ≤ 1. Thus for any x ∈ H,
‖Px‖ = ‖PQx‖ ≤ ‖Qx‖.

(d) implies (e):

〈x, Px〉 = 〈xM + (x− xM), xM〉
= ‖xM‖2

≤ ‖xN ‖2 (since ‖xM‖2 = ‖Px‖2 ≤ ‖Qx‖2 = ‖xN ‖2)

= 〈x, xN 〉
= 〈x,Qx〉.

(e) implies (a): Let x ∈ N⊥, then Qx = 0. Consequently, ‖xM‖2 = 〈x, Px〉 ≤ 〈x,Qx〉 = 0, which

implies that xM = 0 and thus x ∈ M⊥. Therefore N⊥ ⊂ M⊥. Since M,N are closed, we can conclude
that M =M⊥⊥ ⊂ N⊥⊥ = N .

Problem 8.4: First part: Let x ∈ H = ∪∞n=1ranPn. Then there exists Nx ∈ N such that x ∈ ranPn for

all n ≥ Nx. Which implies that x = Pnx for all n ≥ Nx. In other words, ‖Pnx− Ix‖ → 0 as n→∞.1

Second part: Obviously if Pn = I for all sufficiently large n, then we have limn→∞ ‖Pn − I‖op = 0. Con-
versely, if Pn 6= I for all n ∈ N, then for each n there exists xn ∈ kerPn such that ‖xn‖ = 1. In that case,

1If H = ∪∞n=1ranPn, then for any x ∈ H and any ε > 0 we can find y ∈ ∪∞n=1ranPn such that ‖x− y‖ < ε. Now there exists
Ny ∈ N such that y ∈ ranPn for all n ≥ Ny . Therefore Pny = y for all n ≥ Ny , and thus ‖Pnx−x‖ = ‖Pnx−Pny‖+‖y−x‖ ≤
(1 + ‖Pn‖op)‖x− y‖ < 2ε. Which proves that even if H = ∪∞n=1ranPn, Pn → I strongly.
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‖Pn − I‖op ≥ ‖Pnxn − xn‖ = ‖xn‖ = 1 6→ 0 as n→∞.

Problem 8.6: First part: Obviously if U : H1 → H2 is unitary then U is an isometric isomorphism
between H1 and H2 as a normed linear spaces.

Conversely, suppose U : H1 → H2 is an isometric isomorphism between H1 and H2 as normed linear
spaces. Then isomorphism implies that U is invertible. In addition, the isometry implies that for any
x, y ∈ H1 we have ‖Ux‖H2 = ‖x‖H1 , ‖Uy‖H2 = ‖y‖H1 , and ‖U(x+ y)‖H2 = ‖x+ y‖H1 . Combining all these
we obtain

〈U(x+ y), U(x+ y)〉H2 = 〈x+ y, x+ y〉H1

⇒ 〈Ux,Uy〉H2 + 〈Uy,Ux〉H2 = 〈x, y〉H1 + 〈y, x〉H1

⇒ Re〈Ux,Uy〉H2 = Re〈x, y〉H1 .

Similarly, using the fact that 〈U(x+iy), U(x+iy)〉H2 = 〈x+iy, x+iy〉H1 , we can prove that Im〈Ux,Uy〉H2 =
Im〈x, y〉H1 . As a result we have

〈Ux,Uy〉H2 = 〈x, y〉H1 ∀ x, y ∈ H1.

Second part: U : H1 → H2 is invertible iff U−1 : H2 → H1 is invertible. Secondly U is unitary iff

〈Ux,Uy〉H2
= 〈x, y〉H1

∀ x, y ∈ H1

⇐⇒ 〈Ux,Uy〉H2
= 〈U−1(Ux), U−1(Uy)〉H1

∀ x, y ∈ H1

⇐⇒ 〈s, t〉H2
= 〈U−1(s), U−1(t)〉H1

∀ s, t ∈ H2,

which proves the result.

Problem 8.7: Note that by Cachy-Schwarz inequality, |φy(x)| = |〈y, x〉| ≤ ‖x‖‖y‖. Which implies that
‖φy‖ ≤ ‖y‖. Secondly, φy(y/‖y‖) = ‖y‖. Therefore ‖φy‖ = ‖y‖.

