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Recovering Low-Rank Matrices From Few
Coefficients In Any Basis

David Gross

Abstract—We present novel techniques for analyzing the This field of research was started in earnest with the results
problem of low-rank matrix recovery. The methods are both in [2], [3]. There, it was shown that surprisingly, reconstr
considerably simpler and more general than previous approehes. ing a rankr matrix from only O(nr polylog(n)) randomly

It is shown that an unknown n x n matrix of rank = can . L .
be efficiently reconstructed from only O(nrv In?n) randomly selected matrix elements can be done efficiently employing

sampled expansion coefficients with respect to any given mat & simple convex optimization algorithm. These findings were
basis. The number v quantifies the “degree of incoherence” partly inspired by methods used earlier in compressed Bgnsi
between the unknown matrix and the basis. Existing work [9], [LO].

concentrated mostly on the problem of “matrix completion The results presented inl [2]] [3] were as spectacular as they

where one aims to recover a low-rank matrix from randomly difficult t " the tiahter b ds ifl13 ired
selected matrix elements. Our result covers this situatioras a Were difficult to prove; the tighter bounds inl[3] require

special case. The proof consists of a series of relativelyeatentary dozens of pages. At the same time, the proof techniques
steps, which stands in contrast to the highly involved methds seemed to be tailored to the fact that matrix elements, as
previously employed to obtain comparable results. In caseshere  gpposed to more general expansion coefficients, had been
bounds had been known before, our estimates are slightly tiger. sampled

We discuss operator bases which are incoherent to all low-
rank matrices simultaneously. For these bases, we show that !N [11] the present author and collaborators developed new

O(nrvInn) randomly sampled expansion coefficients suffice to methods for analyzing low-rank matrix recovery problems.
recover any low-rank matrix with high probability. The latt er The work was motivated by the desire to prove analogues of

bound is tight up to multiplicative constants. [2], [3] applicable to certain problems in quantum mechanic
Index Terms—Matrix completion, matrix recovery, compressed Three main improvements were achieved. Most importantly,
sensing, operator large-deviation bound, quantum-stateamog- the mathematical effort for obtaining near-optimal bounds
raphy the number of coefficients needed to determine a low-rank
matrix was cut dramatically, with a condensed (but complete
version of the proof fitting on a single page. Also, the new
arguments depend much less on the specific properties of the
We consider the problem of efficiently recovering a lowbasis used. Lastly, in some situations, the bounds obtaireed
rank matrix from a small number of expansion coefficientighter than those presented previously. In some casegaihe
with respect to some basis in the space of matrices. Relatetween lower and upper bounds is reduced to a multipleativ
guestions have recently enjoyed a substantial amounteri-attconstant.
tion (c.f. [1], [2], [3], [4], [5], [6], [7] for a highly inconplete The present paper builds on the methodslof [11]. It aims
list of references). to make them accessible to readers not accustomed to the
To get some intuition for the problem, note that one neetBnguage of quantum information theory, supplies manyildeta
roughlyrn parameters to specify anx n-matrix p of rankr. missing in [11] due to space limitations, generalizes tiselts
Therefore, it might be surmised that about the same numlerarbitrary operator bases, and provides tighter estsnate
of expansion coefficients of (with respect to some fixed
matrix basis) are sufficient to uniquely specjfywithin the
set of low-rank matrices. It is by far less clear whether
can be recovered from this limited set of coefficients in a Throughout the main part of this paper the word “matrix”
computationally tractable way. will be used to mean Mermitian matrix” (or, equivalently,
Low-rank matrix recovery may be compared to a techniguéymmetric matrix”, if one prefers to work over the real
studied under the name ebmpressed sensir8], [9], [10]. numbers). Our methods work more naturally in this setting,
In its simplest version, the task there is to recover a spa@@d a lack of Hermiticity would just be a technical problem
vector from few Fourier coefficients. Informally, the profye obscuring the essence of the argument. In fact little gdibera
of having a low rank is the “non-commutative analogue” df 10st. In Sectior TIl-D, we describe a straight-forwardywa
sparsity. In this sense, one may think of the matrix recovefgr translating any non-Hermitian matrix recovery problem
problem as a non-commutative version of compressed sensigiermitian one. Therefore, in essence, all our resultside|
this more general case.
This work was supported by the EU (CORNER). The unknown rank- matrix to be recovered will be denoted
D. Gross is with the Institute for Theoretical Physics, b Uni- by p. On the space of Hermitian matriceS, we use the Hilbert-

versity Hannover, 30167 Hannover, Germany and with theitlist of s . T
Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerlareimail: see Schmidt inner productoy, 03) = tr(oj02). We assume that

www.phys.ethz.ch/"dagross some ortho-normal basisw,, jf:l with respect to this inner
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product has been chosen (referred to asoparator basik The unadorned normjo| of a matrix o refers to the

Thus, p can be expanded as operator norm(or spectral norny: the largest singular value.
n2 The 2-norm (alsdFrobenius normis ||o||s = tr(oo)/2.
o= Z(wmp) W We can now state our definition of coherence.
a=1 Definition 1 (Coherence) Then x n-matrix p hascoherence
The question addressed below @gven thatrankp < r, v with respect to an operator bas{aua}gil if either
how many randomly chosen coefficies,, p) do we need ) 1
to know, before we can efficiently reconstrypét max [wall* < v n 3)

In order to perform the reconstruction, we will utilize the ,
algorithm employed in[[9],[11],[12],([3]. Let2 C [1,n?] be a or the two estimates

random set of sizen. Assume that we know the coefficients max ||Prwg|3 < 2v—, (4)
(wq,p) for al a € Q. The algorithm simply consists of ¢ ) i
performing the following (efficiently implementable) camv max (wa,sgnp)” < ) ()
optimization over the space of matrices: hold.
min lorfl @) Let {ejy,...,e,} be the standard basis i@". The (non-
subjectto (0, wa) = (p,wa), Yae€Q. Hermitian)standard operator basis {e;e!}7,_,, wheree;e!

is the matrix whose only non-zero element islaat the
intersection of theith row and thejth column. The best
%eviously known result seems to be this:

Above, ||o||1 is the trace-norm (also Schatten 1-normor
nuclear norm), i.e. the sum of the singular values of Let
o* be a solution of the optimization. Theoréin 3 quantifies t
probability (with respect to the sampling processpofbeing Theorem 2 ([3, Thm. 1.1]) Let p be a rankr matrix with
unique and equal tp, as a function of the the number of coherences with respect to the standard operator basis. Let
coefficients revealed. Q C [1,n?] be arandom set of siZ@| > O(nrv* In*n). Then

It is clear that the algorithm will perform poorly i has the solutions* of the optimization probleni]1) is unique and
very few non-zero expansion coefficients with respect to thkjual top with probability at leastl — n 3.
basis {w,} [2]. To avoid such a situation, we must ensure
that a typical coefficient will contain “enough non-trivial . i
information” aboutp. That is the content of the various notion roves thev-dependency and will trn out to be easier 1o
of “incoherence” which have been proposed [2], [3]. ouprove:
definition of incoherence is stated below. It is closely tefa Theorem 3 (Main result) Let p be a ranks matrix with
to, but more general than, the parametarsed in[2], [3]. In coherences with respect to an operator basi&ua}g;. Let
particular, going beyond previously published situations Q c [1, 7] be a random set of si2€| > O(nrv(143) In? n).
find that there are certain bases with the property #mt Then the solutiom™* of the optimization probleni{1) is unique
low-rank matrix is incoherent with respect to them. and equal top with probability at leastl — n=5.

To state the results more precisely, we need to introduc
some notation. (We try to follow [2] as closely as possible%
Let U = range p be the row space gf (which is equal to its
column space, due to Hermiticity). L&Y, be the orthogonal |Q| > log,(2n2v/7)64v(In(4n?) + In(9log, n) + Blnn)rn.
projection ontol/. The space of matrices

Our main theorem works for arbitrary operator bases, im-

®rhe precise condition off?| for the statement in Theoredm 3
0 hold is

(No attempt has been made to optimize the constants appearin
T={o|(1-Py)o(l - Py)=0} (2) in this expression.) In the expositional part of this papes,
will frequently employ the “big-Oh”-notati&to give simpli-
fied accounts of otherwise complex expressions. However, in
the more technical sections, it will be shown that all stasta
Pr:ow— Pyo+ 0Py — PyoPy. hold for any finiten. (and not just asymptotically, as the-
notation might suggest) and all constants will be worked out
éxplicitly.
We remark that the only property of the basis,} itself
Recall the definition of the sign functiosgn(z) — /2| that has entereq_ the discussion S0 far_ls its operato.r norm
X ' max, ||we]|. Intuitively, the reason is easily understood: ma-
for z # 0 andsgn(0) = 0. Below, we will apply the sign _ . . .
. X - - _trices with small operator norm are “incoherent” to all low-
function (and other real functions) to Hermitian matrices, : . . Z. )
. . . rank matrices simultaneously. More preciselypifs a matrix
Expressions likesgno are to be understood in terms of the : .. X
" . » : . . . of rank r, normalized such thaljp|> = 1, then Holder's
usual “functional calculus”. l.esgn o is the matrix which is . . : . .
; . . L inequality for matrices [12, Corollary 1V.2.6] gives thdiezate
diagonal in the same basis @sbut with eigenvaluesgn();),

where the)\; are the eigenvalues of. [(w, p)]? < lwl* lellF < |Jw]*r (6)

whose compression tker p vanishes will play an important
role (1 is the identity matrix; see also Figl 2). The map

project ontoT. Whenever there is little danger of confusion
we will not make the dependency &f P and other objects
on p explicit in our notation.

