1. (32) Solve the following linear system:
$$\begin{cases} x_1 + 4x_2 - 2x^3 = 7 \\ 3x_1 + 2x_2 + 4x_3 = -9 \end{cases}$$

2. (1) Let $A = \begin{bmatrix} 3 & 0 & -1 \\ -1 & 1 & -3 \\ 3 & -1 & 2 \end{bmatrix}$. Use row operations to find A^{-1} .

3. (1) a) Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation so that L((1,0,0)) = (2,1), L((0,1,0)) = (-1,2) and L((0,0,1)) = (3,-2) Find L(3,2,-1).

() Find the standard matrix of the linear transformation T Where $T(x_1, x_2) = (2x_1 - x_2, x_2, -x_1, 3x_1 - 5x_2)$.

4. With Let
$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ -1 & 5 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 3 & 4 \\ 3 & -2 & 1 \end{bmatrix}$ and $C = AB$.

- a) Find $col_2(C)$ and express it in two forms as
- i) a product of two matrices
- ii)a linear combination of appropriate vectors.

b) Find LU decomposition of A.

5. (Carefully state the Cauchy-Schwarz Inequality:

b) Use the Cauchy-Schwarz Inequality to prove Triangular inequality

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$

c) Find all constants k such that the vectors $\mathbf{u}=(\mathbf{k+1,1,k^2})$ and $\mathbf{v}=(-\mathbf{6,k,1})$ be orthogonal vectors.

6. **MIND**

$$\text{Let } A = \left[\begin{array}{ccc} 5 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{array} \right]$$

a) Use the cofactor expansion about the third row to find det(A).

b) Find C_{13} and C_{31} the (1,3) and (3,1) of the cofactor matrix C of A. Use part (a) and C_{13} or C_{31} , to find the entry (1,3) of A^{-1} .

- 7. (Carefully list nonsingular Equivalences
- 1.

.

5.

4.

5.

6.

b) Prove that if A is invertible, then $det(A) \neq 0$

8. (3I - 2(A^T)⁻¹)^T = $\begin{bmatrix} 4 & 2 \\ 1 & 1 \end{bmatrix}$

- 9. True-False questions:
 - TRUE FALSE If A is an $n \times n$ matrix and det(A) = 0 then AX = b has only trivial solution.
 - TRUE FALSE Any consistent linear system with at least three solutions has infinitely many solutions.
- TRUE FALSE If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then $L(\mathbf{0}) = \mathbf{0}$.
- TRUE FALSE If A and B are 4×4 matrices with $A^2 = A$, and $\det(B) = 2$, then $\det(2(B^T)^{-1}A^2) = 1$
- TRUE FALSE If \mathbf{u} and \mathbf{v} are solutions of AX = 0 then $\mathbf{w} = 3\mathbf{u} + 4\mathbf{v}$ is a solution AX = b.