2.4 5. \((4 - t^2)y' + 2ty = 3t^2, y(1) = -3\)

Ans: This ODE also can be written in the form \(y' + p(t)y = g(t)\) as

\[
y' + \frac{2t}{4-t^2}y = \frac{3t^2}{4-t^2}
\]

So \(p(t) = \frac{2t}{4-t^2}\) and \(g(t) = \frac{3t^2}{4-t^2}\). By Theorem 2.4.1, the solution to the ODE exists and is unique wherever \(p\) and \(g\) are continuous. The functions \(p\) and \(g\) are discontinuous at \(t = \pm 2\), and since the initial condition is at \(t = 1\), the solution \(y(t)\) exists on the interval \(-2 < t < 2\).

13. \(y' = -4t/y, y(0) = y_0\)

Ans: Using separation of variables gives

\[
ydy = -4tdt
\]

Integrating both sides then gives \(\frac{1}{2}y^2 = -2t^2 + C\) or multiplying through by 2 and taking the square root yields \(y(t) = \pm \sqrt{-4t^2 + C}\) where \(C\) is now a new constant. For \(t = 0, y_0 = y(0) = \pm \sqrt{C}\), so \(C = y_0^2\) and if \(y_0 > 0\),

\[
y(t) = \sqrt{-4t^2 + y_0^2}
\]

otherwise

\[
y(t) = -\sqrt{-4t^2 + y_0^2}
\]

Now \(y(t)\) becomes undefined when the radicand becomes negative, and the radicand is equal to zero at \(t = \pm y_0/2\). Therefore the solution is exists for \(-y_0/2 \leq t \leq y_0/2\).

25. \(y = y_1(t)\) is a solution of the equation \(y' + p(t)y = 0\) and \(y = y_2(t)\) is a solution of the equation \(y' + p(t)y = g(t)\). Show that \(y = y_1 + y_2\) is a solution to \(y' + p(t)y = g(t)\).

Ans: To check that \(y_1 + y_2\) is a solution, we plug in \(y_1 + y_2\) for \(y\) in the given equation and check that we do in fact get \(g(t)\). Plugging in gives

\[
(y_1 + y_2)' + p(t)(y_1 + y_2) = y_1' + y_2' + p(t)y_1 + p(t)y_2 = (y_1' + p(t)y_1') + (y_2' + p(t)y_2) = 0 + g(t) = g(t)
\]

The second to last equality is given by the fact that \(y_1\) is a solution to \(y' + p(t)y = 0\), which means that \(y_1' + p(t)y_1 = 0\) and the fact that \(y_2\) is a solution to \(y' + p(t)y = g(t)\), which means \(y_2' + p(t)y_2 = g(t)\).

2.5 7. (a) Consider the equation

\[
dy/dt = k(1 - y)^2
\]

where \(k\) is a positive constant. Show that \(y = 1\) is the only critical point, with the corresponding equilibrium solution \(\phi(t) = 1\).

And: Setting the right hand side equal to zero and solving for \(y\) gives

\[
0 = k(1 - y)^2
\]

\[
0 = (1 - y)^2
\]

\[
0 = 1 - y
\]

\[
y = 1
\]

So, the only critical point is at \(y = 1\), and if \(\phi\) is a solution to the ODE with \(\phi(0) = 1\), then \(\phi(t) = 1\).
(b) Sketch $f(y)$ versus y. Show that y is increasing as a function of t for $y < 1$ and also for $y > 1$. The phase line has upward-pointing arrows both below and above $y = 1$. Thus solutions below the equilibrium solution approach it, and those above it grow farther away. Therefore, $\phi(t) = 1$ is semistable.

And: For $k = 1$, the phase line looks like the following figure.

(c) Solve the ODE subject to the initial condition $y(0) = y_0$ and confirm the conclusions reached in part (b).