1 We will use calligraphicP’s for matrix-valued projections, and roman 2 We write |Q| > O(f(n, r,v, 8)) if there is a constanf' such that fom
P’s for vector-valued projections. large enough and for all, 3 andr < n, it holds that|Q2| > C f(n,r,v, 5).



for any matrixw. Hence the squared overlap on the left han@ngle brackets refer to the standard inner produd).
side is small if bothr and ||w| are. As a corollary, we can Because we work in the setting of Hermitian matrices, it

actually derive[(#) from[{3). Indeed holds that
IPruald = swp (wa0)? < Jwallol? (o pes) = (e, o6l
o€T |loll2=1 so that every time one matrix element is revealed, we aaditio
< wal? 2r||o]2 < ol ally obtain knowledge of the transposed one. Accordindlg, t
n Hermitian analogue of sampling matrix elements is sampling
(having used the simple fact thatax,er(rank o) = 2r). expansion coefficients with respect to the baséis,} of

Equation [[6) has a well-known analogue in compresseshtrices of the form
sensing [[8], [[9], [[1D]. There, one uses the fact that “vextor .
with srgail ]entri]es” a]re incoherent to “sparse vectors” eled), 1/ ‘/i(eie; +eje]), i/ \/i(eie; —ejel) (7)
if 01,00 are vectors,|loy| is taken to be the supremumg,. , j,
norm (i.e. the absolute value of the largest componerat; f
and rank oy is the number of non-zero entries of, then
Eq. (8) remains true. The best-known example of a basis
consisting of vectors with small supremum norm is the Faurie max || Prw, ||3 < 2#117 max (w,, sgn p)? < 2;@%.
basis. Motivated by this analogy, we will refer to operator * " ¢ "
bases fulfilling [B) asFourier-type basesArguably, from a Thus, Theorerl]3 is applicable with= max {1, 23}
mathematical point of view, they form the most natural setti ~ 2) Unitary operator basesWe briefly comment on bases
for low-rank matrix recove@ with minimal operator norm. Lefw,} be an ortho-normal
We will prove TheoreniI3 for Fourier-type bases first anBasis in the space of matrices. At this point, we do not assume
then present two relatively simple modifications which wllo that the basis is Hermitian. Denote the singular values of

together with the matricesieZT supported on the
main diagonal.
One now simply verifies

us to cover the general case. by si(w,). Since

In later sections we will refine the analysis for Fouriergyp n
bases, arriving at Theorellh 4. Asymptotically, the estinisite 1= |lwa|3 = Z(Si(wa))Qa
tight up to multiplicative constants. i=1

Theorem 4 (Tighter bounds for Fourier-type basegt p be it follows that|jw,||* = max; s?(wa) > . Therefores = 1is
a rank+ matrix and suppose thatw, } is an operator basis the best possible value ial(3). It is achieved exactly/if w,
fulfilling max, [[w.||? < %. LetQ C [1,n2] be a random set. IS unitary for everya ¢ [1,n2]. Suphumtary operator bases
Then the solutiow™ to the optimization probleni)(1) is uniquehave been studied in some detail (see €.g. [14]).

and equal top with probability of failure smaller thare—?, A standard example with manifold applications is tali
provided that (operator) basisForn = 2 it is given byw, = %oa, where
2] > O(nrv(B + 1) lnn). (01 ({0 —i
o1 = 1 O 9 02 = 1 O 9

Comparable bounds were known before in situations where
the operator basis itself was drawn randomly (as opposedtoa ¢4 = ( (1) 01 ) ) o4 = ( (1) (1) )
random subset from any given basis) [1] or under additional N
assumptions on the spectrum of6]. However, this seems to are thePauli matrices The ;s have eigenvalue$+1} and
be the first time the optimabg-factor in the bound of2| has are thus both unitary and Hermitian. The Pauli basis™ }
been proven to be achievable in a matrix recovery problefdr matrices acting offC?2)®* ~ 2" is defined as th&-fold
where the involved basis and unknown matrix were neithgtnsor product basis with factors the')} above.

randomized nor subject to constraints beyond their rank. The bases{wff)} possess an exceedingly rich structure

which is at the heart of many central results in quantum
B. Examples information theory (see e.gl [15]| [16],_[17]; for a brief

case of matrix completion, as treated in [2], [3]] [6]. Damot!0 Prove Iovv_er bo.un(.js off2[ in SeCt'O-_ . _
the standard basis ifi” by {e;}", and let{e;e!}?. be the The Pauli basis is a commonly used ingredient in ex-
1= RN . . C -
standard operator basis. S6t= range p and let P;; be the perl_mental q_uantum-state tomography—a fact which imytial
orthogonal projection ont&/. Assume thap fulfills motivated this work.
9 T T .
max || Pye;||5 < p1—, max |(e;,sgnpe;)| < p2y/—.  C. Intuition
i n iJ n N . . .
The basic intuition underlying our results differs littlem
3 To the best knowledge of the author, the first researcher vikarlg  previous approaches|[2],][3].][1].][4]. For the sake of being
appreciated the significance of the basis’ operator norm Ywd& Liu. He  gg|f-contained. we still give a brief non-technical acdoun
proved that some of the bounds inl [2] continue to hold for aW-fank f ’ find ial hnical diff
matrices, if — instead of matrix elements — one samples etparcoefficients 0 .Sqme aspect§ we Tin es_sent'a- (Tec nica _' erences to
with respect to a certain unitary operator basis [13]. existing publications are outlined in the next section.)



For generic deviationsA, we expect that the\;; all have
comparable magnitudes. Therefore, as longrag n, the
second sum in{9) will dominate the first one as required.
The “only” difficulty faced in this paper consists in proving
that ||p + All1 > ||p|l1 holds not just for generic matrices
p + A in the aforementioned affine plane, but for all such
elements simultaneously. Key to that will be a simple cohcep
from convex optimization theory: dual certificate[23], [9],
[2], [3]. By that we mean a matriX” such that

Fig. 1. (a) The unknown matrix is an element of a2-dimensional linear
space. The axis labeled represents all the coordinates @known to us. We HP 4 AHl > HP”l 4 (y’ A) (10)
have no information about the projection @onto the orthogonal directions,

represented by the axes labeléd-. Thus the set of matrices compatiblefor A 7& 0. If we can find such & which is also normal to
with the coefficients known to us forms an affine spateparts of which . . .

are indicated in the figure. — (b) The convex progréin (1) recep if it is the affine plane (C'f' F|§D 1(b))* then the inner prOdUCt abov
the unique minimizer of the trace-norm restrictedAo This is certainly the vanishes and_(10) impliegl(8).

case if A is contained in a supporting hyperplanepadf the trace-norm ball The main contribution of this work is an improved and

B = {o]]lo]l1 < |lpll1}- In other words, there must be a normal vector lized tructi ; imate) dual o
to a supporting hyperplane d8 at p, such thatY” is also normal toA. In generalized construction of an (apprOX|ma e) ual ceatiéic

the language of convex optimizatiol;, is referred to as aual certificate Y.

. Novel approaches

For readers well-accustomed to previous work, we shortly

list some main technical differences.

1) We employ an i.i.d. sampling process (sampling with
replacement) to chose the revealed coefficients. This
contrasts with the “Bernoulli” scheme used befdre [2],

Consider the sketch in Figgl 1(a) (partly inspired by [4])seThD
matrix p is an element of an2-dimensional linear space. The
axis labeled( in the diagram represents the rougtiyrn)
coordinates we have information about, i.e. the space gghnn
by the{w, |a € Q}. As then?—O(rn) remaining coordinates
(denoted by) are unknown, there is a large affine space of
matrices compatible with the available information. We dav [3].

to specify an algorithm which picks one point from this high- ) At two different points in the proof (Sectioﬂ]_ C
dimensional affine space, and prove that our choice is icnti Se(_:tlodﬂ), we make use of a powertful Iarge_-dewatlon
to p with high probability. estimate for matrix-valued observables. This (so far

Since we are looking for a low-rank object, it would be ~ Under-appreciated®perator Chernoff bounthas been

natural to choose the lowest-rank matrix in the affine space_ ProVen in [24]. , _ .
of all matrices compatible with the information we have. 3) In the Iapguage ofL2], when constructing a “dual
However, minimizing the rank over an affine space is in certificate”-type matrixt” we note that it is sufficient
general NP-hard [19]. To get around this problem, we employ ~ © demand|PrE — Y|, be small, as opposed to zero
thetrace heuristi¢ which stipulates that minimizing the trace- (Section(IL-E). The former is simpler to ascertain than
norm is a good proxy for rank minimization (see elg.1[20], the latter. ) )
[21]). The resulting optimization problerfil(1) is an efficiign 4) We constru_ct_a particular matnx-_valued random pro-
solvable semi-definite program cess (descriptively called the “golfing scheme”), which
The objective thus becomes proving that the trace-norm  CONVerges to the certificate’ exponentially fast (Sec-
restricted to the affine plane has a strict and global minimum tion M=F).
at p (Fig.[d(b)). Thus, ifo+ A # p is any matrix in the affine
plane, we need to show that E. Previous versions of this result and some related work
A 8 This work grew out of an effort to translate the resultd of [2]
llp + Ally > ol (8) [3] to the problem of quantum-state tomography, where bases

A short handwaving argument indicates that adding a geneffc Fourier-type matrices naturally occur. The project &dn
deviation A to a low-rankp is indeed likely to increase the OUt to lead to more general results than anticipated, pioduc
trace-norm. the methods presented in this paper.

To see why, recall that the trace-norm of a matrix is larger We first published these results in [11], a short paper witte
than the sum of the absolute values of the elements on the m#if @ physics audience in mind. This pre-print contains all
diagonal [22]. We will apply this estimate jo+ A expressed the main ideas of the current work, and a complete proof

in some eigenbasis of. Let p1, ..., p, be the eigenvalues of ©f TheoremiB for Fourier-type bases (the case of interest in
p. Then guantum tomography). We announced in][11] that a more
. . detailed exposition of the new method, applying to the ganer
low-rank matrix recovery problem with respect to arbitrary
A > i+ A Ay : .
llo+ Al = ; 1pi + Al +i;1| i bases, was in preparation.

