MAT 201B

February 23, 2016

Indrajit Jana

The following solutions may not be complete, and should be treated as rough sketches

Problem 8.2: Follows from the definition.

Problem 8.3: (a) implies (b): Since $\mathcal{M}, \mathcal{N} \subset \mathcal{H}$ are closed subspaces of \mathcal{H} , we can write $\mathcal{M} \oplus \mathcal{M}^{\perp} = \mathcal{H} = \mathcal{N} \oplus \mathcal{N}^{\perp}$. So any $x \in \mathcal{H}$ can be decomposed as $x = x_{\mathcal{M}} + (x - x_{\mathcal{M}}) = x_{\mathcal{N}} + (x - x_{\mathcal{N}})$, where $x_{\mathcal{M}} \in \mathcal{M}, x_{\mathcal{N}} \in \mathcal{N}$ and $x_{\mathcal{M}} \perp (x - x_{\mathcal{M}}), x_{\mathcal{N}} \perp (x - x_{\mathcal{N}})$. Now if $\mathcal{M} \subset \mathcal{N}$, then Qy = y for all $y \in \mathcal{M}$. Which in particular implies that $(QP)x = Q(x_{\mathcal{M}}) = x_{\mathcal{M}} = Px$.

(b) implies (a): Let $x \in \mathcal{M}$, then Px = x, and thus Qx = QPx = Px = x. Therefore $x \in \mathcal{N}$ i.e., $\mathcal{M} \subset \mathcal{N}$.

(a) implies (c): Since $\mathcal{M} \subset \mathcal{N}$, we can write $\mathcal{N} = \mathcal{M} \oplus (\mathcal{M}^{\perp} \cap \mathcal{N})$. And we also have $\mathcal{H} = \mathcal{N} \oplus \mathcal{N}^{\perp}$. Therefore $\mathcal{H} = \mathcal{M} \oplus (\mathcal{M}^{\perp} \cap \mathcal{N}) \oplus \mathcal{N}^{\perp}$ and these three components are orthogonal to each other. So any $x \in \mathcal{H}$ can be orthogonally decomposed as $x = x_{\mathcal{M}} + x_{\mathcal{M}^{\perp} \cap \mathcal{N}} + x_{\mathcal{N}^{\perp}}$. Consequently $PQx = P(x_{\mathcal{M}} + x_{\mathcal{M}^{\perp} \cap \mathcal{N}}) = x_{\mathcal{M}} = Px$.

(c) implies (d): Since P, Q are orthogonal projection operators, $||P||, ||Q|| \le 1$. Thus for any $x \in \mathcal{H}$, $||Px|| = ||PQx|| \le ||Qx||$.

(d) implies (e):

<

$$\begin{aligned} x, Px \rangle &= \langle x_{\mathcal{M}} + (x - x_{\mathcal{M}}), x_{\mathcal{M}} \rangle \\ &= \|x_{\mathcal{M}}\|^2 \\ &\leq \|x_{\mathcal{N}}\|^2 \quad (\text{since } \|x_{\mathcal{M}}\|^2 = \|Px\|^2 \le \|Qx\|^2 = \|x_{\mathcal{N}}\|^2) \\ &= \langle x, x_{\mathcal{N}} \rangle \\ &= \langle x, Qx \rangle. \end{aligned}$$

<u>(e) implies (a)</u>: Let $x \in \mathcal{N}^{\perp}$, then Qx = 0. Consequently, $||x_{\mathcal{M}}||^2 = \langle x, Px \rangle \leq \langle x, Qx \rangle = 0$, which implies that $x_{\mathcal{M}} = 0$ and thus $x \in \mathcal{M}^{\perp}$. Therefore $\mathcal{N}^{\perp} \subset \mathcal{M}^{\perp}$. Since \mathcal{M}, \mathcal{N} are closed, we can conclude that $\mathcal{M} = \mathcal{M}^{\perp \perp} \subset \mathcal{N}^{\perp \perp} = \mathcal{N}$.

Problem 8.4: <u>First part:</u> Let $x \in \mathcal{H} = \bigcup_{n=1}^{\infty} \operatorname{ran} P_n$. Then there exists $N_x \in \mathbb{N}$ such that $x \in \operatorname{ran} P_n$ for all $n \geq N_x$. Which implies that $x = P_n x$ for all $n \geq N_x$. In other words, $||P_n x - Ix|| \to 0$ as $n \to \infty$.¹

<u>Second part</u>: Obviously if $P_n = I$ for all sufficiently large n, then we have $\lim_{n\to\infty} ||P_n - I||_{op} = 0$. Conversely, if $P_n \neq I$ for all $n \in \mathbb{N}$, then for each n there exists $x_n \in \ker P_n$ such that $||x_n|| = 1$. In that case,

¹If $\mathcal{H} = \overline{\bigcup_{n=1}^{\infty} \operatorname{ran} P_n}$, then for any $x \in \mathcal{H}$ and any $\epsilon > 0$ we can find $y \in \bigcup_{n=1}^{\infty} \operatorname{ran} P_n$ such that $||x - y|| < \epsilon$. Now there exists $N_y \in \mathbb{N}$ such that $y \in \operatorname{ran} P_n$ for all $n \ge N_y$. Therefore $P_n y = y$ for all $n \ge N_y$, and thus $||P_n x - x|| = ||P_n x - P_n y|| + ||y - x|| \le (1 + ||P_n||_{op})||x - y|| < 2\epsilon$. Which proves that even if $\mathcal{H} = \overline{\bigcup_{n=1}^{\infty} \operatorname{ran} P_n}$, $P_n \to I$ strongly.