And: Separation of variables yields $dy/(1 - y)^2 = kdt$ and integrating both sides gives

\[
\int \frac{dy}{(1 - y)^2} = \int kdt
\]

\[
- \int \frac{du}{u^2} = kt + C \quad \text{using } u = 1 - y
\]

\[
\frac{1}{u} = kt + C
\]

\[
\frac{1}{kt + C} = 1 - y
\]

\[
y(t) = 1 - \frac{1}{kt + C}
\]

Assuming that $y_0 \neq 1$, then letting $t = 0$ gives $y_0 = 1 - 1/C$. So $1/C = 1 - y_0$, or $C = 1/(1 - y_0)$. Therefore,

\[
y(t) = 1 - \frac{1}{kt + 1/(1 - y_0)}
\]

\[
= 1 - \frac{1 - y_0}{(1 - y_0)(kt - 1) + 1}
\]

\[
= \frac{(1 - y_0)(kt - 1) + 1}{(1 - y_0)kt + 1}
\]

So, for $y_0 < 1$, the denominator is never equal to zero for $t \geq 0$, which means the solution exists for all $t \geq 0$, and as $t \to \infty$, $y \to 1$. For $y_0 > 1$, the denominator is equal to zero at $t = \frac{1}{k(y_0 - 1)}$. At $t = \frac{1}{k(y_0 - 1)}$, the numerator is not equal to zero, so the solution blows up, we just need to figure out in which direction. Taking the derivative gives

\[
y'(t) = \frac{(1 - y_0)k[(1 + 1 - y_0)kt + 1] - (1 - y_0)k[(1 - y_0)(kt - 1) + 1]}{[(1 - y_0)kt + 1]^2}
\]
\[
(1 - y_0)k[(1 - y_0)kt + 1 - (1 - y_0)(kt - 1) - 1] \\
= \frac{(1 - y_0)k(1 - y_0)}{(1 - y_0)kt + 1} \\
\]

So, \(y'(t) > 0 \) for \(0 \leq t \leq \frac{1}{k(y_0 - 1)} \), which means that as predicted, the solution blows up to positive infinity, but it does so in finite time.

22. In the book there is a long explanation of how to model the spread of disease, the result of which is that we obtain the initial value problem \(y' = \alpha y(1 - y) \) with \(y(0) = y_0 \) where \(\alpha \) is a positive proportionality constant and \(y_0 \) is the number of individuals who are initially infected.

(a) Find the equilibrium points for the differential equation and determine whether each is asymptotically stable, unstable, or semistable.

Ans: The equilibrium points are where \(y' = 0 \) so plugging that in we get

\[
0 = \alpha y(1 - y) \implies y = 0 \text{ or } y = 1
\]

So our equilibrium points are \(y = 0, 1 \). To check their stability we draw the direction field.

This shows us that the equilibrium point \(y = 0 \) is unstable, while the point \(y = 1 \) is stable.

(b) Solve the initial value problem and determine whether the conclusions you reached in part (a) are correct. show that \(y \to 1 \) as \(t \to \infty \), which means that ultimately the disease spreads through the entire population.

Ans:

\[
\frac{dy}{dt} = \alpha y(1 - y) \\
\frac{1}{y(1 - y)} dy = \alpha dt \\
\int \left(\frac{1}{y(1 - y)} \right) dy = \int \alpha dt \\
\]

using partial fractions we get

\[
\int \frac{1}{y} dy + \int \frac{1}{1 - y} dy = \int \alpha dt \\
\ln y - \ln(1 - y) = \alpha t + C
\]

3
\[\ln \left(\frac{y}{1-y} \right) = \alpha t + c \]

\[\frac{y}{1-y} = Ce^{\alpha t} \]

\[y = Ce^{\alpha t} - yCe^{\alpha t} \]

\[y + yCe^{\alpha t} = Ce^{\alpha t} \]

\[y(1 + Ce^{\alpha t}) = Ce^{\alpha t} \]

\[y = \frac{Ce^{\alpha t}}{1 + Ce^{\alpha t}} \]

