21D SAMPLE FINAL EXAM

1. Find $\mathbf{T}, \mathbf{N}, \mathbf{B}$, and κ for the space curve $\mathbf{r}(t)=(3 \sin t) \mathbf{i}+(3 \cos t) \mathbf{j}+4 t \mathbf{k}$.
2. Use a parametrization to express the area of the surface S as a double integral. Then evaluate the integral. S is given by the lower portion cut from the sphere $x^{2}+y^{2}+z^{2}=2$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
3. Evaluate the following line integral:

$$
\int_{C} x z d s
$$

where C is the line segment from $(3,0,-1)$ to $(2,2,1)$.
4. Find the flux for $\mathbf{F}(x, y)=(x y) \mathbf{i}+x^{2} \mathbf{j}$ across the loop C given by the ellipse $\left(\frac{x}{16}\right)^{2}+\left(\frac{y}{9}\right)^{2}=1$.
5. Show that the following vector field is conservative. Then find a scalar function $f(x, y, z)$ satisfying $\mathbf{F}=\nabla f$.

$$
\mathbf{F}(x, y, z)=\left(y \cos z-y z e^{x}\right) \mathbf{i}+\left(x \cos z-z e^{x}\right) \mathbf{j}+\left(-x y \sin z-y e^{x}+1\right) \mathbf{k}
$$

6. Show that

$$
\int_{A}^{B} z^{2} d x+2 y d y+2 x z d z
$$

is path independent.
7. Use Green's Theorem to find the circulation of $\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i}-2 x y \mathbf{j}$ around the triangle with vertices $(0,0),(1,0),(0,2)$.
8. Use the transformation $u=3 x+2 y, v=x+4 y$ to evaluate the integral

$$
\int_{R}\left(3 x^{2}+14 x y+8 y^{2}\right) d x d y
$$

for the region R in the first quadrant bounded by the lines $y=-(3 / 2) x+1$, $y=-(3 / 2) x+3, y=-(1 / 4) x$, and $y=-(1 / 4) x+1$.

Solutions:

1.

Answer: $T:(3 / 5 \cos t) \mathbf{i}+(-3 / 5 \sin t) \mathbf{j}+4.5 \mathbf{k}, N=(-\sin t) \mathbf{i}-(\cos t) \mathbf{j}$, $B=(4 / 5 \cos t) \mathbf{i}-(4 / 5 \sin t) \mathbf{j}-3 / 5 \mathbf{k}, \kappa=3 / 25$
2.

Answer: $(4+2 \sqrt{2}) \pi$
3.

Answer:

$$
\int_{C} x z d s=\int_{0}^{1}(3-t)(-1+2 t) \frac{d s}{d t} d t=\int\left(-2 t^{2}+7 t-3\right)(3) d t=\ldots=-1 / 2
$$

4.

Answer: 0
5.

Answer: Component test shows that vector field is indeed conservative.

$$
f(z, y, z)=x y \cos z-y z e^{x}+z+C
$$

6.

Answer: Proceed by showing that the field is conservative
7.

Answer: - $8 / 3$
8.

Answer: 64/5