Before this extended version df [11] had been completed,

ol + Z(SgnmA“ + Z |A:]- (9) another pre-print [25] building on [11] appeared. The autho
im1 ’ Pt ’ of [25] presents our methods in a language more suitable

Y



for an audience from mathematics or information theory. He
also presents another special case of the results annoimced 2 T

[11]: the reconstruction of low-rank matrices from randgml , —
sampled matrix elements. The main proof techniques_ih [25] . )
are identical to those of [11], with two exceptions. First, — g

the author independently found the same modification we are
using here to extend the methods from Fourier-type matrices
to bases with larger operator norm (his Lemma 3.6, our

Lemma[ID). Second, his proof works more directly with norkig. 2. The range op determines an orthogonal decomposition of the space

Hermitian matrices, and gives tighter bounds in the case @fmatrices as sketched in the figure. The spdtés the set of matrices
non-square matrices o whose compression onfieer p vanishes (c.f. Eq[{2)). With respect to an

) . . L eigenbasis ofp, elements ofl" are supported on the handle-shaped region
A more detailed version of [11] focusing on physics issu@®own above.

will appear elsewhere [26].

Proof: Let pyith(m), pwout (M) be the probabilities that

Il MAIN PROOF the solution of[(IR) equalp, if the A4, ..., A,, are sampled,
A. The ensemble respectively, with or without replacement.

Let A,...,A, be random variables taking values in LetR’ be defined as in({11), but with the sum extending
[1,n2]. Their distribution will be specified momentarily. Im-Only over distinct samplesi; # A; (denote the number
portant objects in our analysis are the matrix-valued rand@f distinct samples bym’). Then kerR' = kerR, and
variablesw 4. The sampling operatois consequently(13) is .true far iff it is tr_ue for R'. _

Thus, the probability that the solution tb{12) equalss
Ro n_2 iw& (wa,, ). (11) the same as the probability that the solution of
M= min|jo||;  subjectto R'c =R'p (15)

Below, we will analyze the semi-definite program equalsp. But, conditioned on any value af’, the distribution

(12) of R’ is the same as the distribution of a sampling operator

min o1 _ ' !
drawingm’ basis elements without replacement. Hence

subjectto  Ro = Rp.

with (770 :]Em/ wou m' < Pwou m),
If the A;’s correspond tom samples drawn fronjl, n?| Puith(m) [Pwout ()] < Puous ()

withoutreplacement, the progranis (1) ahdl(12) are equivalegticem’ < m and clearlypyout (m’) < pwout(m) ]

One can also consider the situation where thés are i.i.d. The i.i.d. scheme used in the present papers contrasts with
random variables, describing sampliwgh replacement. Due the “Bernoulli model” employed in previous works [10]. [2],

to independence, the latter situation is much easier toyaeal [3]. There, every numbes € [1,n?] is included inQ with
Independence also implies the possibility afllisiond] (i.e. probability m/n?. The slight advantage of our approach is
A; = Aj, for i # j). In the presence of collisions, fewerthat the random variablegv,, p) are identically distributed,
thanm distinct coefficients will contribute td (12). It is thusin addition to being independent. Also, the random process
plausible (and will be confirmed below) that any upper bourthalyzed here never obtains knowledgerafre thanm coef-

on the probability of failure of the i.i.d. scheme is alsoidal ficients, while this does happen in the Bernoulli model with
for (@). From now on, we will therefore assume that thgs finite probability. On the downside, the possibility of imdng

are independent and uniformly distributed. collisions has some technical drawbacks, e.g. it meansRhat
To state the obvious: the solutiert to (I2) is unique and will in general not be proportional to a projection.
equal top if and only if any non-zero deviatioh = o — p Note added:after the pre-print version of this paper had
from p is eitherinfeasible been submitted, V. Nesme and the author noted that existing
arguments pertaining to sampling without replacing of real
RA #0, (13) valued random variables [22, Chapter 12] remain valid in the

non-commutative casé [27]. In particular, all large dewiat
bounds derived below under the assumption of independently
o+ Allr > [pll- (14) chosen coefficients continue to hold fdf's sampled without
replacement. While we will not make use of these observation
The two conditions[(13)[(14) have a very different mathemah the present paper, we note that they can be used to slightly
ical flavor. Sectioi II-=C concentrates on the first one, whilienprove the bounds given below. Details are[inl[27].
the second one is more central in the remainder.
Using [13), one can give a simple proof of our earl|eé' Further layout of proof and notation
remark that samplingvith replacement can only decrease the
probability of recovering: Following [2], [3], decomposé\ = Ay + A, with Ay €
T,A7 € T+ (see Fig[R). (The reason for doing this will
4 By the “birthday paradox”, such collisions are very likely dccur. become clear momentarily).

or causes the trace-norm to increase



The proof proceeds as follows If |RA7[2 > [[RAF|2, then

1) In Section[1I-C we show thaf\ is infeasible (fulfills
(@3)) as soon agAr||, is “much larger” than| A% ||. [RA|l2 = |RAL + RAF |2 > ||RAT |2 — [[RAT|2 >0

2) The previous statement utilizes a large-deviation boufd find criteria for this situation to occur, we need to put a

for operator-valued random variables, taken froml [24jower bound on|RA+ ||, and an upper bound OfRAK |2
We repeat the proof of this powerful tool in SectionTl-D&qr the latter:

3) We go on to show that
1 IRAT |3 = (RAT, RAT) < ||R|*|AT[3.  (16)
o+ Al > [lpll + (sgnp +sgn Az, A)

Its easy to see that/R| equalsn?/m times the highest
Aumber of collisionsC = max; [{j|4; = A;}|. This
number, in turn, is certainly smaller than (a truly risk—averse
estimate). All in all:

in SectionII-E. Thus, as soon as the scalar product o
the r.h.s. is positive, we conclude thatfulfills (L4). We
then borrow a powerful idea froni[[2],][3], employing
a “dual certificate”. More precisely it is shown that
the aforementioned scalar product is guaranteed to be [RAZ |2 < n? ||A%]2. (17)
positive, as long as there is a matiiXxe range R such
that () PrY is close tosgn p, and i) | P£Y | is small. Likewise,

4) Sectior II-F establishes the existence of a certifidate

2
in the case of bases with small operator norm. This IRAz|lz = USAT’RAT) )
is probably the most (comparatively) difficult part of > n—(AT,RAT) — n—(AT,PTRPTAT)
the proof, and the one differing most from previous ””é m
approaches. > —(1=||Pr = PrRPr|)|Ar 3 (18)
5) The construction of the previous section can be modified m

to work with any operator basis. Details are given iThis makesPrRPr an object of interest. LeP,, be the
Section Sectio II-G. This completes the proof of thématrix-valued) orthogonal projection ont@,,. Then the

main result. identity
6) In SectiongII[-A,[1TlI-B we introduce some martingale , m

techniques and put them to use to derive tighter bounds. E[R] = n- Z E[PA.] -1,
7) Sectior II[-D deals with non-Hermitian matrices. m '
Throughout, we will use the notatiom = nrkx. The

“oversampling factor”s describes the leverage we allowfoliows directly from the fact that the matrice§w,}
ourselves by going beyond the minimum number of paramet@s$m an ortho-normal basis by definition. We conclude that

needed to describg. ; E[PrRPr] = Pr. Thus, in order to evaluaté (18), we need
We use round parenthesgs;,oz) = trojoy for the (o bound the deviation 0P RPr from its expectation value
Hilbert-Schmidt inner product, and angle brackets ¢) for ;. in operator norm for smalkn. In [2], this problem was
the standard inner product dii". _ _ treated using a bound known as “Rudelson selection prieitipl
Lets; be the singular values of a matix The usual matrix [28]. We will derive a similar bound in the next section, as a
norms are corollary of the already mentioned large-deviation theofer
ol = maxs;, matrix-yalued random variables froin [24]. The result (@ov
i ) in Section 1I-D below) reads:
1/2
lolls = o)V/? = <ZS ) : Lemma 5. It holds that 2
t
Pr[||PrRPr — Pr|| > t] < 4nrexp (——K) , (19)
loly = trlol =3 s »
) ) ) ‘ ) ) ) for all t < 2.
Both the identity matrix and the identity function on more
genera| spaces are denoted ]by We assume in the fOllOWing thg) holds with= 1/2

We will frequently encounter inequalities between masjceDenote the probability of that event not occurring py.
which are understood in the usual sense< o, if and only (Many statements in this proof will hold only up to a small
if o1 — 09 is positive semi-definite (a convention SometimegrObabi”ty of failure. We will defer an eXpIiCit calculatm of
referred to as matrix order or Lowner partia| Order)_ these failure probabilities until the very end of the argame

As mentioned in the introduction (Sectibn]-Agn o is the When all parameters have been chosen). Then, Usihg (1), (18
matrix resulting from the application of the sign functiam t We have thaRA # 0 if
the eigenvalues of. n2 ) AL ) o Lua
%HAT”2 > n||Azlz & |Ar|2 = 2mn” [[AT |3
C. First case: largeAr

In this section, we show thah is infeasible (with high
probability) if A7 is much larger tham\+. [A7]l2 < V2mn | AF |2 < n?||AF||a. (20)

For the next sections, it is thus sufficient to treat the cdse o



Remark:Repeating the calculations in this section withoutalid for real numberg € [—1, 1] (and, strictly speaking, a bit
the trivial estimateC’ < m, the last coefficient in[{20) can bebeyond). From the upper bound, we g&t< 1+Y +Y?2, as
improved fromn? to /222, SinceC is O(Inn) with very both sides of the inequality are simultaneously diagoaali.

high probability, this would look like a major improvement.Taking expectations and employing the lower bound:
However, because only the logarithm of the coefficient enter Y 2 2

E <14+ EY? <L ElY 24
our final estimate of the number of samples required, we will [e"] = 1+ B < exp(BR), (24)
content ourselves with? on the grounds that it is a simplerand thus||E[eY]|| < || exp(E[Y?])| = exp(||E[Y?]|).

expression. These are all essential ingredients for the following teear
summarizing the results from this section.
D. Operator large deviation bounds Theorem 6 (Operator-Bernstein inequality)Let X;, i =

The material in the first paragraph below is taken from,...,m be i.i.d., zero-mean, Hermitian matrix-valued ran-
[24]. We repeat the argument to make the presentation s@lbm variables. Assumg), c € R are such that|E[X?]|| <
contained. It is an elementary — yet very powerful — largg? and || X;|| < c. SetS = """, X; and letV = mV{ (an
deviation bound for matrix-valued random variables. Theiba upper bound to the variance of). Then
recipe is this: take a textbook proof of Bernstein’s inedyal 2
and substitute all inequalities between real numbers byixnat Pr[||S] > t] < 2nexp ( ) (25)
inequalities (in the sense of matrix order, see §ec] II-B). v

We start by giving a basic Markov-inequality. Letbe the for ¢ < 2V /e, and
“operator step function” defined by

t
Pr|||S xp | —=— ], 26
oo={1 731 s zmen (). e

If o is positive semi-definite, the trivial estimat®(c) < tro )
holds. Thus for any number > 0 and matrix-valued random The second equatiorl (26) will be used only once, in
Proof: Combine Eqs.[(21.28,24) to get the estimate

for larger values oft.

