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vector, covariance matrix and relation matrix, see [5]. Any property de-
fined in terms of the distribution of the complex Gaussian vector, could
hence be parameterised in terms of these three quantities that would di-
rectly and fully determine the joint density of the complex vector com-
ponents. We could hence consider properties of vector realizations of
a stationary stochastic process, and for a Gaussian process consider
defining strict and wide sense stationarity (cf. [17, p. 77]) in terms of
the moments of the complex vector, and then relate the moments to as-
signing a density for the complex quantity that only depended on the
absolute distance in time between observations. For non-Gaussian joint
distributions, we can then either consider discussing the properties of
the vectors in terms of their joint density, or consider moment based
definitions, that then have an identical correspondence to strict station-
arity for the complex Gaussian case.

V. CONCLUSION

We have considered the definition and interpretation of a density
function for complex variables. We show that two functions could be
considered as possible density functions, but that only one of these two
could formally be interpreted as a density. This density function can be
used to characterize the properties of the complex variables directly in a
complex formulation. The second function illuminates the scalar nature
of the complex variate, and the role played by the complex conjugate
in formulating a distribution for a complex variable, settling confusion
prevalent in the literature.
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On Quasi-Orthogonal Signatures for CDMA Systems
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Abstract—Sum capacity optimal signatures in synchronous code-division
multiple-access (CDMA) systems are functions of the codebook length as
well as the number of active users. A new signature set must be assigned
every time the number of active users changes. This correspondence con-
siders signature sets that are less sensitive to changes in the number of ac-
tive users. Equiangular signature sequences are proven to solve a certain
max-min signal-to-intererference-plus-noise problem, which results from
their interference invariance. Unions of orthonormal bases have subsets
that come close to satisfying the Welch bound. Bounds on the maximum
number of bases with minimum maximum correlation are derived and a
new construction algorithm is provided. Connections are made between
these signature design problems,Grassmannian line packing, frame theory,
and algebraic geometry.

Index Terms—Code-divisionmultiple-access (CDMA) systems,Walsh se-
quences.

I. INTRODUCTION

Direct spread code-division multiple-access (CDMA) systems as-
sign signature sequences to distinguish between the signals of different
users. Information theoretic results have shown that for the uplink of a
single cell synchronous CDMA systems, optimal signature sequences
are nonorthogonal meaning that they can support more users than chip
periods. Sum capacity optimal signature sequences have been char-
acterized for Gaussian channels (so-called Welch bound equality se-
quences) [1]–[3], fading channels with white noise [4], fading chan-
nels with colored noise [5], [6], and with different receivers [7], [8].
Constructions have been proposed using iterative algorithms [9], [6],
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[10], [11], finite-step algorithms [4], [5], [12], [13], and algebraic ap-
proaches [14] (see also the references in [3]). Unfortunately, optimal
signature sequences are fundamentally a function of the number of ac-
tive signatures K and the number of chips N . Practical application of
such signatures requires that new signatures be assigned to all users
whenever any user arrives or departs the cell. Alternatively, the subset
of remaining sequences will no longer be optimal. It is of interest to
find signature sequences that perform well, without reassigning all the
signatures, when users enter or leave the system [3], [15]–[18].

In this correspondence, we consider the problem of designing
Welch bound equality sequence (WBE) sets that perform robustly
with varying numbers of users. We suggest two designs that are up to
the task: equiangular signature sets and unions of orthonormal basis
(which we call mutually unbiased bases [19]). We prove that equian-
gular signature solve a certain worst-case SINR when considering all
possible subsets of active users. The resulting signatures (when they
exist) inherit the interference invariance of WBEs but also exhibit this
property for subsets of active users. This means that the interference
experienced by each user is only a function of K , N , and the number
of active users but not the specific signature sequences. This means
that the interference experienced by each user is a function of the
number of active users , the spreading actor, and maximum number of
users but not on the specific active signature sequences. We relate the
problem of equiangular signature design to finding maximum Welch
bound equality sequences (MWBEs), packing lines in the Grassmann
manifold, and Grassmannian frames. We discuss constructions for
exact and nearly exact equiangular signature sequences. For the case
of mutually unbiased bases, we compare how they perform relative
to WBE signature sequences in terms of correlation, study how many
sequences we can add to the Walsh sequences with minimal inter-
ference, and present an explicit construction algorithm. Simulations
compare both designs in terms of total squared correlation, proximity
to the Welch bound, and variability of the interference.

