
MAT 201B Homework 6

March 7, 2016 Indrajit Jana

The following solutions may not be complete, and should be treated as rough sketches

Problem 8.1: (a) Clearly, if x+M,y +M ∈ X\M , then for any λ, µ ∈ C we have

λ(x+M) + µ(y +M) = (λx+ µy) +M ∈ X\M.

Therefore X\M is a linear space.
(b) Define the function φ : N → X\M as φ(x) = x+M . It is easy to see that φ is a linear isomorphism.
(c) This is not true in general. For example, we can take an unbounded linear functional φ : X → C.

Then the co-dimension of M = kerφ is one in X. But φ being unbounded, kerφ is not closed in X. Con-
struction of such functional can be done using the axiom of choice and Hamel basis.

Problem 8.10: From problem 8.8, we conclude that {φuα} is an orthogonal set of vectors. Secondly,
for any u ∈ H we notice that

〈φu, x〉 = 〈u, x〉

=

〈∑
α

〈u, uα〉uα, x

〉
=

∑
α

〈u, uα〉〈uα, x〉

=
∑
α

〈φu, φuα〉φuα(x).

Therefore {φuα} is an ONB of H∗.

Problem 8.13: If {uα} is an orthogonal set. Then {uα} is an ONB iff for any x ∈ H,

x =
∑
α

〈x, uα〉uα

⇐⇒ I(x) =
∑
α

(uα ⊗ uα)(x).

In other words,
∑
α uα ⊗ uα = I.

Problem 8.14: The given condition implies that 〈x, (A − B)y〉 = 0 for all x, y ∈ H. Therefore
(A−B)y = 0 for all y ∈ H i.e., A = B.

For any x, y ∈ H we have

〈x+ y, (A−B)(x+ y)〉 = 0

i.e., 〈x, (A−B)x〉+ 〈y, (A−B)y〉+ 〈x, (A−B)y〉+ 〈y, (A−B)x〉 = 0

i.e., 〈x, (A−B)y〉+ 〈y, (A−B)x〉 = 0.
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Similarly, 〈x+ iy, (A−B)(x+ iy)〉 = 0 gives us 〈x, (A−B)y〉 − 〈y, (A−B)x〉 = 0. As a result we have
〈x, (A−B)y〉 = 0. So from the previous part, A = B.

If H is a real Hilbert space, then we can only have 〈x, (A−B)y〉+ 〈y, (A−B)x〉 = 0. Which implies that
A−B = −(A−B)∗. Now if both A and B are self adjoint then we can have 〈x, (A−B)y〉 = 0 i.e., A = B.

Problem 8.15: (a) 〈x,A∗∗y〉 = 〈A∗x, y〉 = 〈x,Ay〉.
(b) 〈x, (AB)∗y〉 = 〈ABx, y〉 = 〈Bx,A∗y〉 = 〈x,B∗A∗y〉.
(c) 〈x, (λA)∗y〉 = 〈λAx, y〉 = λ̄〈Ax, y〉 = 〈x, λ̄A∗y〉.
(d) 〈x, (A+B)∗y〉 = 〈(A+B)x, y〉 = 〈Ax, y〉+ 〈Bx, y〉 = 〈x,A∗y〉+ 〈x,B∗y〉 = 〈x, (A∗ +B∗)y〉.
(e) Note that if x, y ∈ H, such that x 6= 0 and ‖y‖ = 1 then |〈x, y〉| ≤ ‖x‖, and |〈x, x/‖x‖〉| = ‖x‖.

Therefore we can conclude that

‖x‖ = sup
y:‖y‖=1

|〈x, y〉| = sup
y:‖y‖=1

|〈y, x〉|.

Using the above, we have

‖A‖ = sup
x:‖x‖=1

‖Ax‖

= sup
x:‖x‖=1

sup
y:‖y‖=1

|〈Ax, y〉|

= sup
x:‖x‖=1

sup
y:‖y‖=1

|〈x,A∗y〉|

= sup
y:‖y‖=1

‖A∗y‖

= ‖A∗‖.

Problem 8.16: It was already shown in the book that 〈Uf,Ug〉 = 〈f, g〉 for all f, g ∈ L2(Ω, P ). Also
for any f ∈ L2(Ω, P ), U(f ◦ T−1) = f . Therefore U is invertible.

Problem 8.17: Let {xn}n ⊂ H be a sequence such that ‖xn − x‖ → 0 for some x ∈ H. Then for any
y ∈ H we have |〈xn, y〉 − 〈x, y〉| ≤ ‖xn − x‖‖y‖ → 0 as n→∞. Which implies that xn ⇀ x.

Let dimH = k <∞, and {u1, . . . , uk} be an ONB of H. Now if xn ⇀ x, then we have 〈xn, ui〉 → 〈x, ui〉
for all 1 ≤ i ≤ k. As a result we have

‖xn − x‖2 =

k∑
i=1

|〈xn − x, ui〉|2 → 0 as n→∞.

Problem 8.19: Consider the Hilbert spaceH1 := H⊕R, and define K := {(x, a) ∈ H1 : f(x) ≤ a} ⊂ H1.
Since f is convex, for any (x, a), (y, b) ∈ K we have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ≤ ta+ (1− t)b i.e.,
t(x, a) + (1− t)(y, b) ∈ K. Therefore K is convex.

Secondly, let K 3 (xn, an) → (x, a) ∈ H1 strongly. Then, since f is strongly lower-semicontinuous,
f(x) ≤ lim inf f(xn) ≤ lim inf an = a, which implies that (x, a) ∈ K and thus K is strongly closed. Therefore
by Mazur’s lemma, K is weakly closed.

Now let H 3 xn ⇀ x ∈ H. Construct a subsequence {xnk} such that f(xnk) ≤ mk + 1
k , where mk+1 =

infn≥nk f(xn), and thus (xnk ,mk + 1/k) ∈ K. Since limk→∞mk = lim inf f(xn), and xn ⇀ x, we conclude
that K 3 (xnk ,mk + 1/k) ⇀ (x, lim inf f(xn)). But K is weakly closed, therefore (x, lim inf f(xn)) ∈ K. As
a result

f(x) ≤ lim inf f(xn).
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