Pr[S £ t1] = Pr[S—t1£0]=Pr[e? M £1] .
E[6(*51)] < E[tre*S—¥1] Pr[S £ t1] < nexp (=Xt +NmVy).
e M E[tr . (21) Lets=t/V be the deviation in units of’. Then
Now let X be an operator-valued random variab\g, be i.i.d. Pr[S £ sV1] < nexp(—AsV + A*V?).

copies of X, andS = " X;. Then
Choose\ = s/(2V). The exponent becomes

E trexp(/\ZXi)] —82/2+82/4:—82/4
mz 1 valid as long as\|| X || < 1, which is certainly fulfilled if
< trexp (/\ XZ) exp(A X, 1
zz: s < & (27)
m—1 ¢
= < [exp <)\ Xz> [exp(AX)] ) If (B7) does not hold, sef = 1/c and compute for the
i exponent
m—1
< E |trexp (/\ Z X) | Efexp(AX)]| —sV/e+V?/c? = =sV/(2c) = (sV/(20) = V?/c?)
< —=sV/(2¢) = —t/(2c¢).
m—1
s s ]?EEYGXP(/\XI)] H]E[QXP()‘X)]H (22) The same estimates hold foerS, giving the advertised
< nfEfe )™, (23) bound with the factor of2 coming from the union bound

where the second line is the Golden-Thompson inequalitly [2“{)\’\’hICh is also known as Boole's inequality: the probability

Referencel[24] now goes on to derive a Chernoff- Hoefdmﬁ: at least one of a set of events occurring is not larger than
type inequality for boundedt; € [0,1]. We find it slightly e Sum of their individual probabilities). -
more convenient to work with a Bernstein-type estimate, NOt€ that forn =1, we recover the standard Bernstein
bounding Eq.[(28) by the second moments of fkig (The inequality, which we will also have the occasion to use.
derivation in the next paragraphs is influenced by the proofsWe are in a position to supply the deferred proof of
of the commutative version in [30], [31]). Lemma[5. Recall that it was claimed that

Indeed, assume thd@E[Y] = 0 and ||Y| < 1 for some
random variablé”. Recall the standard estimate

t2
Pr[||PrRPr — Pr|| > t] < 4nrexp < 8:)

l+y<e!<l+y+y? for all + < 2.



Proof (of Lemmd15): For a € [1,n?], let P, be the (recall the definition ofgn from Sectior T-A). We then find

orthogonal projection onta,. We define a family of linear

operatorsZ, by

2
Zy = PP Pr.
m

Then
PrRPr =Y Za,.
=1
SinceE[Z,4,] = = Pr, the operator whose norm we want ta
bound can be written as

PrRPr—Pr =Y (Za, —E[Za,]).

=1

We will thus apply the Operator Bernstein inequality to the
random variablesX 4, := Z4, — E[Z4,]. To this end, we

o+ Al

I1Pu(p+ APyl + | Pr(p+ A) Pl (30)
= |lp+ PuAPyll + [|A7]h

(sgnp,p+ PuAPy) + (sgnAg, A7) (31)
= |lplls + (sgnp, PyAPy) + (sgn Az, A7)

= |\P||1+(sgnp+sgnA%,A). (32)

Y

The estimate [(30) is sometimes known as the “pinching
|nequal|ty” ([22], Problem 11.5.4), and in lind_(81) we used
Holder’s inequality:(o1,02) < [|o1]| ||oz2||1-

To conclude thaf|p+ All1 > ||p||1, it is hence sufficient to
show that(sgn p+sgn A%, A) > 0. Choose any’ € range R.
Using [29):

(sgn p + sgn Ag, A) = (sgnp—i—sgnA% — Y,A). (33)

need to estimate the constai{g, c appearing in Theorefl 6. Assume that” fulfills

Compute:

2
n
E[Z3,] = EE[(WA”PTU)AJ Za,).

From Eq. [4) we gefwa,, Prwa,) < 2% and thus

n2 2ur 2nvr

2 _
E[Z34,] Tz

PTv

having used that 4, > 0 (matrix order). Hence

= |ElZA] - ElZa)?|
2nuvr — 2nur 2v
< 7II7’T|| < = — =V
m mek
Next:
1 2
| = —|n2PrPaPr P
m
1 2
< —HnQPTPAiPTH =0
m m
nZ_ r 2unr 2v
< —2v— = = — =g,
m n m K
so that
1 2mvnr K 2knr
s = = 2.
m 1% m
The claim follows from Theorerl 6.
E. Second case: smallt
In this section, we will show that
[Arlla < n?| Az, (28)
A € rangeR* (29)

together implyl|p+ All1 > |Ip||1, if we can find a “certificate”
Y € rangeR with certain properties. The basic line o
argument is similar to the one given in Section 3[df [2].
SetU = rangep and let Py be the orthogonal projection
onto U. We will make repeated use of the basic identity

lolly = trlo| = tr((sgno)o) = (sgno, o)

[

1
IPrY —sgnpll < o, IPFY] < (34)

Then [33) becomes

5.
(sgn p + sgn AT Y, A)
= (gnp Y,AT) (sgnAJT‘ YAJT‘)
1 1
§||AT||1 nQHATHz HA l2 = 55 1AT ]2

1
_”ATHQ

Y

Y

We summarize. Assume there is a certificitec range R
fulfilling (B4). Let o* be the solution of the optimization
problem, letA* = p—o*. ThenA* must fulfill 29), for else it
would be unfeasible. It must also fulfil_(28), by Sectlondl-
But then, from the previous calculatigd\*)7 must be zero,
as otherwisd|o™*||1 > ||p|l1. This implies that(A*)r is also
zero, again usind (28). SA* is zero, and therefore* = p
is the unique solution td_(12).

It remains to prove the existence of the certificite

F. The certificate: bases of Fourier type
In this section, we construct ¥ € range R with

1 1
IPrY —sgnpll < 5. [IPFY] <3 (35)

assuming thatnax, |lw.|?> < %. A modified proof valid in
the general case will be given in Sectibn 1I-G. In previous
approaches to matrix completion, this step was the most
involved, covering dozens of pages. We present a strongly
simplified proof using two key ideas: a further application
of the operator Bernstein inequality; and a certain, reeers
random process which quickly converges to the soughifor

1) Intuition: A first, natural ansatz for finding” could be

{As follows. Define

2 m
n
Xa—Ewa(waaSgnp)a Y_EXAT (36)

It is obvious tha” is in the range ofR and that its expectation

value (equal tasgn p) fulfills the conditions in [[(3b). What is



— PrR1Xo

more, the operator Chernoff bound can be used to control the \

deviation of Y from that expected value — so there is hope Xo = sgnp X

that we have found a solution. However, a short calculation /

shows that convergence is (barely) too slow for our purposes Xﬁ = PrR:X:
Intuitively, it is easy to see what is “wrong” with the "x‘o

previous random process. Assume we samiple m basis
elements. Employing[{36), our general “best guess” at this . _ 3
point for a matrixY; which resembIeSgnp onT (i.e. with Fig. 3. 'Carlcature of the golflng scheme” used to c_onstrbetdertmcate.
. » In the ith step, X;_; designates the vector we aim to represent. The
|PrY1 — sgnpl|2 “small”) would be approximation ofX;_; actually obtained isP7R;X;_1. The distance of
the new goalX; = X;_1 — PrR;X;_1 to the origin is guaranteed to be
n only half the previous one. The sequen&g thus converges exponentially

2 k
Yi= A Xi:wz‘h (wa,,sgnp). fast to the origin.

Now given this information, the matrix we really should be
approximating in the next steps®r-(sgn p—Y7). The process Next,

(38), in contrast, _does not update its “future _strategy thase B e TR
past results”. Trying to perform better, we will draw a fugth 1Xa,]| < —4/—— = = —,
batch ofk coefficients and set mynn m Ve
n2 2k so that
Y2:Y1—|—? Z wa, (wa,,sgnp — PrYy). 2mV2 /[ Xa |l > 2mu@zﬁ
i=k+1 0 Al Z T NG
The sequenc@rY; will be shown to converge exponentiallynow use Theorerfl6. -

fast tosgn p. For reasons which should be all too obvious from e samplé batches of basis elements, thie set consisting
Fig.[3, we will call this adapted strategy tigelfing scheme ¢ m; = Kyrn Matrices.