 $||P_n - I||_{op} \ge ||P_n x_n - x_n|| = ||x_n|| = 1 \not\to 0 \text{ as } n \to \infty.$

Problem 8.6: First part: Obviously if $U : \mathcal{H}_1 \to \mathcal{H}_2$ is unitary then U is an isometric isomorphism between \mathcal{H}_1 and \mathcal{H}_2 as a normed linear spaces.

Conversely, suppose $U : \mathcal{H}_1 \to \mathcal{H}_2$ is an isometric isomorphism between \mathcal{H}_1 and \mathcal{H}_2 as normed linear spaces. Then isomorphism implies that U is invertible. In addition, the isometry implies that for any $x, y \in \mathcal{H}_1$ we have $\|Ux\|_{\mathcal{H}_2} = \|x\|_{\mathcal{H}_1}, \|Uy\|_{\mathcal{H}_2} = \|y\|_{\mathcal{H}_1}$, and $\|U(x+y)\|_{\mathcal{H}_2} = \|x+y\|_{\mathcal{H}_1}$. Combining all these we obtain

$$\langle U(x+y), U(x+y) \rangle_{\mathcal{H}_2} = \langle x+y, x+y \rangle_{\mathcal{H}_1} \Rightarrow \quad \langle Ux, Uy \rangle_{\mathcal{H}_2} + \langle Uy, Ux \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1} + \langle y, x \rangle_{\mathcal{H}_1} \Rightarrow \quad Re \langle Ux, Uy \rangle_{\mathcal{H}_2} = Re \langle x, y \rangle_{\mathcal{H}_1}.$$

Similarly, using the fact that $\langle U(x+iy), U(x+iy) \rangle_{\mathcal{H}_2} = \langle x+iy, x+iy \rangle_{\mathcal{H}_1}$, we can prove that $Im \langle Ux, Uy \rangle_{\mathcal{H}_2} = Im \langle x, y \rangle_{\mathcal{H}_1}$. As a result we have

$$\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1} \quad \forall x, y \in \mathcal{H}_1.$$

Second part: $U: \mathcal{H}_1 \to \mathcal{H}_2$ is invertible iff $U^{-1}: \mathcal{H}_2 \to \mathcal{H}_1$ is invertible. Secondly U is unitary iff

$$\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1} \quad \forall x, y \in \mathcal{H}_1 \Leftrightarrow \qquad \langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle U^{-1}(Ux), U^{-1}(Uy) \rangle_{\mathcal{H}_1} \quad \forall x, y \in \mathcal{H}_1 \Leftrightarrow \qquad \langle s, t \rangle_{\mathcal{H}_2} = \langle U^{-1}(s), U^{-1}(t) \rangle_{\mathcal{H}_1} \quad \forall s, t \in \mathcal{H}_2,$$

which proves the result.

Problem 8.7: Note that by Cachy-Schwarz inequality, $|\phi_y(x)| = |\langle y, x \rangle| \le ||x|| ||y||$. Which implies that $||\phi_y|| \le ||y||$. Secondly, $\phi_y(y/||y||) = ||y||$. Therefore $||\phi_y|| = ||y||$.

Problem 8.8: Note that for any $y, z \in \mathcal{H}$, $\mu, \lambda \in \mathbb{C}$ we have $\mu \phi_y(x) + \lambda \phi_z(x) = \mu \langle y, x \rangle + \lambda \langle z, x \rangle = \langle \bar{\mu}y + \bar{\lambda}z, x \rangle = \phi_{\bar{\mu}y + \bar{\lambda}z}(x)$. Using this fact, we can validate that the inner product is linear and satisfies all the other properties of inner product. Completeness of \mathcal{H}^* follows directly from the completeness of \mathcal{H} .

Problem 8.9: First part: Let $\{x_n\}_n, \{y_n\}_n \subset \mathcal{M}$ be two sequences in \mathcal{M} such that $\lim_{n\to\infty} ||x_n - x|| = 0 = \lim_{n\to\infty} ||y_n - x||$. But since ϕ is bounded, $|\phi(x_n) - \phi(y_n)| \leq ||\phi|| ||x_n - y_n|| \leq ||\phi|| (||x_n - x|| + ||x - y_n||) \to 0$ as $n \to \infty$. Therefore $\phi(x) := \lim_{n\to\infty} \phi(x_n)$ is well defined.