Sarwate summarizes the findings of a number of authors on the re-
lated topic of MWBEs (a special type of equiangular signature set) and
near MWBE sets in an excellent overview article [3]. Therein he de-
scribes some algebraic MWBE and near-MWBE constructions as well
as some properties of MWBE signature sets. In this correspondence,
we consider nonalgebraic signatures and signature sequences that are
equiangular but not maximally spaced. We prove a new result about a
certain max min optimality of equiangular signatures. We discuss rela-
tions to Grassmannian line packing and Grassmannian frames that do
not appear to have been recognized before. We discuss the interference
invariance property of MWBEs in the context of CDMA systems with
varying numbers of active users and present numerical simulations to
illustrate these benefits.

Several sequence designs have been proposed that are unions of mul-
tiple orthonormal basis with an emphasis on unions of two orthonormal
basis [20]–[24]. Variations have been incorporated into WCDMA [21]
and IS-2000 [22]. Extensions to multiple basis are described in [25].
Compared with prior work, we consider unions of more than two basis.
We consider the specific problem of adding sequences to the Walsh set
and present a new construction algorithm. Our work is also related to
the theory of Kerdock codes. Elsewhere Kerdock codes have appeared
with application to CDMA but in different contexts, e.g., binary signa-
tures in [14] and biorthogonal coding in [26].

This correspondence is organized as follows. In Section II, we mo-
tivate the problem of finding good Welch bound equality sequences
for changing numbers of users. In Section III, we examine equiangular
signature sequences while in Section IV we address mutually unbiased
bases. We present some numerical results in Section V and summarize
our findings in Section VI.

II. WELCH BOUND EQUALITY SEQUENCES

Consider the uplink of a single cell, short code, synchronous
CDMA system with K unit norm signatures, and a processing gain
N � K . Let sssn denote a (potentially complex)N�1 signature and let
SSS := [sss1; . . . ; sssK ] be the signature matrix. Let P denote the received
power (assumed the same for all users) and �2 the noise power. With
a matched-filter receiver, the signal-to-noise-plus-interference ratio
(SINR) for the kth user is

SINRk =
1

�

P
+

n6=k
jhsssn; ssskij2

: (1)

The second term corresponds to the sum cross correlation between sig-
natures and is nonzero when K > N .

In this correspondence, we are interested in the class of quasi-orthog-
onal signatures that satisfy Welch’s bound on the total squared corre-
lation

TSC(SSS) =

K

k=1

K

m=1

jhsssk; sssmij
2 �

K2

N
(2)

with equality. A necessary and sufficient condition for a set of se-
quences to achieve equality is [2]

SSSSSS
� =

K

N
IIIN and kssskk = 1; for k = 1; 2; . . . ; K (3)

where � stands for conjugate transpose. Perhaps the most interesting
property of such sequences is that the interference term in (1)

I(k) =
n6=k

jhsssn; ssskij
2

=

K

l=1

jhsssk; ssslij
2 � 1

=
K �N

N
; k = 1; 2; . . . ; K (4)

is the same for every user. Thus the SINR is also constant and only a
function of the SNR, N , and K . This means that the cross correlation
between signatures does not need to be considered in system functions
such as power control.

While WBE signatures are capacity optimal and have a nice interfer-
ence invariance property, their practical implementation may be limited
since a WBE signature sequence designed forK users ceases to satisfy
Welch’s bound with equality if any n < N signatures are removed.
The resulting signature set loses both its capacity optimality and inter-
ference invariance property. To see this let us recall the following.

Theorem 1: (from [3]) If SSS1 and SSS2 are both Welch bound equality
signature matrices then [SSS1; SSS2] is also a Welch bound equality signa-
ture matrix.

Now, (3) shows that the smallest WBE occurs for K = N , where
SSS is orthogonal. Thus, if n < N signatures are removed from a WBE
then it could not possibly still be a WBE. Combining this result with
Theorem 1 the corollary follows.

Corollary 2: Let SSS be a WBE signature matrix with K signatures
and N chip periods. If any n < N signatures are removed then the re-
sulting signature matrix ceases to satisfy Welch’s bound with equality.