On the one hand, the size of the batches WiI_I hgve Forl<i<I, let
to be chosen large enough to allow for the application of

the operator large-deviation bounds tailored fiodependent n2 Mt
random variables. On the other hadmust not be too large, Rio— m; Z wa; (wa;,0)
as the speed of convergence is exponentidl4nm/k. j=mitetmio1+1

2) Proof: Before supplying the details of this scheme, Wge the sampling operator associated with debatch and set
state a lemma which will allow us to control the operator

norm ||7>TLY|| of the approximations. The operator-Bernstein i

inequality makes this, once again, a simple calculation. X0 = sgup, Yi= ZRJ'XJ'—l’ Xi =sgnp—PrY;
j=1

Lemma 7. Let ' € T'. Then

2 (see Fig[B). From this, we get
Pr [HP%"RFH > t] < 2nexp ( il )

CA[|F3 X; = (38)
fOI’ t S WHFHQ' and (]l — 'PT'RZ"PT)(]I — 'PTRi_l'PT) . (]l — PTR173T)X0.
Assume that in théth run
Pr [H'P%'RFH > t] < 2nexp <—2\/%L';>
VIF 2 I(L = PrRPOXicalls < el Xicallze (39)

for larger values oft.
Denote the probability of this event not occurring py(i)

Proof: It suffices to treat the case wheffé'l|; = 1. Set  (recall thatp, has been defined in Sectign1I-C). Clearly, if
n2 (39) does hold for alt, then
iR
Xo = —Prw, (we, F).
m [Xill2 = (L = PrR;Pr)Xi-1]l2 < ¢l Xi1]l2,

Then} " X4, = PyRF, and ‘
so that|| Xill2 < V7 [Tj_; ¢;-

E[X4,] = iPC#F =0. Assume further that for all the estimate
m
Using [3) and the fact thatPLw, | < |w.|| we estimate the IPFRiXia |l < till Xiall2
variance: ) is true, withps (i) bounding the probability of failure.
n
IBXGN < —5 D (wa FP[(Prwa)?|  (37)  Then
a l l
< ”_zl” =2 _ Y .y IPFYIl < D IPFR; Xl < D tall Xima |-
- m22n 27 m2 T mer 0 i=1 i=1
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choice of parameters (to be refined in Se¢?;Y;|. However, a smart substitute for the crude union

tion[[lI-B) is bound could potentially remedy this situation.
By the same token, one can replace Lenirtha 5 by a non-
c = 1/2 uniform estimate. The golfing scheme only requires that
ti = 1/(4vr), |(PrR:Pr — 1)X,||2 be small, which is much easier to
ki = 64v(In(4nr) +1n(20) + Blnn) guarantee than a similar bound d®rR;Pr — Pr|. This

for somegs > 0. It follows that

is precisely the role of Theoreml12 below, on which bounds
of orderO(rnvInn) can be based (see SectlonTlI-B).

_ _ 1 We remark that[[2],[IB] analyzed_(#0) by expanding the
IXill2 < V27", |PrYi| < 1 D 2 < 3 inverse into a Neumann series
With I = [log,(2n%y/7)], the conditions in Equatio (B5) are (PrRPr)™' = (1 —PrRPr)". (41)
met. Using Lemma&]5 and Lemnia 7 the failure probabilities n=0
become There is a formal analogy between this series and our con-
K struction, in particular in the light of (38). Note howevtrat
p1 < dAnrexp (_@) the product in[(38) involves distinct and independentlyndra
pa(i) < dnrexp (_ Ri ) sqmpling operatoré%l-_ in every factor. Informally speaking,
32v this added degree of independence seems to rhake (38) a more
p3(i) < 2nexp (_ 6’1;) benign object than the powe(g — Pr-RPr)" in (@J).

all of which are bounded above bgn~?. Theorem[B for G. The certificate: general case

Fourier-type bases thus follows from a simple applicatibn o
the union bound. The number of coefficients sampled mu

In this section, we show that the constructiortotiescribed
Soove continues to work if the assumptibh (3) on the operator

exceed norm of the basis elements is replaced by the incoherence
m properties[(U[5).
Ik; = 64v(In(4nr) + In(20) + Blnn) log, (2n2v/r)rn Indeed, in the discussion of the golfing scheme, we referred

to the operator norm ofy, exactly once. In the proof of

= O(rnv(1+ 8)In*n). LemmalY, we considered the quantity

3) Discussion: The “golfing scheme” above could be de- n2
scribed as a “sequential” way of building the certificatetaec Xo = Ep%wa (Wa, F). (42)
every time we sample a basis element we assign a coeffi-

ciente, = (w,, X;) to it, but never alter our previous (:hOlcesAfter Equation [3F), the variance

This contrasts with the more “holistic” method employed 2
: : . ) . E[X2]| < — W F o
in [2], [8], where Y was constructed by directly inverting I Al Z v I PTw Il
PTRPTZ
Y = RPp(PrRPr) " sgnp. (40) Was upper-bounded using the fact thetP7w.)?| <

Clearly the absence of this assumption can be compensated fo

Presumably, the mostptimal sequential scheme is the ongyy a suitable bound ofw,, F)2. This will be made precise
which chooses the coefficient, in every step such as topelow.

minimize the distance to the vector we aim to approach. If the Assume thaf is some matrix infl” with | F||2 = 1. Further,

distance is measured in 2-norm, it is simple to write down @&sume that at least one of the following two bounds
closed-form expression for that choice. However, suchat-str

174
egy introduces strong dependencies into the random process max Jwa|? < o (43)
which make an analysis challenging. The elementary i.i.d. 9 v
tools employed in this paper are no longer applicable. This max |(wa, F)I" - < n2’ (44)

intuition motivates consideringnartingale generalizationsf ho|ds.
the operator-large deviation bounds bf[[24]. We will indeed Note that
prove a deviation estimate for matrix-valued martingales i n3 51
Section III-A. Whether this bound is sufficient to analyze th IE[XZ]I < — maxz (wa, F)” = (1, w2tp), (45)
“optimal sequential scheme” remains unclear. mt oY 9 K

Another observation is that, since Lemmh 5 provides where the maximum is over all normalized vectaps €
uniform bound on||(PrRPr — 1)X |2, there is no need for (rangep)t. Let 1)y be a vector achieving the maximum.
the iterative scheme to chosediferentset of basis elements Define two vector, ¢ in R" by setting their components
in each run, in order to achieve exponential convergence tgf

PrY; — sgn p. Iterating over a single fixed set 6f(nrInn) o = (wa, F)Q, Do i= l<¢07w§¢0> (46)
basis elements would equally do the job. Unfortunately, the n
statement of Lemmig 7 is not uniform i € T, necessitating respectively. The assumption thdf'||3 = 1 implies that

the less-optimal approach used above in order to contil|; = >, |¢.| = 1. Slightly less obvious is the fact that
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the same is true for the other vectdp||; = 1, regardless Lemma 10. Let F € T. Then

of the basis chosen. This relation is ascertained by the next ) th
lemma. Pr [u((]l — ’PTR’PT)F) > t] < 2n°exp <_W) ,
Lemma 8. Let {w,}, be a set ofn x n-matrices (not for all ¢ < u(F).
necessarily Hermitian) that fulfill the completeness rielat i _
Proof: Fix b € [1,n?]. Define
Z(wa)il-,jl (wa)lé-,jz = 61’1#2 5i27j2' (47) 1 n2
a Xo = —(wp, F) — (wp, —Prwy) (wg, F). (52)
m m
Then Then
Z w};wa =nl. m
ZXAT" = (wb, (]l - PTRPT)F)
Proof: Compute: i
; Note that the first term if_(52) is the expectation value of the
(Zwawa)i_j = Z(wa ki (Wa )k 25 i.j = 10 second one. Therefor&[X 4,] = 0 and the variance oX 4,
@ ak is bounded above by the variance of the second term alone (as
® in the proof of Lemm{]S)'
Thus,
]E[X?L] < Wy, PTwa (U}a,F)2
Il = Zpa = ¢o,n1¢o> =1 n? Z
2
2
We return to the vectors if_(#6). The assumptions made < W“(F)Z(PT“’““’“)
imply that at least one of the vectors is element-wise bodnde 5 ¢
above by-;. Thus = "_2M(F)|‘73wa||§
m
2
. v T
>~ pate| < min{lpl gl lpllcllali} < 5. (48) = e = Vi
. . : . . . Further,
Plugging this estimate into the computation of the variance 1 1
(@8) we obtain | < = p(F)Y? (1 + nQZ) = —u(F)Y2(1 +nvr).
3 m n m
IEX2) < =2 =Y. Thus, from the Chernoff bound:
: - m2n?2  mkr
We have proved the general analogue of Lerfiina 7: Pr {|(wb, (1 = PrRPr)F)| > \/f]
Lemma 9. Let F € T. Let f > ||F||2 be an upper bound on .
the 2-norm ofF'. Assume that one of the two bounds < 2exp (‘m)
v
mngwaHQ < - (49) as long asy/t does not exceed
14
max (w, F)? < = f2 (50) 9 y2/Ix, | = 2Ty m > L(F)/2
‘ n? m¥o /1 Xail me (Y21 +nvr) — ().

holds. Then The advertised estimate follows by taking squares and

Pr |:H,P1J:RF|| > t} < 2nexp (_ i’;z) . (51) applying the union bound over the® elements of the baiis.
With these preparations made, we can repeat the “golfing

for ¢ < \/Wf argument from the last section. As an additional constraint
Next, we have to justify the bounds ¢w,, F')*> we imposed we demand that

in the previous lemma. By assumptidd (5), the estimate does

hold for F' = sgnp, i.e. Lemma P may be applied during

the first leg X, = sgn p of the “golfing scheme”. However, be fulfilled for all i, with probability of failure given by, ().

there is no a priori reason that the same be trueXor= Then, with

(1 — PrR1Pr)Xo. For now, all we know abouk; is that

u(Xi) < ¢ p(Xioa)

it is an element ofl" and hence low-rank. This property was a = 1/2,
enough for Fourier-type bases, but in the general casegvegr ti = 1/(2Vr),
too weak. We thus have to ensure that “inhomogeneityXpf ki = 64v(In(4n?) +1In(31) + Blnn)

implies inhomogeneity of; .1, a fact that can be ascertained

using yet another Chernoff bound. it follows that
Let u(F) = max,(w,, F)? be the maximal squared overlap 1 X2

betweenF and any element of the operator basis. u(X0)

27" sgnplla = 27"/,
—2i Voo—2i
27" p(sgnp) < —5 (2777).

