Experiments, observations, and numerical simulations in many areas of science nowadays generate massive amounts of data.

This rapid growth heralds an era of "data-centric science," which requires new paradigms addressing how data are acquired, processed, distributed, and analyzed.

This course covers mathematical concepts and algorithms (many of them very recent) that can deal with some of the challenges posed by Artificial Intelligence and Big Data.
This course is about **mathematical methods** for Big Data

Prerequisite:
Linear algebra and a basic experience in **programming** (preferably Matlab) will be required. Solid basis in **undergraduate mathematics** is recommended.

What this class is not about:
- Formal software development
- Database theory
- Specific applications
- Heuristic methods that lack mathematical foundations (well, except for deep learning ...)

There is no required textbook. The following books contain some material on these topics (but there is no need to buy these books):

- S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing.
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction.
- Michael W. Mahoney. Randomized Algorithms for Matrices and Data.
Textbook in development

Afonso Bandeira
Amit Singer
Thomas Strohmer

Mathematics of Data Science

Notes from the book draft will be made available.
Grading Scheme

- 50% Homework: will be assigned about every other week. A subset of these problems will be graded.
- 50% Final Project

Final Project:
Write a 8-page (or so) report on one of the following topics:

- Describe how some of the methods you learned in this course will be used in your research.
- Find a practical application yourself (not copying from papers/books) using the methods you learned in this course; describe how to use them; include numerical demonstrations.
- Find an interesting data set and present a careful numerical comparison of existing algorithms related to one of the topics of this course.
- If in doubt, please ask me!
Teaching Assistants

Shuyang Ling

Yang Li
Goal: The goal is to turn data into information

Challenges: Capture, curation, time-limitations, storage, search, sharing, transfer, analysis, and visualization of the data.

Data can be massive, non-static, multi-modal, incomplete, noisy, non-random, unstructured, dynamic, streaming, ...
“Data is the new (crude) oil for the economy!”
“Data is the new (crude) oil for the economy!”

You are not Google’s customer.
“Data is the new (crude) oil for the economy!”

You are not Google’s customer.

You are Google’s commodity (crude oil)
Lots of data is being collected and warehoused

- Web data (often user-provided)
- e-commerce, purchases at stores
- Medical data, health care
- Bank/Credit Card transactions
- Social Network
- Traffic, GPS, ...
- Scientific experiments
- ...

Big Data Everywhere!
You Tube contains 120 million videos and 72 hours of video uploaded every minute.

Google processes 3.5 billion requests per day.

There is currently an estimate of 3.8 trillion photographs, 10% of them taken in the last year.

Facebook has about 140 billion images with about 300 million new images a day.

2.5PB are flowing through Walmart’s databases.

NYSE collects 1 TB each day.
CERN’s Large Hydron Collider generates 15 PB a year
The BRAIN initiatives produce terabytes of data a day
The Large Synoptic Survey Telescope in Chile will collect 30TB per night. Headed by Tony Tyson from UC Davis
Governments (USA, China, Russia, UK, Israel, Germany, ...) collect ??? PB /day
How much data?

Governments (USA, China, Russia, UK, Israel, Germany, ...) collect ??? PB /day

The CIA (via In-Q-Tel) was an early investor in Facebook
How much data?

Governments (USA, China, Russia, UK, Israel, Germany, ...) collect ??? PB /day

The CIA (via In-Q-Tel) was an early investor in Facebook

Somewhere in Nevada is an 8-Football field large storage area that collects all the emails sent in the USA.
Experts now predict that 40 zettabytes of data will be in existence by 2020.

Big Data does not just mean massive amounts of data. Big Data also means complex data:

- Heterogeneous data
- Incomplete data
- Unstructured/semi-structured Data
- Graph Data
- Social Network, Semantic Web
- Streaming Data
Big Data is not new

- Seismic data acquisition and processing
- Census
- Wall Street hedge funds (e.g. Renaissance Technologies)
- Governments
- Banks, Insurances
- Scientific Research
Big Data Tasks

- Discovery of useful, possibly unexpected, patterns in data
- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Finding outliers (security threat, credit card theft, ...)
- Clustering
- Classification
- Object recognition
- Visualization, dimension reduction
- “Data cleaning”: denoising, smoothing, grouping, ...
- Association Rule Mining (Customers who buy X often buy Y, Customer 123 likes product p10)
- Collaborative filtering: users collaborate in filtering information to find information of interest (Amazon, Netflix)
The idea is 100 years old (see Karl Pearson), but its full potential will be unleashed only now.

Example:
In a recent analysis researchers developed a framework for comparing classifiers common in Machine Learning (Boosted decision trees, Random Forests, SVM, KNN, PAM and DLDA) based on a standard series of datasets.

Result: A simple (but mathematically rigorous) method gave better classification results across the data sets than the “glamorous” methods.

The dawning Age of Big Data will make it not just possible but very common (and perhaps necessary?) to validate methods via such meta data analyses.
Crunchbase records more than 2900 Startups and Angellist more than 3500 Startups in "Big Data"

Two random examples (out of 1000+?) of Bay area startups:
- Forensic Logic (Walnut Creek): Crime analysis
- 23andMe (Mountain View): Genomics

Two startups by mathematicians:
- ThetaRay: Cybersecurity (R.R. Coifman, Amir Averbuch)
- Ayasdi: Topological data analysis (Gunnar Carlsson)
Campus-wide initiatives at NYU, Columbia, Michigan, Harvard, MIT, Berkeley, ...

New Master’s Degree programs in Data Science, for example at Berkeley, NYU, Stanford, UC Davis, ...

New Alan Turing Institute for Data Sciences in UK

For a long list across the world see
http://data-science-university-programs.silk.co
Basic goals of AI and Machine Learning
Curses and blessings of dimensionality, Surprises in high dimensions
Singular Value Decomposition, Principal Component Analysis
Data Clustering: k-means, graph Laplacian
Linear dimension reduction, random projections
Nonlinear dimension reduction, diffusion maps, manifold learning, intrinsic geometry of data,
Some basics on Deep Learning
Things in high dimension can behave very differently than in low dimension.
Things in high dimension can behave very differently than in low dimension.

A cube in high dimensions does not look like this:
Things in high dimension can behave very differently than in low dimension.

A cube in high dimensions looks like this:
SVD and PCA

Singular Value Decomposition

Principal Component Analysis

$M = U \cdot \Sigma \cdot V^*$
Dimension reduction

Linear dimension reduction and random projections

Johnson-Lindenstrauss projections
A basic task in data analysis is clustering:

k-means: advantages and limitations

Graph Laplacian, spectral clustering
Diffusion maps

What is a diffusion map?

Manifold learning

Intrinsic geometry of data

Nonlinear dimension reduction
Deep Learning: neural network with more than one layer

Deep networks achieve state-of-the-art results in several complex object recognition tasks

They learn a huge network of filter banks and non-linearities on large datasets

Heuristic method, a lot of trial-and-error

Almost no mathematical theory (yet)
And last but not least

Algorithms for AI and Big Data are powerful.

Use your power responsibly and carefully.
And last but not least

Algorithms for AI and Big Data are powerful.

Use your power responsibly and carefully.

Einstein: “Not everything that can be counted, counts. And not everything that counts, can be counted.”