Problem 8.8: Note that for any y, z ∈ H, µ, λ ∈ C we have µφy(x) + λφz(x) = µ〈y, x〉 + λ〈z, x〉 =
〈µ̄y + λ̄z, x〉 = φµ̄y+λ̄z(x). Using this fact, we can validate that the inner product is linear and satisfies all
the other properties of inner product. Completeness of H∗ follows directly from the completeness of H.

Problem 8.9: First part: Let {xn}n, {yn}n ⊂M be two sequences inM such that limn→∞ ‖xn − x‖ =
0 = limn→∞ ‖yn−x‖. But since φ is bounded, |φ(xn)−φ(yn)| ≤ ‖φ‖‖xn−yn‖ ≤ ‖φ‖(‖xn−x‖+‖x−yn‖)→ 0
as n→∞. Therefore φ(x) := limn→∞ φ(xn) is well defined.

Second part: If the index set I is countable, then the necessary and sufficient condition is
∑
α |cα|2 <∞.

Since {uα} is an ONB, any x ∈ H can be written as x =
∑
α〈uα, x〉uα. Now suppose

∑
α |cα|2 < ∞,

then we can construct c ∈ H where the αth component of c is cα w.r.to the basis {uα}. And we see that
φc(uα) = cα = φ(uα). Therefore from problem 8.7, ‖φ‖ = ‖φc‖ = ‖c‖ <∞.

Conversely, suppose ‖φ‖ < ∞. Let us define Cn = (c̄1, c̄2, . . . , c̄n, 0, 0, 0, . . .) with respect to the basis
{uα}. Then ‖Cn‖2 =

∑n
α=1 |cα|2 = φ(Cn) ≤ ‖φ‖‖Cn‖. Which implies that ‖Cn‖ ≤ ‖φ‖. Since this is true

for all n and the right hand side does not depend on n, we can conclude that
∑
α |cα|2 <∞.
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If the index set I is not countable, then using the first part and the above discussion, we can conclude
the necessary and sufficient condition is supF :finite

∑
F⊂I |cα|2 <∞.

Problem 8.11: First part: Let dimH = n ≥ k = dim kerA. Let Bk := {u1, . . . , uk} be an ONB of kerA.
Extend Bk to an ONB of H as Bn = Bk ∪ {uk+1, . . . , un}. Now obviously, ranA = span{A(ui) : 1 ≤ i ≤ n},
but A(ui) = 0 for all 1 ≤ i ≤ k. Therefore ranA = span{A(ui) : k+ 1 ≤ i ≤ n} and thus dim ran A ≤ n− k.
It suffices to show that A(uk+1), . . . , A(un) are independent.

Suppose there exists ck+1, . . . , cn ∈ C such that at least one of the ci 6= 0 and 0 =
∑n
i=k+1 ciA(ui) =

A
(∑n

i=k+1 ciui
)
. Then

∑n
i=k+1 ciui ∈ kerA = span{u1, . . . , uk}. Which contradicts the fact that Bn =

{u1, . . . , un} is an ONB of H. Therefore A(uk+1), . . . , A(un) are independent and thus dim ran A = n−k =
dimH− dim kerA.

Second part: Notice that for any x ∈ kerA, and any y ∈ H we have 0 = 〈y,Ax〉 = 〈A∗y, x〉. Which

implies that kerA = (ran A∗)⊥. Therefore dim kerA = dim(ran A∗)⊥ = dimH− dim ranA∗ = dim kerA∗.

Problem 8.12: Since A = A∗, from the second part of problem 8.11, we obtain kerA = (ranA)⊥. Now
if x ∈ kerA, then we have ‖x‖ ≤ 1

c‖Ax‖ = 0 i.e., x = 0. In other words kerA = {0} = (ranA)⊥. Therefore

H = {0}⊥ = (ranA)⊥⊥ = ranA. It suffices to show that ranA = ranA. Let {Axn}n be a Cauchy sequence
in ranA, then ‖xn − xm‖ ≤ 1

c‖Axn −Axm‖ → 0 as n→∞. Which implies that {xn}n is Cauchy in H, and
thus xn → x ∈ H as n→∞. Since A is bounded ‖Axn −Ax‖ → 0. Which proves that ranA is closed.

Let x1, x2 ∈ H such that Ax1 = y = Ax2. Then ‖x1 − x2‖ ≤ 1
c‖Ax1 − Ax2‖ = 0. Which implies that

x1 = x2 i.e,. the solution of Ax = y is unique.
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