1. Find indefinite integral in a) and definite integral in b).
a)

$$
\int t^{-2} d t
$$

b)

$$
\int_{0}^{1}\left(10 e^{-x}+\cos x\right) d x
$$

a) $\int t^{-2} d t=-\frac{1}{t}+C$

$$
\begin{aligned}
& \text { b) } \int_{0}^{1}\left(10 e^{-x}+\cos x\right) d x \\
& =10 \int_{0}^{1} e^{-x} d x+\int_{0}^{1} \cos x d x
\end{aligned}
$$

(by Fundamental The of Calculus)

$$
\begin{aligned}
& =\left.10 \cdot\left(-e^{-x}\right)\right|_{0} ^{1}+\left.\sin x\right|_{0} ^{1} \\
& =10\left(-\frac{1}{e}+1\right)+\sin 1-\sin 0 \\
& =10\left(1-e^{-1}\right)+\sin 1
\end{aligned}
$$

2. Suppose that $\int_{1}^{x} f(t) d t=x^{2}-2 x+1$. Find $f(x)$.

By the Fundamental Tho of Calculus,

$$
\frac{d}{d x} \int_{1}^{x} f(t) d t=f(x)
$$

Thus, $f(x)=\left(x^{2}-2 x+1\right)^{\prime}=2 x-2$
3. Find the area of the region enclosed by the curves $y=-x^{2}+4$ and the line $y=3|x|$.

$$
\begin{array}{ll}
-x^{2}+4=3 x & , \quad x>0 \\
x^{2}+3 x-4=0, & x>0 \\
(x+4)(x-1)=0, & x>0 \quad \Rightarrow x=1
\end{array}
$$

$$
\text { Area }=2 \int_{0}^{1}\left(-x^{2}+4\right)-3 x d x
$$

$$
\begin{aligned}
=2 \int_{0}^{1}-x^{2} d x+2 \int_{0}^{1} 4 d x & +2 \int_{0}^{1}-3 x d x
\end{aligned}=-\left.\frac{2}{3} x^{3}\right|_{0} ^{1}+8-\left.3 x^{2}\right|^{1}=-\frac{2}{3}+8-3=\ldots .
$$

4. Find the volume of the solid generated by revolving the region bounded by the lines and curves

$$
\begin{aligned}
& \text { Method of washers } \\
& \text { Volume }=\int_{0}^{1} \pi\left(2 e^{x}\right)^{2}-\pi\left(e^{-x}\right)^{2} d x \\
& =4 \pi \int_{0}^{1} e^{2 x} d x-\pi \int_{0}^{1} e^{-2 x} d x \\
& = \\
& \left.2 \pi e^{2 x}\right|_{0} ^{1}+\left.\frac{\pi}{2} e^{-2 x}\right|_{0} ^{1}=2 \pi e^{2}-2 \pi \\
& =\frac{\pi}{2} e^{-2}-\frac{\pi}{2}
\end{aligned}
$$

5. Use the shell method to find the volume of the solid generated by revolving the region bounded by the lines $y=2 x, y=x / 2$, and $x=1$ about the y-axis.

6. a) Show that the value of $\int_{0}^{8} \sqrt{x+1} d x$ lies between 8 and 24 without actually computing the integral b) Compute the value of $\int_{0}^{8} \sqrt{x+1} d x$
a) By monotonicity

$$
\begin{aligned}
& \text { a) By monotonicity } \\
& \sqrt{0+1} \leq \sqrt{x+1} \leq \sqrt{8+1} \text { for } 0 \leq x \leq 8
\end{aligned}
$$

- so

$$
\leq \sqrt{x+1} \leq 3 \text { for } 0 \leq x \leq 8
$$

Thus $8 \cdot 1 \leq \int_{0}^{8} \sqrt{x+1} d x \leq 8 \cdot 3$

$$
\begin{aligned}
& \text { b) } \quad \int_{0}^{8} \sqrt{x+1} d x=\int_{1}^{9} \sqrt{u} d u \\
& \left.(u=x+1)^{0} d g^{\frac{3}{2}}-1\right] \\
& =\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{9}=\frac{2}{3}[27-1]=\frac{2}{3} \cdot 26=\frac{52}{3} \\
& =\frac{2}{3}[27
\end{aligned}
$$