The implication of Corollary 2 is that as the number of users changes
in a cell, a WBE set designed for N active users is no longer optimal.
Thus, a system that fully exploits WBE sequences would need (i) a set
of sequences for every possible N and (ii) would need to reassign all
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sequences every time a user arrived or departed from the system. In
this correspondence, we argue that a viable solution to this problem is
to consider WBE signatures with additional structure. We consider two
candidate signature sequences in the following two sections.

III. EQUIANGULAR SIGNATURES FOR INTERFERENCE INVARIANCE

In this section, we consider the problem of designing signature se-
quences to maximize a tight lower bound on the SINR . The resulting
signatures (when they exist) are equiangular, maximally spaced, and
satisfy Welch’s bound on the maximum correlation with equality. Their
main utility is that they satisfy the interference invariance property in
(4) even when subsets of users are active. We discuss the benefits of
such signature sets, connections with Grassmannian frames, and con-
structions.

A. Max-Min Signature Design

Consider the problem of maximizing the minimum SINR when
a subset of users is active. Let P denote the power set of integers
f1; 2; . . . ; Kg. This set will index all possible subsets of active users.
An element K 2 P will denote a possible subset of active users. Let
the SINR for the k-th user in the subset K 2 P be

SINR(k;K; SSS) =
1

m2K
jhsssk; sssmij2 � 1 + �

(5)

where � is the inverse signal-to-noise ratio and h�i stands for the usual
vector inner product.

Consider the problem of finding a signature sequence that maximizes

min
K2P

min
k2K

SINR(k;K; SSS): (6)

The maximizer is equivalent to the minimizer of the total squared cor-
relation experienced by signature k. Using norm inequalities note that
for a given K

max
k

m2K

jhsssk; sssmij
2 �

1

jKj
k2Km2K

jhsssk; sssmij
2

where equality holds when
m2K

jhsssk; sssmij
2 is the same for every

sssk . Further note that

max
K2P

max
k2K

m2K

jhsssk; sssmij
2 �

max
K2P

1

jKj
k2Km2K

jhsssk; sssmij
2 (7)

where equality holds when 1=jKj
m2K

jhsssk; sssmij
2 is the same for

every sssk and K 2 P .
Hence maximizing the expression in (6) requires that the total

squared correlation matrix (or Gram matrix) of SSS defined as
TSC(SSS) := SSS�SSS has the form

SSS�SSS =

1 ej# � � � � ej# �

ej# � 1 ej# � � � �
...

...
. . .

...
ej# � ej# � � � � 1

(8)

where #k;m = �#m;k due to Hermittian symmetry. To see this note
that for jKj = 1 the property is trivial. Next consider jKj = 2. In this
case the 2 � 2 submatrix formed from signatures sssk and sssm has the
form

1 �k;me
j#

�k;me
�j#

where �k;m is real and nonnegative. For equality to hold in (7),
(1 + �2k;m)=2 must be a constant and the same for every user, thus
�k;m is the same for every user. Signature sequences with total squared
correlation matrix with the structure in (8) are equiangular since they
satisy jhsssk; sssmij = � for all k and m 6= k 2 f1; 2; . . . ; Kg. With
these results we state the following proposition.

Proposition 3: Equiangular signature sequences (when they exist)
maximize the worst case SINR for all possible subsets of active users

min
K2P

min
k2K

1

m2K
jhsssk; sssmij2 � 1 + �

:

A side benefit is that we can write the SINR exactly.

Corollary 4: Let SSS be a signature matrix with equiangular signa-
tures, i.e., jhsssk; sssmij = � for all k and m 6= k. Then

SINR(k;K; SSS) =
1

jKj�2 � 1 + �
(9)

and is independent of k the number of active users.

The main utility of equiangular signatures is that the interference ex-
perienced by any user is exactly the same and depends only on jKj, the
current number of active users. Thus equiangular signatures preserve
the interference invariance of WBE signature sequences over the range
of possible active users.

B. Existence of Equiangular Signature Sequences

The utility of equiangular signatures is apparent. The main ques-
tion at hand is when do such signature sequences exist? To review,
the design problem is to find a signature matrix such that SSSSSS� =
K

N
III; jhsssk; ssskij

2 = 1 (this guarantees that the signature sequence is
a Welch bound equality signature set), and jhsssk; sssmij = � for k 6= m
(this is the equiangular property). Notice that this poses a spectral con-
straint on the singular values of SSS as well as a structural constraint on
TSC(SSS).

