$$
\text { half- } T=\frac{\ln 2}{k} \Rightarrow k=\frac{\ln 2}{T}=\frac{\ln 2}{5,700}
$$

Find t so that

$$
\begin{aligned}
& e^{-k t}=0.7 \\
& -k t=\ln 0.7 \\
& t=\frac{-\ln 0.7}{k} \\
& =\frac{-\ln 0.7}{\ln 2} \cdot 5,700
\end{aligned}
$$

2. A spring has a natural length of 2 m . A force of 30 N holds the spring stretched to a total length of 3 m. a) Find the force constant. b) How much work will it take to stretch the spring 2 m beyond its natural length?

$30=k(3-2)$
$\Rightarrow k=30$

3. Find the center of mass of a thin plate covering the region between the x-axis and the curve $y=$ $1 / x^{2}, 1 \leq x \leq 4$, if the plate's density at the point (x, y) is $\delta(x)=x^{2}$.

$$
M=\int_{1_{4}}^{4} \delta(x) \cdot \frac{1}{x^{2}} d x=\int_{1}^{4} x^{2} \cdot \frac{1}{x^{2}} d x=3
$$

$$
M_{y}=\int_{1}^{4} x \delta(x) \cdot \frac{1}{x^{2}} d x=\int_{1}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{1} ^{4}=\frac{15}{2}
$$

$$
M_{x}=\int_{1}^{1} \frac{1}{2 x^{2}} \cdot \delta(x) \cdot \frac{1}{x^{2}} d x=\int_{1}^{4} \frac{1}{2 x^{2}} d x=-\left.\frac{1}{2 x}\right|_{1} ^{4}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8} .
$$

4. The graph of the equation $x^{2 / 3}+y^{2 / 3}=1$ is one of a family of curves called astroids because of their starlike appearance. Find the length of this particular astroid by finding the length of half of the
first-quadrant portion, $y=\left(1-x^{2 / 3}\right)^{3 / 2}, \sqrt{2} / 4 \leq x \leq 1$, and multiplying by 8 .

$$
\begin{aligned}
& l=b \int_{\frac{\sqrt{2}}{4}}^{1} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x \\
& \text { Now, } \quad \begin{aligned}
y^{\prime}(x) & =\frac{3}{2}\left(1-x^{\frac{2}{3}}\right)^{\frac{1}{2}} \cdot\left(-\frac{2}{3} x^{-\frac{1}{3}}\right) \\
& =-x^{-\frac{1}{3}}\left(1-x^{\frac{2}{3}}\right)^{\frac{1}{2}} \\
& =-\left(-1+x^{-\frac{2}{3}}\right)^{\frac{1}{2}}
\end{aligned}
\end{aligned}
$$

Thus, $\sqrt{1+\left(y^{\prime}\right)^{2}}=\sqrt{1-1+x^{-\frac{2}{3}}}$
$=x^{-\frac{1}{3}}$, and

$$
\left.l=8 \int_{\frac{\sqrt{2}}{4}}^{2} x^{-\frac{1}{3}}=8 \cdot \frac{3}{2} x^{\frac{2}{3}}\right]_{\frac{\sqrt{2}}{4}}^{1}=
$$

5. Evaluate the integral $\int x^{2} e^{x} d x$.

$$
\begin{aligned}
& \int x^{2} e^{x} d x \\
= & \int\left(e^{x}\right)^{\prime} x^{2} d x=e^{x} x^{2}-\int\left(e^{x}\right)\left(x^{2}\right)^{\prime} d x \\
= & e^{x} \cdot x^{2}-2 \int e^{x} \cdot x d x \\
= & e^{x} \cdot x^{2}-2 \int\left(e^{x}\right)^{\prime} \cdot x d x \\
= & \left.e^{x} \cdot x^{2}-2 \int e^{x} \cdot x-\int e^{x} \cdot(x)^{\prime} d x\right] \\
= & e^{x} \cdot x^{2}-2 x e^{x}+\int e^{x} d x \\
= & e^{x} \cdot x^{2}-2 x e^{x}+e^{x}+c
\end{aligned}
$$