<u>Second part</u>: If the index set I is countable, then the necessary and sufficient condition is $\sum_{\alpha} |c_{\alpha}|^2 < \infty$. Since $\{u_{\alpha}\}$ is an ONB, any $x \in \mathcal{H}$ can be written as $x = \sum_{\alpha} \langle u_{\alpha}, x \rangle u_{\alpha}$. Now suppose $\sum_{\alpha} |c_{\alpha}|^2 < \infty$, then we can construct $c \in \mathcal{H}$ where the α th component of c is c_{α} w.r.to the basis $\{u_{\alpha}\}$. And we see that $\phi_{c}(u_{\alpha}) = c_{\alpha} = \phi(u_{\alpha})$. Therefore from problem 8.7, $\|\phi\| = \|\phi_{c}\| = \|c\| < \infty$.

Conversely, suppose $\|\phi\| < \infty$. Let us define $C_n = (\bar{c}_1, \bar{c}_2, \dots, \bar{c}_n, 0, 0, 0, \dots)$ with respect to the basis $\{u_\alpha\}$. Then $\|C_n\|^2 = \sum_{\alpha=1}^n |c_\alpha|^2 = \phi(C_n) \le \|\phi\| \|C_n\|$. Which implies that $\|C_n\| \le \|\phi\|$. Since this is true for all n and the right hand side does not depend on n, we can conclude that $\sum_{\alpha} |c_{\alpha}|^2 < \infty$.

If the index set I is not countable, then using the *first part* and the above discussion, we can conclude the necessary and sufficient condition is $\sup_{F:\text{finite}} \sum_{F \subset I} |c_{\alpha}|^2 < \infty$.

Problem 8.11: *First part:* Let dim $\mathcal{H} = n \ge k = \dim \ker A$. Let $B_k := \{u_1, \ldots, u_k\}$ be an ONB of ker A. Extend B_k to an ONB of \mathcal{H} as $B_n = B_k \cup \{u_{k+1}, \ldots, u_n\}$. Now obviously, $\operatorname{ran} A = \operatorname{span} \{A(u_i) : 1 \le i \le n\}$, but $A(u_i) = 0$ for all $1 \le i \le k$. Therefore $\operatorname{ran} A = \operatorname{span} \{A(u_i) : k+1 \le i \le n\}$ and thus dim $\operatorname{ran} A \le n-k$. It suffices to show that $A(u_{k+1}), \ldots, A(u_n)$ are independent.

Suppose there exists $c_{k+1}, \ldots, c_n \in \mathbb{C}$ such that at least one of the $c_i \neq 0$ and $0 = \sum_{i=k+1}^n c_i A(u_i) = A\left(\sum_{i=k+1}^n c_i u_i\right)$. Then $\sum_{i=k+1}^n c_i u_i \in \ker A = \operatorname{span}\{u_1, \ldots, u_k\}$. Which contradicts the fact that $B_n = \{u_1, \ldots, u_n\}$ is an ONB of \mathcal{H} . Therefore $A(u_{k+1}), \ldots, A(u_n)$ are independent and thus dim ran $A = n - k = \dim \mathcal{H} - \dim \ker A$.

<u>Second part</u>: Notice that for any $x \in \ker A$, and any $y \in \mathcal{H}$ we have $0 = \langle y, Ax \rangle = \langle A^*y, x \rangle$. Which implies that ker $A = (\operatorname{ran} A^*)^{\perp}$. Therefore dim ker $A = \dim(\operatorname{ran} A^*)^{\perp} = \dim \mathcal{H} - \dim \operatorname{ran} A^* = \dim \ker A^*$.

Problem 8.12: Since $A = A^*$, from the second part of problem 8.11, we obtain ker $A = (\operatorname{ran} A)^{\perp}$. Now if $x \in \ker A$, then we have $||x|| \leq \frac{1}{c} ||Ax|| = 0$ i.e., x = 0. In other words ker $A = \{0\} = (\operatorname{ran} A)^{\perp}$. Therefore $\mathcal{H} = \{0\}^{\perp} = (\operatorname{ran} A)^{\perp \perp} = \overline{\operatorname{ran} A}$. It suffices to show that $\operatorname{ran} A = \overline{\operatorname{ran} A}$. Let $\{Ax_n\}_n$ be a Cauchy sequence in ranA, then $||x_n - x_m|| \leq \frac{1}{c} ||Ax_n - Ax_m|| \to 0$ as $n \to \infty$. Which implies that $\{x_n\}_n$ is Cauchy in \mathcal{H} , and thus $x_n \to x \in \mathcal{H}$ as $n \to \infty$. Since A is bounded $||Ax_n - Ax|| \to 0$. Which proves that $\operatorname{ran} A$ is closed.

Let $x_1, x_2 \in \mathcal{H}$ such that $Ax_1 = y = Ax_2$. Then $||x_1 - x_2|| \leq \frac{1}{c} ||Ax_1 - Ax_2|| = 0$. Which implies that $x_1 = x_2$ i.e., the solution of Ax = y is unique.