Existence of equiangular signature sequences is equivalent to the
problem of designing an equiangular unit norm tight frame and is a
topic of investigation in the frame theory community. Equiangular sig-
nature designs for different combinations of K and N are known (typ-
ically for small values of N ). Existence (or lack there of) has been es-
tablished for some choice of parameters [27], [28]. A table that shows
the existence of equiangular unit norm tight frames is available in [29].
We comment more on constructions in Section III-D.

C. Maximally Spaced Signature Sequences

The amount of interference contributed by the other active signa-
tures is a function of �. A smaller value of � results in less interference
overall. The question at hand is: What is the smallest possible value of
� as a function of K and N?

Let �(K;N) := maxk;m;k6=m jhsssk; sssmij. The problem of finding
the smallest possible �(K;N) is equivalent to find a lower bound on the
maximum angle between the lines generated by sssk and sssl. In particular,
this problem relates to the notion of line packing. This problem has
been addressed by a number of researchers in algebra, coding theory,
and graph theory. The pertinent result is summarized in the following
theorem.

Theorem 5: Let S = fsss1; . . . ; sssNg be a set of unit vectors in Em

with N � m. Then

�(K;N) �
K �N

N(K � 1)
: (10)
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If E = then equality in (10) can only hold if N � m(m+1)=2 and
ifE = then equality in (10) can only hold ifN � m2. Furthermore,
if equality holds in (10) then

the vectors in S are equiangular: (11)

Proof: See [30]–[32] for example.

The bound in (10) is often known as Welch’s bound on the maximum
correlation [32]. Signature sets that satisfy (10) with equality are known
as maximum Welch bound equality signature sequences [3]. They are
equiangular, maximally spaced, and most importantly are a special case
of WBE sequences. Such vectors can also be viewed as an optimal
packing of lines in the Grassmann manifold G(N; 1). In this case, the
resulting signatures form a Grassmannian frame [33]. The connection
to line packings and Grassmannian frames is especially important be-
cause we can leverage the results of prior researchers to find signatures,
as will be discussed in Section III-D.

The bound in (10) provides us with a bound on the SINR for any
equiangular signature sequences, achieved when the sequence is max-
imally spaced. Substituting the right-hand side (RHS) of (10) into [9]

SINR(k;K; SSS) � 1
(K�N)(jKj�1)

N(K�1)
+ �

: (12)

This value should be compared with the SINR achieved by redesigning
a WBE sequence for jKj active users

SINR �
1

+�
jKj > N

� jKj � N:
(13)

An important point is that when there are jKj � N users, the op-
timal WBE signature sequence consists of orthonormal vectors and
thus there is no interference. Equiangular signatures, however, always
have a residual interference term.

It is important to mention that satisfying (10) with equality is a suf-
ficient condition for the signature sequence to be equiangular but is not
necessary. Specifically, there may exist other signature sequences that
are equiangular but do not satisfy this bound with equality. An example
there is an equiangular signature sequence composed of five signatures
in 3 but it’s maximal inner product is 1=

p
6 not 1=

p
5. Thus it still

satisfies the nice interference invariance property but incurs a slight
SINR loss compared with a theoretical maximally spaced signature se-
quence.

It is also worth mentioning that the best line packings, tabulated in
[34], do not typically form a WBE sequence (that is their SSS does not
satisfy the spectral constraint). Consequently arbitrary line packings
do not necessarily lead to the nearest equiangular WBE (see [29] for
details). This impacts the construction of such sequences.

D. Construction of Equiangular Signature Sets

Given the utility of equiangular signatures, some comments on their
construction are in order. From a matrix theoretic point-of-view, the
problem of finding a WBE is equivalent to finding a matrix SSS such that
SSSSSS� = K=NIIIN with unit-norm columns. This is in fact equivalent to
solving for a uniform normal tight frame [35] where the columns of SSS
are the elements of the frame. The equiangular property adds an addi-
tional constraint, specifically that the off-diagonal entries of the Gram
matrix TSC(SSS) have entries of constant modulus less than or equal to
�(K;N) in (10). Such frames are called equiangular unit norm tight
frames [36] or Grassmannian frames [33]. Construction of equiangular
signature sequences is thus equivalent to finding an equiangular unit
norm tight frame.