IN A
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Thus, inith iteration of the golfing scheme, we can appljor any A > 0. Using Golden-Thompson:

Lemmal® withF = X; and f = 27%/7. A, A Zm—14+Dm)
The failure probabilitiew;, p2(i) andps(i) are as before. Bftr ™) E[E[tre |Xm71H

Further < E[E[tre* e (X, 4]
. = E[tr e’\melE[e’\DMXm_l]]
) < 2n? (— i ),
p4(2) = n- exp 160 < E[tr €>\Zm,1|‘E[e>\Dm|Xm71]|H'

which, as the other probabilities, is bounded abovelby®.  From the martingale condition:

By the union bound, Theorel 3 holds as long as
E[AD;|X;—1] = AE[Z; — Z;—1|X;-1] = 0.

m > log,(2n*/r)64v(In(4n”) + In(31) + Blnn)rn. Once more, we will make use of the estimate- y < e¥ <
1+ y + »? valid for |y| < 1:

E[e*X;1] < 1+END;|X;—1] +EMNDX; 4]
A. Martingale methods for matrix-valued random variables = 1+ A\E[DX; 4]

exp ()\Q]E[DﬂXZ,lD )

IIl. REFINED METHODS AND GENERALIZATIONS

The purpose of this section is two-fold. First, we derive
a dimension-free bound for the norm of the sum of vector-
valued random variables (Theor&m 12). Substituting Leifime?8 10ng as\|| D[ < 1. Thus
by this dimension-free analogue will enable us to give tght [P X, ]| < [lexp (WE[DZX,1])|| = R
bounds of matrix recovery in Sectidn IlI-B (see discussion )
in Section[II-E3). Such dimension-free bounds for sums &Y induction

IN

vectors are vyell-l_mown [32] _an@ we cogld in prir_1cip|e corten Eftr )] < Eftr eAZl]e)\2(g§+n-+Ji) < eV
ourselves with citing an existing version. Making the proof _ _
explicit, however, ensures that this document remains self The claim follows by settingy = ¢/2V. L]

contained and allows us to record a corollary which may The next theorem is essentially contained in Chapter 6 of
be of independent interest. Indeed, the simplest argunmenti32] (see alsol[34]). To keep the presentation self-cortain
[32] relies on a standard large-deviation bound for redleds We give a short proof in AppendixVI.

martingales. We use the occasion to prove an operator ersiaorem 12 (Vector Bernstein inequality)Let X, ..., X
(Theorent1ll) of this martingale estimate, which generalizge jndependent zero-mean vector-valued random variables.
the operator Chernoff bound. This constitutes the secopg;

purpose of the present section. m
Let X4,..., X,, be a sequence of random variables. We will N = H Z Xi

use the bold-face symb&{; to refer to the se{ X, ..., X;} =1

of the firsti of these variables. Theorem]11 is an almogthen .2

verbatim translation of the real-valued statement in [3@le( Pr [N >VV + t} < exp (——) ,

also [33]). To lift it to operator-valued variables, we usaely 4

the same tricks that were employed in [[24] to obtain thghereV = ", E[|| X;||3] andt < V/(max || X;||2).

operator Chernoff bound (c.f. our exposition in Secfiom)!-

2.

We can now prove a non-uniform, but dimension indepen-
Theorem 11 (Variance bound for matrix-valued martingales)dent version of Lemmal5.

Let Xy, ..., X,, be arbitrary random variables. Lef, = 0

andletz,,..., Z,, be a sequence ofifn)-Hermitian matrix- Lemma 13. Let I € T'. Then

valued random variables. Assume the martingale condition t—/2v/k)k
’ Pr(|(PrR — 1)F|ls > ] Fla] < exp (_@>

8v
E[Z; | Xi-1] = Zi—1
provided: < 2/3.
holds for: = 1,...,m. Assume further that the martingale

difference sequencB; = Z; — Z;_; respects Proof: Let
n? 1
IDill <eiy  |B[DF[Xia]|| < 0. Xi = —Prwa,(wa, F) = —F.
Then, withV = """ o2, Then
4
n
12 E[lX;13 < —E )P 2
Pr [HZ’WH > t:l S m exp | —— |, (53) [” ||2] = m2 [(U)A ) H TwA”Q]
v n® _vr 9 2v 9 9
< —2—|Fllz=—IFllz = V5.
for anyt < 2V/(max; ¢;). m2 n mK
Next,

Proof: As in Sectior 1I-D,

K

|1 Fll2 ( o2vr 3v[| Fl2
Pr[S £t < e_’\]E[tre’\Z“] 1Xill2 < m n n tl)= )
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So that The failure probabilities concerning the assertions about
2V/ 1 Xill2 = 2/3||F||2- |P£Y| are bounded, as before, by Lemiih 7. Note that
we need to employ the “Poissonian” part of the lemma, i.e.

Now use Theorern 12. pioy P

Note added After the pre-print version of this paper wasEq' (28) when > 2.

published, the author was made aware of a related matrix; ;) o) o o _18(In(a) + ) Inn +1n(2n)
valued martingale bound in [85]. The derivations used it [35 Pait). Ps - P 16
are very similar in spirit to ours (however, their resultsicat < 1 5
be applied directly to the problem treated here, because no = Lt
variance information is incorporated). A few months aftar o , Inn9(In(a) + B)
pre-print appeared, more sophisticated matrix-valuedimar ps(i) < exp (_T + m(z”))
gale bounds were established [in1[36]. 1 _,
< ae .
B. Tighter bounds for Fourier-type bases Lastly, p; can be comfortably bounded by
We present a refined analysis of the “golfing scheme”, which 2
achieves fairly tight bounds for Fourier-type bases. Camgpa p1 < exp (—?’2—” + ln(4nr))

to Sectior II-F, there are two changes in the argument.,First

we use the dimension-free large deviation bound for vectors < e 2metA)@lnnt(-1))+2Inntnd

derived in the previous section. Second, the parametefseof t < lefﬁ.

random process used to construct the certificate are chosen @

more carefully. A first improved estimate may be achieved at this point by

Let a > 4 be a number to be chosen later. We will analyzsettinga = 2. From a simple application of the union bound
the following set of parameters for the golfing scheme: we infer that the total probability of error is smaller than®.
In total, the process will have accessed fewer than

ki = 18(lna+ Bve;?,
o = ey — 1 18(In(20) + B)v 4(2Inn + log, (2n*y/r) — 2)nr
1 = 2 = T 179
2In'/%n = O(nrv(f+1Inlnn)lnn) (54)
Go= 5 (2 <i<l), expansion coefficients.
t1 = tg= L, Theorem 14. Let p be a ranks matrix and suppose thdtu, }
Avr is an operator basis fulfillingmax, |lw,||> < %. Then the
= Inn 2<i<l), solutionc* to the optimization probleni]1) is unique and equal
4\/r to p with probability of failure smaller thar =, provided that
I = [logy(2n*V/r)].

| > O(nrv(B + Inlnn)lnn).

Using the arguments from Sectibn 1I-F, ) ) )
Largely for aesthetic reasons, we provide a further refine-

: im0 i=1,2 ment which does away with th@n Inn)-term in [54). Recall
1X: 12 < x/?]:[l% =Vr2 { mn P> its origin. Letp(i) < py (i) + p2(i) be the probability that at
= least one of the two assumptions

Thus
; |(PrRiPr — 1) Xi—1|l2 < cil| Xi—1]2, (55)
Pyl < D tillXioale PR Xl < til| Xima 2 (56)
11:1 1 1lnn  1lon made about théth batch does not hold. In the argument above,
< 1 (1 + SENYZIN + ion + S + .. ) we employed the union bound which ascertains that the total
In*“n nn nn probability of failure is bounded above biymax;p(i). To
< 17 make this expression a constantax; p(i) must beO(I~1).
2 This, in turn, was achieved by setting = O(Inl) =
and O(Inlnn).
B 1 There is an alternative construction for the dual certiéicat
Il = [PrY; —sgnpll2 < 2n2 which turns out to yield a better estimate. Informally, tHea
as required by[(35). is to draw!’ > [ batches, bu_t to include into .the golfing scheme
We look at the failure probabilities. To boungy(i), ©nly those batches for which the assumptidns (35}, (56).hold
we make use of the dimension-free estimate provided must choosé’ large enough that, with high probability,
Lemma[TB: [ "of the batches do fulfill the assumptions. There is hence a

L further degree of freedom in the choice of the parameters:
. (%Ci)QQ(lno‘ + B)e; L s decreasing the; increases the average number of batches not
p2(i) < exp|— . g the; g

= —e€
4 o meeting the assumptions, which can be compensated for by



14

increasing!’. It will be shown below that this freedom maycoefficients. In the second case ¥ 8 + 31n6) the number is

be used to improve the bounds.

To give a formal description of the construction, we reestat

the slightly modified definitions of the objects occurringlire

golfing scheme. The most important change is the introdactio
[1,1'] which enumerates the batche§ heoren{# follows.

of a functionf : [1,1] —
to be included. More precisely, the objects
2 mi4--4m;

Riio = — Z wa; (wa,, o)
b j=matetmig+1
Xo = sgnp, Xi =sgnp—PrY;

are defined as before, while

Y = ZRfo)Xjfl

j=1

now only depends on a subset of batches. The function
turn, is defined by setting(0) = 0 and f (i) to
j>fi-1)

[(PrR;Pr — 1) Xi—1ll2 < ;| Xi-12,
[PFER; Xiv1 ]| < til| Xim1]2.

min
such that

18(In5+ S)vd(2Inn + gﬂlog2(2n2ﬁ))nr
= O(nrv(B+1)*Inn)

Remark: All the arguments of this section remain valid
when the bound on the operator norm of the basis is dropped.
The sole obstruction preventing us from stati@@grny lnn)
bounds for the more general case is the union bound in
LemmalI0. While it seems plausible that one can overcome
this difficulty with reasonable effort, the author has so far
failed to do so.

