SOLUTIONS

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>****</td>
</tr>
</tbody>
</table>
1. Problem: (You do not need to simplify your answers in Problem 1!)
(a) Compute the derivative of the following function \(y = \frac{\sqrt[3]{x^3 + 1}}{3x} \).
\[y' = \frac{\frac{1}{3} (x^3 + 1)^{-\frac{2}{3}} \cdot 9x^3 - 3(x^3 + 1)^{\frac{1}{3}}}{(3x)^2} \]
(b) Compute the derivative of the following function \(y = x \sin(\sqrt{x + 1}) \).
\[y' = \sin(\sqrt{x + 1}) + x \cos(\sqrt{x + 1}) \cdot \frac{1}{2} (x + 1)^{-\frac{1}{2}} \]
(c) Find the second derivative of the function \(f(x) = \frac{e^{-x}}{\cos x} \).
\[f'(x) = \frac{-e^{-x} \cos x + e^{-x} \sin x}{\cos^2 x} \]
\[f''(x) = \frac{e^{-x} \cos x - e^{-x} \sin x}{\cos^4 x} + \frac{-e^{-x} \sin x - e^{-x} \cos x}{\cos^4 x} \]
\[= \frac{-e^{-x} 2 \sin x}{\cos^4 x} \]
2. **Problem:** At time t, the position (x, y) of a particle moving on a plane is given by $x = t^2 - t, y = t^2 - 2t$. Find the tangent to the curve on which the particle is moving at $t = 3$.

\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t - 2}{2t - 1}
\]

At $t = 3$: slope is $\frac{6 - 2}{6 - 1} = \frac{4}{5}$. Furthermore, at $t = 3$, $x = 6, y = 3$, hence the tangent is

\[
y - 3 = \frac{4}{5}(x - 6), \text{ hence } y = \frac{4}{5}x - \frac{9}{5}.
\]

- **13 points** for computation of slope of tangent
- **7 points** for equation of tangent line
3. Problem:

(a) At which points in the interval \((-2, 2)\) is the function, whose graph is shown below, not differentiable?

The function is not differentiable at \(x = -1, x = 0, x = 1\).

(b) What is the slope of the tangent line to the curve \(f(x) = \cos(x) + 2x\) at the point \((0, 1)\)?

Slope of tangent is equal to derivative of \(f\) at \(x = 0\).

\[
f'(x) = -\sin(x) + 2
\]

\[
f'(0) = -0 + 2 = 2
\]

hence slope of tangent at \((0, 1)\) is 2.
4. Problem:
Assume a bullet fired straight up from the surface of the Earth reaches a height of \(s = 320t - 16t^2 \) feet after \(t \) seconds.

(a) How long will the bullet be aloft?

(b) How high will the bullet go?

(c) What is the speed of the bullet when it hits the ground?

(a) \(s = 0: 320t - 16t^2 \), possible solutions are \(t = 0 \) or \(t = 20 \). Thus the bullet is 20 seconds aloft.

(b) \(s' = 320 - 32t \), hence \(s' = 0 \) at \(t = 10 \)

\[s(10) = 3200 - 1600 = 1600, \] the bullet will go 1600 feet high.

(c) \(v = s' = 320 - 32t \) At \(t = 20: v = 320 - 640 = -320 \). Speed is \(|v| \), hence the speed is 320 ft/second.
5. **Problem:** Using implicit differentiation, compute $\frac{dy}{dx}$ for

$$e^{2x} = \sin(x + 3y).$$

\[
\frac{d}{dx}(e^{2x}) = \frac{d}{dx}(\sin(x + 3y)).
\]

\[
2e^{2x} = \cos(x + 3y) \cdot (1 + 3\frac{dy}{dx})
\]

\[
\frac{dy}{dx} = \frac{2e^{2x}}{3\cos(x + 3y)} - \frac{1}{3}.
\]