A natural question related to construction is when do equiangular
signature sets exist? Theorem 5 provides necessary conditions for a

maximally spaced signature set to exist, but it yields no insight for non-
maximally spaced equiangular signatures. Research has established the
existence (or lack there of) for various dimensions [27], [28] and real or
complex space using related results in graph theory and algebra. This
is still an ongoing area of investigation.

In some cases it is possible to find maximally spaced equiangular
signature sets. The simplex is the standard example, though not very
useful for CDMA. Sarwate reviews some algebraic constructions for
maximum Welch bound equality sets [3] (notably m-sequence codes)
as well as near maximum Welch bound equality sets. The authors dis-
cuss some nonalgebraic constructions including one based on differ-
ence sets and another based on conference matrices [33] in the context
of Grassmannian frames. As discussed before, the real line packings
tabulated in [34] are equiangular signatures when they are maximally
spaced.

Perhaps the most relevant construction with respect to CDMA is the
conference matrix construction. This construction provides a conve-
nient way to find K = 2N vectors in N or N , which is useful be-
cause for quasi-orthogonal CDMA K is typically less than 2N . Since
we use this construction in the numerical results, we summarize this
construction from [33] here without proof.

Recall that an n � n conference matrix CCC has zeros along its main
diagonal and �1 as its other entries, see [37]. In addition a conference
matrix satisfiesCCCCCCT = (n�1)IIIn. IfCCC2N is a symmetric conference
matrix, then there exist 2N vectors in N such that the bound (10)
holds with �(2N;N) = 1=

p
2N � 1. If CCC2N is a skew-symmetric

conference matrix (i.e.,CCC = �CCCT ), then there exist 2N vectors in N

such that the bound (10) holds with �(2N;N) = 1=
p
2N � 1, see [31,

Example 5.8 ]. The following Lemma describes a simple algorithm that
uses conference matrices to construct a Gram matrix then to extract the
signatures sss1; sss2; . . . ; sssN from this matrix.

Lemma 6: Let CCC2N be a (skew)symmetric conference matrix and
denote � := 1=

p
2N � 1. Compute

RRR =
�CCC2N + III2N if E = ;

RRR = j�CCC2N + III2N if E = :
: (14)

Let w1; . . . ; w2N be the eigenvectors of RRR. Then the 2N vectors
v1; . . . ; v2N in EN given by

vk :=
p
2[w1(k); . . . ; wN(k)]T ; k = 1; . . . ; 2m; (15)

constitute a set of vectors that achieve the bound (10).
Proof: See [33] for the proof.

A necessary condition for the existence of a symmetric conference
matrixCCCn is that n = 2mod4. A sufficient condition due to Paley [38]
isn = p�+1where p is a prime number and� 2 . In this case it is not
difficult to explicitly construct the conference matrix. Thus for instance
there exist 50 equiangular lines in 25 with angle acos(1=

p
49).

A sufficient condition for the existence of a skew-symmetric confer-
ence matrix CCCn is that n = 2k for k 2 . Here is a simple recursive
procedure to construct a skew-symmetric conference matrix whose size
is a power of two. Initialize

CCC2 =
0 �1

1 0
; (16)

and compute recursively

CCC2N =
CCCN CCCN � IIIN

CCCN + IIIN �CCCN (17)

thenCCC2N is a skew-symmetric conference matrix. This construction is
reminiscent of the construction of Hadamard matrices. Indeed, a simple
calculation shows that CCCN + IIIN is a skew-symmetric Hadamard ma-
trix.
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In many cases it is not possible to find WBEs that are exactly equian-
gular. While [34] presents the best packings of lines, these packings do
not necessarily satisfy the WBE constraint. We would like to find el-
ements of the space of WBEs that is most nearly equiangular. An ex-
ample of a near-equiangular construction is given in [33, Sec. 2.1.3].
The general case, however, is a difficult problem. A numerical proce-
dure is available [36]. In brief, this algorithm performs an alternating
projection between the space of WBEs and the space of Gram matrices
with constant modulus off-diagonal elements. The details of this ap-
proach are beyond the scope of this correspondence.