Plugging in \(t = 0 \) and \(y(0) = y_0 \) and solving gives \(C = \frac{y_0}{1-y_0} \) so our final answer is

\[y(t) = \frac{\left(\frac{y_0}{1-y_0} \right) e^{\alpha t}}{1 + \left(\frac{y_0}{1-y_0} \right) e^{\alpha t}} \]

Now to calculate the limit.

\[\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \frac{1}{\left(\frac{1-y_0}{y_0} \right) e^{-\alpha t} + 1} = \frac{1}{\left(\lim_{t \to \infty} e^{-\alpha t} \right) + 1} = \frac{1}{0+1} = 1 \]

2.7 20. It can be shown that under suitable conditions on \(f \), the numerical approximation generated by the Euler method for the initial value problem \(y' = f(t, y) \), \(y(t_0) = y_0 \) converges to the exact solution as the step size \(h \) decreases. This is illustrated by the following example. Consider the initial value problem

\[y' = 1 - t + y, \quad y(t_0) = y_0 \]

(a) Show that the exact solution is \(y = \phi(t) = (y_0 - t_0)e^{t-t_0} + t \).

Ans: The ODE can be rewritten as \(y' - y = 1 - t \). So multiplying through by the integrating factor \(\mu = e^{-t} \) gives

\[(e^{-t}y)' = (1-t)e^{-t} \]

And integrating both sides, we get

\[e^{-t}y = \int e^{-t} - te^{-t}dt = -e^{-t} + (1+t)e^{-t} + C = te^{-t} + C \]

Therefore, \(y(t) = t + Ce^t \). For \(t_0 \), \(y_0 = y(t_0) = t_0 + Ce^{t_0} \), so \(C = (y_0 - t_0)e^{-t_0} \). This means \(y(t) = t + (y_0 - t_0)e^{t-t_0} \).

(b) Using the Euler formula, show that

\[y_k = (1+h)y_{k-1} + h - ht_{k-1}, \quad k = 1, 2, \ldots \]

Ans: Euler’s formula is \(y_k = y_{k-1} + hf(t_{k-1}, y_{k-1}) \) and for this problem, \(f(t, y) = 1 - t + y \). So, \(y_k = y_{k-1} + h(1 - t_{k-1} + y_{k-1}) = (1+h)y_{k-1} + h - ht_{k-1} \).

(c) Noting that \(y_1 = (1+h)(y_0 - t_0) + t_1 \), show by induction that

\[y_n = (1+h)^n(y_0 - t_0) + t_n \]

for each positive integer \(n \).
Ans: Assume that \(y_{n-1} = (1 + h)^{n-1}(y_0 - t_0) + t_{n-1} \), then

\[
y_n = (1 + h) \left[(1 + h)^{n-1}(y_0 - t_0) + t_{n-1} \right] + h - ht_{n-1} \\
= (1 + h)^n(y_0 - t_0) + (1 + h)t_{n-1} + h - ht_{n-1} \\
= (1 + h)^n(y_0 - t_0) + t_{n-1} + h \\
= (1 + h)^n(y_0 - t_0) + t_n
\]

And, since the formula holds for \(n = 1 \), \(y_n = (1 + h)^n(y_0 - t_0) + t_n \) for all \(n \geq 1 \).

(d) Consider a fixed point \(t > t_0 \) and for a given \(n \) choose \(h = (t - t_0)/n \). Then \(t_n = t \) for every \(n \). Note also that \(h \to 0 \) as \(n \to \infty \). By substituting for \(h \) in the equation from part (c) and letting \(n \to \infty \), show that \(y_n \to \phi(t) \) as \(n \to \infty \).

Ans: Plugging in \(h = (t - t_0)/n \) gives

\[
y_n = (1 + (t - t_0)/n)^n(y_0 - t_0) + t
\]

Then taking the limit as \(n \to \infty \) gives

\[
\lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + (t - t_0)/n)^n(y_0 - t_0) + t \\
= e^{t-t_0}(y_0 - t_0) + t \\
= \phi(t)
\]