C. A lower bound

Referencel[B3] gave lower bounds of ord@(nrv Inn) for
the numberQ2| of matrix elements necessary to fix a rank-
matrix. Since the theory of low-rank matrix recovery seems
better-behaved for Fourier-type bases, it might be conjedt
that fewer coefficients are sufficient in this case. This hope
turns out not to be realized.

The results of this section imply that the bound of Theo-
rem[4 is tight up to multiplicative constants.

It remains to choose the parameters of the golfing scheme.

With foresight, setv = 6. Then the probability(:) of theith

Theorem 15. Let n = 2% be a power of two. Le{wfzk)} be

batch ¢ > 2) being discarded (i.e. not being in the range of the Pauli basis defined in Sectibn [IB2.

f) is smaller than
. . ) 1
p(i) < p1(i) + pa2(i) < 3¢ B,

By the standard Chernoff-Hoefding bolind

Pr [(number of batches in the range pf) < [
—2(31' —1)?
< o (20,
We consider this bound in two regimes. First assumesthat
25(8+1n6) g0 thatl > 2log, n > 9(8 + In6). Choosel’ = 21.
The exponent becomesé < —(B + In6). Next, drop the
assumption om and instead deman@ > 8 + 3In6. Set

D5

I = ﬁ%l. In this case a few simple manipulations yield for

the exponent

4(B—1)%

— < — In6).
In either case:
L s
ps < —e P
(6%

By the union bound, the total probability of failure is sneall
than

p < pr+p2(l)+p2(2)+p3(1) +p3(2) +ps < —e P =e".

— 2lo

Under the first assumptiom (> 25(5+In6)) the scheme

required knowledge of fewer then

18(In5 + B)rv4(21Inn + 2log, (2n*/r))nr
O(nrv(f +1)Inn)

5E.g. Theorem 2.3a if_[33]; one could also use the Bernstainuiality
derived in this paper, obtaining slightly worse constants.

1) Let Q be any subset dft, n?]. If | < (n — 2)log, n,
then there are two rank-one projection?,, P, with
orthogonal range such thatw,, P1) = (w,, P») for all
a € .

There is a rank-one projectio; with the following
property. Let) be a set of numbers ifi,n?], obtained
by sampling

2)

m < ———nlogyn

(I+e)
times with replacement. Then with probability

.2
Df > (1 — nm)

there exists a rank-one projectidr,, orthogonal toP;,
such that(wg, P1) = (w,, P2) for all a € Q.

The proof makes use of the theory efabilizer states
a common notion in quantum information theofy |[15]. To
make the presentation self-contained, we have included the
briefest outline of this theory as Appendix'VIl. The proof
below assumes familiarity with the notions introduced ie th
appendix.

Proof: In the statement of the theorem, we used a “one-
dimensional” labeling of the Pauli basis elementg by
numbersa € [1,n%]. In Section[VI] on stabilizer theory,

a “two-dimensional” labeling in terms of pair&,q) from
[1,n] x [1,n] proved more convenient. We assume that some
mapping identifying the one set with the other has been c¢hose
and will subsequently not distinguish between them.

For the first statement:

By Prop.[23, there are stabilizer groupsG,, = € Fox
whose pairwise intersections equél}. If |Q| is smaller
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than (n — 2)log, n, then at least one of these stabilizer 2) Let {w,}, be an ortho-normal basis in the complex

groups intersect§w, |a € 2} in [ < log,n = k elements. vector spaceM,,. Then
Call that stabilizer grougs. By Prop.[24, there are distinct - —
charactersy;, y» of G which agree onG' N {w, |a € Q}. {Wa}a U{iwa}a
By Prop.[22,F%/1 = P(G, xo/1) are two rank-one projectors is an ortho-normal basis in the real vector space of
with orthogonal range. By Eql (¥ 7Jw,, 1) = (wa, P») for Hermitian off-diagonal matrices of the forfi{57).
a €. 3) Let
We turn to the second claim. Takg = P(G., x) for some r
stabilizer groupG, as in Prop[23 and some characterAs o= Zsi Vid;
|G| = n, the probability of a randomly chosen element of =1
the basis to be contained @& equalsl/n. As argued before, be the singular value decomposition ®fc M,,. The
there will be an orthogonal stabilizer projectBs compatible 2r vectors inR™ & R"™ of the form

with the coefficients irf2, as soon as the intersection between

Q and {w, |a € Q} is smaller thank = log, n. Thus the i(wi D b)), i(wi @ (—¢;)) (59)
probability that [(1) has a unique solution is not larger than V2 V2
the probability of an event with probability/» occurring at are the normalized non-zero eigenvectors aof with
leastlog, n times inm = nlog, n/(1—¢) trials. This quantity eigenvalues’zs;. In particular,
can be bounded by the standard Chernoff-Hoefding inegualit 1
(e.g. [33], Theorem 2.3. (b)). The advertised bound follows ol = EHO’”, 5] = V2ol

[

andrank ¢ = 2ranko.

D. Non-Hermitian setting 4) With o as above, set

T
We presented the argument in terms of Hermitian matrices E(o) = wa
. . . . - 3
because this is the natural setting for the Operator-Beimst = !
inequality. It is, however, straight-forward to extend tksults

to arbitrary complex matrices. The construction in thigtisec (the non-Hermitian analogue agn o; c.f. [3]). Then

serves as a simple proof of principle; a more refined analysis sgnd = V2 E(0).
is certainly possible.
Indeed, assume bohand the{w, } are arbitrary complex Proof: Compute:
n x n matrices (in this section, we break with our previous 1 0 o 0 oy
convention that any matrix is automatically assumed to be (61,52) = 5tr< UI 0 ) ( U; 0 )

Hermitian unless stated otherwise). We will employ a stathda 1
construction[[1R], associating with any complex n-matrix = ~(trowol +trojos) = Re ((01,02)),

o a Hermitian2n x 2n-matrix 2
1 0 which implies the first two claims. Verifying statement 3 is
5= _— ( ; g ) , (57) trivial. X ,
V2 \ o Let ") = 4; 00, 6! = 0@ ¢;. Let P, be the projection

The obvious strategy pursued below consists of the follgwiPnto the positive part ofr, let P_ project onto the negative
steps: part. From[(5DB) it follows that’,. equals

(i) from {w,}, build a suitable Hermitian basis in the spacé @ (O @O\ L@ O, @ @\
M, of 2n x 2n matrices, 9 Z% (7/)1- ) 9 (qsi ) +o; (% ) +o; ((bi ) '
(i) formulate a matrix recovery problem in terms pfand

the basis constructed before, Thus
(iii) ?ﬁ;r:pbu;;;he incoherence properties/ofvith respect to sgné — Py —P_ — Z%gl) (¢§2)) +¢§2) (1/151)) — \V3E.
(iv) apply the methods detailed in this paper in the extended '

space, and u

We now tackle the first task listed above: building a suitable
basis inMa,,. Denote the original basiéw, ", by B. The
basisB in the extended space is taken to be the set of matrices

(v) show that the original matrix recovery algorithm (i.leet
program[(1) applied t, {w,} is no more likely to fail
than the one in the extended space.

To this end, we start by collecting some basic propertiesof 1 (0 wq 170 1w,
the mapping — &. V2wl 0 ’ V2 \ —iwf o ’
Lemma 16. L<g’a 0T>7 L(Bwa 0 T)
1) For 01,00 € My: V2 Wa V2 W
fora =1,...,n. Note that the first two matrices are jusf,

(61,62) = Re ((01,02)). (58) andiw,, so that Lemm&16.2 is applicable.
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Let Q be a set ofm randomly chosen elements frof. Corollary 19. The bounds of Theorefl 3 and TheorEn 4
Below, we will analyze the problem: continue to hold for non-Hermitiap and {w,}, if the co-
herencev is measured according to Definitidn]18, and r
are substituted byn, 2r respectively.

Proof: The fact that the problerfi (60) will haver = 5 as
where the minimization is over all Hermitian matricesin its unique solution with the probability of success adwexi
Mo, This is step (i) above. (Note again that we are interestégl Theorem$§ 1314 is an immediate consequence of Lemima 17.
in the program((60) only asraeanf proving that the original ~ From Lemmd16.3||5|[1 o ||p||1, S0 that then x n min-

min llell (60)
subject to  (0,bq) = (p,ba), Vb, € Q,

program[(1) works directly for non-Hermitian objects). imization problem[{IL) hag as its unique solution whenever
To handle step (iii), we introduce further notations. Lethe same is true fof (60) and u

U = rangep,V = rangep'’ be the row and column space

of p respectively. Generalizing our earlier definition to non- IV. CONCLUSION AND OQUTLOOK

Hermitian operators (and following |[2]), If' be the space 5 outiook
of matrices with row space contained &h or column space

contained inV’. The projection operatdPy onto T acts as The following topics will be treated in follow-up publica-

tions.