IV. SEQUENCE SETS FROM MUTUALLY UNBIASED

ORTHONORMAL BASES

While equiangular signature sequences preserve the interference in-
variance of WBE sequence sets, they do not satisfy an important prop-
erty: orthogonality when there are K < N users in the system. In this
section, we discuss an alternative construction based on unions of or-
thonormal basis. We first motivate the problem then present some new
results on their construction.

A. Motivation and Preliminaries

Early CDMA communication systems used only a single or-
thonormal basis, typically the Walsh basis. Orthonormal basis are
very desirable because in the absence of multipath interference all the
users are orthogonal and thus experience a simple Gaussian channel.
Quasi-orthogonal signatures are capacity optimal only when there
are K > N users. When the system is lightly loaded, an orthogonal
signature sequence is sufficient and in fact desirable for the reasons
mentioned. Thus it is of interest to develop signature sequences that
contain a subsequence that corresponds to an orthonormal basis.

One approach taken in third generation systems was to add an addi-
tional basis obtained by modifying the Walsh codes with a cover code.
The cover code is chosen so that the new set of orthogonal codes has
optimal correlation with Walsh codes of the same length and further
has low correlation to Walsh codes of smaller lengths. The latter prop-
erty is desirable when multiple spreading factors are used. A thorough
discussion of cover code construction and related results are available
in [14], [22], [21].

Using a cover code is a nice algebraic method of converting an or-
thonormal basis into another basis that is less correlated with the orig-
inal basis. This is a special case of constructing a signature sequence
from unions of specially chosen orthonormal basis (ONB). Unions of
two orthonormal bases have been extensively investigated [20]–[24];
extensions to more than two basis has received less attention [25]. As
previous work shows, merely replicating the original ONB is not prac-
tical since this would lead to rather poor signal-to-interference ratio
performance. Instead one design these ONBs such that the maximal
correlation between members of different ONBs is minimal, i.e., equals
1p
N

. This property is well-known in quantum physics, where two (or
more) orthonormal bases fsss1; . . . ; sssNg; fuuu1; . . . ; uuuNg which satisfy

jhsssk; uuulij = 1p
N
; k = 1; . . . ; N ; l = 1; . . . ; N (18)

are known as mutually unbiased bases (MUB), cf. [19], and we adopt
this term here.

These MUB sequences have the nice property that for k � N users
taken from a single basis, there is no interference. For any k that is a
multiple of N they are optimal from the point-of-view of sum capacity
as follows from Theorem 1. They are also optimal for K = k and
thus retain all the nice properties of WBE sets in this case. It is clear,

however, that they do not have the constant interference property of
MWBE sequences.

In the next section we pursue two questions that have not been
completely addressed in the CDMA literature: i) How well do MUB
sequences behave compared to WBE sequences? ii) How many
sequences can we add to the Walsh sequences so that the minimal
interference 1p

N
is maintained and how can we construct them?

B. Analysis and Construction of MUB Signature Sequences

Construction of a MUB sequence set begins with a set of N or-
thonormal signatures. First we consider the special case of adding k �
N signatures to this set. This is the approach taken in WCDMA [21]
and IS-2000 [22]. In particular, we would like to know how to chose
these n signatures and how far the resulting set is from a WBE set. This
will determine the loss in optimality (if any). The following lemma ad-
dresses this point.

Lemma 7: Let SSS = [sss1; . . . ; sssN ] with SSSSSS� = SSS�SSS = IIIN and let
VVV k = [vvv1; . . . ; vvvk] with kvvvnk = 1 for n = 1; . . . ; k; k � N . Denote
WWW k = [SSS;VVV k]. Then TSC(WWW k) is minimized if VVV �kVVV k = IIIk . In this
case TSC(WWW k) = N + 3k and cond(WWW k) =

p
2.

Proof: We have WWW kWWW
�
k = IIIN + VVV kVVV

�
k , and since the nonzero

eigenvalues of VVV kVVV
�
k coincide with those of VVV �kVVV k it follows that the

eigenvalues of WWW kWWW
�
k are

�1 = � � � = �N�k = 1 and �N�k+1 = � � � = �N = 2:

Since TSC(WWW k) = N

n=1
�2n and cond(WWW k) = �N=�1, both re-

sults follow.