Pro = Pyo + oPy — PyoPy. 1) Noise resilience:As indicated in [[11], the procedures
- » . ) , laid out in this paper are resilient against noise. The aisly
By T'we mean the set of Hermitian |:natr|(?esm12n with 'OW " of noise effects in the general case builds on techniqueggro

or column space equal i = range p. Using these notions, j, o1 the matrix completion problem. It turns out thatth

the following lemma relat_e_s the ln_coherence propertiesief hounds are quite sensitive to the operator norm of the sampli
extended setup to the original objects. operatorR (c.f. Eq. [18)). This number is equal to one if the

Lemma 17. expansion coefficients were sampled without replacing, and
) 1 ) is likely to be of orderO(lnn) > 1 for the i.i.d. scheme
max 1ball® = 5 max [lwa]%, (61) presented here. In a future publication, we will prove ofieta

valued large deviation bounds for sampling without repigci

~\ 2 2
pak |(ba, sgup)|” < 25;%%'(1““’ E(p)l*,  (62) [27]. Therefore, a detailed discussion of noise effects bél
‘ deferred until then.
ball2 < 2. . .
?j‘;‘i%”PTb“”? - gi?éHpTw“”Z (63) 2) Tight frames: Let ;1 be a normalized measure on the

Proof: The first two claims follow from Lemmpa_16. We unlt-sphere of m"?‘t”ces' We refer u_)as ‘T".t'ght fr_ame(gl_so
_ a spherical 1-desigror a set of matrices ifsotropic position
prove the last statement fdr, = w,; the other cases are

shown analogously. We borrow the notation from the proof (B%SJ' or just an “overcomplete basis”) if

Lemmal16. ., _ 1.
Let PS" project onto the span of the!", and P{*) onto [Pl /Pw du(w) = 271d, (67)
the span of thezsz(?). From Lemmd_16,°; = P[(Jl) + P‘(/Q). whereP,, is the orthogonal projection onte. Tight frames
Let P(Y) be the projector onto the first direct summand igan replace ortho-normal bases in many situations.
C?** = C" @ €™, and P® onto the second. Then In the “Fourier-type” case — i.e. if there is a uniform bound
PA(PWG, PD) on the operator normjw| of the elements of the frame —
T N all statements in this paper may be easily translated from
= P[(Jl)lbaP(Q) + P(l)ﬁ/aP‘(/Q) - P[(Jl)tbaP‘(/Q). ortho-normal bases to tight frames. In the absence of such a
g?nstraint, Lemm@a10 may be a source of problems: it contains

From the analogous relation for the adjoint we conclude tha union bound over all elements of the frame and is therefore

Pila = Priva, sensitive to its size. In particular, it cannot be directbpked
to continuous frames. We believe that this difficulty can be
so that the claim follows from Lemniall6.1. B overcome with medium effort and may present more details
We proceed to steps (iv) and (v). elsewhere.

Note that similar conclusions have been drawn before in the

Definition 18 (Coherence, non-Hermitian caséjhen x n- ] )
case of commutative compressed sensing [8].

matrix p hascoherences with respect to a basiéw, } if either

max |lwe||? < 2;,3 (64) V. ACKNOWLEDGMENTS
a n
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a n J. Eisert and Y.-K. Liu for providing many insights which tta
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VI. APPENDIXA: PROOF OFTHEOREM[1Z Proposition 20 (Properties of Pauli operatorsyVith w(p, q)
For completeness, we give a short proof of Thedre 12 (s&® defined in[(70), it holds that

also [32] [34]). 1) Thew(p, ¢)’s are Hermitian and unitary. It follows that
Proof: We aim to use Theorei 111 with = 1. To that
end' let U}(p7 Q)2 =1 (71)
Z; = E[N [ X;] — E[N] 2) The Pauli operators form an super-normalized orthogo-
nal basis:

be the Doob martingale sequence/df- IE[N] with respect to
the X;; let Xo = 1. As in Theoreni I, seb; = Z; — Z;_;. tr w( ") = ok
) S8V = 2 — 24 P Qw(p’,q') =27 0ppr0g.q'- (72)
Let X; be the set{Xy,...,X;—1, Xi+1,..., X} of all _ ppaa
random variables except for thith one. Finally, let 3) For everyp,q,p’,q, there is a phase\(p, q,p’,q') €
. {+£1, £i} such that
Si=> X,

i w(p, q)w(p',qd') = Ap, ¢, 0", d)wp+p' . qa+d). (73)
be the sum of all vectors, with thigh term omitted. (In other words, the mapv realizes aprojective repre-
Using the triangle inequality sentationof the additive group of% x F%.)
IDi| = [E[N|X,]-E[N|Xi1]| If w(p,q) andw(p’,q") commute, ther (¥3) simplifies to
< sup [N — E[N|X,] (68) w(p,w(p’,¢) =+wlp+p,q+4q). (74
Xi . .
. . 4) The commutation relation
< |ISillz + 1 Xill2 = (ISill2 = B[l Xl[2]) o o .
1Xill2 + E[)| X;]|2)- (69) w(p, Qu(p’,q') = wp', ¢)w(p,g) (1)~ (75)
Thus holds.
|D;| < max || Xil2 + E[|| X:]|2] < 2max || X;|l2 =t ¢, Proof: Equations [(71["42[ T3, ¥5) can be checked by
_ _ _ simple direct computation.
where the maximum is over all values &f;,. With (€8): To verify Eq. [74), note that the product of two commut-
E[D?|X;_,] < sup E[(N — E[N|X:])?|X.]. ing Hermitian operators is Hermitian. Thus, f(p,¢) and
! Tk, w(p’,q’) commute, the L.h.s. of .(¥3) is Hermitian. But the
But r.h.s. is Hermitian only ifA(p, ¢,p’, ¢') is real. [ ]

By Eq. (73), the set

B[y~ BN X)) | X P®) = {2u(p,q), £iw(p,q)| (r,q) € F§ x 5} (76)

= E[N?|X;] - E[N|X,]? . - ,

= S+ B - EIIS: + Xl | X, " Cortin Suberoupe of the Paul oup can be et o define
Q112 2 Q 2 121 —. 42

< lISillz + EIXallo] = 15 + LX) = Ef]| X:ll2] =: o7 an interesting class of projection operators. These atedcal

It remains to compute the expectatiijN] < E[N?]'/2, stabilizer groupsand defined as follows:

The square of the latter quantity is Definition 21. Let G be a subgroup o*). The groupG is
E[N? = ZE[<Xi7Xj>] _ ZE[HXiH%] -V called astabilizer groupf
i, i 1) it is Abelian,
m 2) -1¢G, and
3) its order |G| equals2*.

VII. APPENDIXB: BASIC THEORY OF STABILIZER STATES  The connection between stabilizer groups and projection
The lower bound in Sectiofh TIIHC was built around thevperators is given in the next proposition.

congept of "stabilizer states”, a concept from quantumr"r?foProposition 22. Let G be a stabilizer group. Lety be a

mation theory. For the convenience of the reader, we 9IVe.8 " lex character of (i.e. x(99') = x(g)x(g') for g € G)

short outline below. The presentation is necessarily betly v P = XA99) = XRIIXNg g '

condensed and fairly technical. A more complete account can 1
be found e.g. in Refs[ [15]. [16]. [18]. P(G.X) = 5 > _x(9)g (77)
As a first step, we need to identify a certain group structure 9ec

of the elements of the Pauli basis introduced in Sedfionll-B2hen
LetIF; be the finite field of order two (with elemen{s, 1}),

and letIF5 be the set of column vectors with entries from trP(G,x) = 1 (78)
IF,. We introduce a mapping from pairs(p, q) € (IF%, F%) P(G,x)* = P(G,x) (79)
to unitary matrices ofC?)®* by setting PG, = PG,Y) (80)

w(p,q) = (" of'of") @ @ ("™ 05" 01*).  (70) |n particular, P(G, x) is a rank-one projector.



If ¥’ is another complex character @f, then

tr (P(G, X)P(G, X')) = Oy’
Proof: Equation [[78) follows from[(72).

Next,
1 2
(#)
1 2
(3r) 1615 ol = PG
geG
because forh € G it holds thath G = G (which is true for

any group).
From Def.[21.2 and Eq[(71), it follows that = 1 for

g € G. Hencex(g)? = 1 so thaty(g) = 1. Thus Eq.[(7F) is
a real linear combination of Hermitian operators and thaeef

Hermitian. This proves Eq[(80).
> x(h)X'(9) trhg

Lastly,
1 2
-\
g,heG

ot SO (0) = Gy

geG

(81)

P(G, x)> > x(hg)hg

g9,heG

(1]

(4]

5
tr P(G, ) P(G, ) .

(6]

(7]
having used Eq[(72) and the standard orthogonality relatio
for characters of finite groups (see e!g.|[37, Corollary R.14 g
[ |

Proposition 2P allows us to construct rank-one projectiorﬁg]
operators from stabilizer groups. It remains to be shown tha
such groups actually exist. The construction below makes us
of the fact thatF% can be identified with the (unique) finite%!
field IFo. of order 2 in the sense that there exists a (non-
unique) isomorphism froniFs to IFor which respects the [11]
additive structure. In this way, we can assign a meaning to
the product between elements frdj.

Proposition 23. Let by, ...,b; be a basis ofF5. For each Hg]
z € F% let G, be the subgroup ofP*) generated by [14]
{w(by, xby), ..., w(bg, zbr)}. ThenG, is a stabilizer group.
If 2’ # x, then [15]

G, NGy = {1}. (82)

[16]
Proof: Since

bl(:vbj) — (xbz)bj =0 (17]

the generators commute mutually by EQ.1(75). Thds, is [18]

Abelian.

From Eq. [74) it follows that all matrices i@, are of the
form +w(p, zp) for p € F5. This proves Eq.[(82).

Combining Eq.[(Z4) with the fact that thig’s are a basis,
it is easy to see that for any € F% either w(p,zp) or
—w(p,xp) € G, but not both. ThudG.| = 2* and, since
1 = w(0,20) € G it must hold that—1 ¢ G. HenceG is a
stabilizer group and we are done. ]

We need one final statement:

[19]

[20]

[21]

[22]
(23]

Proposition 24. Any stabilizer group is isomorphic to the [24]

additive group ofF%. Given anyl < k elements{gy,..., g}

point, note thay;, . ..
at most/ < k. Recall that the complex characters Bf are
in one-one correspondence with linear functiorBis— IFs.
There are2(*—1 distinct ways of extending a given functional
from anl-dimensional subspace to all &f.
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of G, it is possible to find two distinct characteys, x2 of G
which agree ory;, ..

-5 91

Proof: The first claim follows from[(7K4). For the second
, g1 span a subspace &% of dimension
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