Thus, if we want to add k sequences to an ONB, then the k sequences
should form an orthonormal system. Note that the Welch bound for
N + k vectors is N + 2k + k

N
. Hence for an almost fully loaded

system, there is little difference between WBE sequences and MUB
sequences, in particular if k = N then the MUB set becomes a WBE
set. Furthermore, adding 1 < k < N vectors only moderately in-
creases the condition number from 1 to

p
2, which is important when

employing MMSE receivers. Lemma 7 can easily be extended to the
case when we add k � N vectors to a sequence set that is composed
of n sets of basis vectors so that K = Nn.

Lemma 7 shows how close MUB sequence sets are to WBE se-
quence sets. However, it does not indicate how to construct the ad-
ditional ONBs. Furthermore one often wants to construct sequences
whose entries belong to a finite alphabet, such as binary or quater-
nary sequences. While some interesting constructions are given in prior
work, we will not only provide new constructions but simultaneously
answer the question of how many ONBs can be concatenated and yet
retain the minimum inner product.

We answer these questions by utilizing a result that was derived in the
context of finite group theory and algebraic geometry. In the ingenious
paper [39] Cameron et al. showed the existence of K + 1 MUB for
K ; K = 2N with 0 < N 2 and the existence of K=2 + 1 MUB

for K ; K = 2N for even N . Some of these results can already by
found in [40] and in [19]. However the approach in [39] is more gen-
eral, provides greater flexibility, and demonstrates various appealing
cross connections between different fields. The authors of [39] use ad-
vanced concepts from discrete geometry (orthogonal and symplectic
spreads) and finite group theory (properties of extraspecial groups) to
derive their results and construct those bases. Since symplectic spreads
and extraspecial groups are not part of the standard toolbox of commu-
nications engineers we translate the approach by Cameron et al. into
a simple and efficient algorithm that does not require any finite group
theory and uses only very little Galois field theory. We restrict ourselves
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to the case of K = 2N , the case of pN for odd prime numbers is quite
similar.1

Algorithm for constructing MUB sequences We start with the
vector space N

2 , where N is a positive integer and some ordering is
chosen for N

2 , we denote K = 2N . The first ONB is given by the
identity matrix in K , i.e., S0 = IK . The second ONB is the K �K
Sylvester-Hadamard matrix, S1 = HK , where HK is normalized
such that HKH

�

K = IK . The other ONBs Sn; n = 2; . . . ; N can
be computed from HK via Sn = DnHK , where the Dn are certain
diagonal matrices, which we have to construct now.

Let 1; �; �2; . . . ; �N�1 be a basis for the Galois field GF (2m)
(choose � to be a root of a primitive polynomial in GF (2m)). Let
B0; . . . ; BN�1 be them matrices of dimensionN �N obtained from
the multiplication table

1

�

�2

...
�N�1

[1 � �2 � � � �N�1]

=: B0 + �B1 + �2B2 + � � �+ �N�1BN�1: (19)

Next we construct a set of binary symmetric matrices Pn; n =
0; . . . ; K � 1 by computing

Pn =

N�1

l=0

cn;lBl
mod 2

(20)

where cn = fcn;lg
N�1
l=0 is the binary vector representing the number

n, for n = 0; . . . ; K � 1. The subscript mod(2) means that the result
of the summation is taken modulo 2.

We define a 4-quadratic form, i.e., a map TP : N
2 ! 4 by

TP (v) :=

N�1

n=0

Pn;nv
2
n + 2

l<n

Pl;nvlvn

mod 4

(21)

where v = [v1; . . . ; vN ]T 2 N
2 . The diagonal matrices Dn are

Dn = diag [iT (v)]v2

and Bn = DnH . This gives 2N ONBs in K with K = 2N .
When N + 1 is even one can easily construct MUB with binary en-

tries once the matricesPn are computed. For denoteK0 = 2N+1 (thus,
K = K 0=2) and define the 2N+1�2N+1 skew-symmetric binary ma-
trices Mn by

Mn =
Pn + dP d�P dP

d�P 0
mod 2

(22)

for n = 0; . . . ; K � 1, where Pn are the matrices defined in (20)
and dP denotes the diagonal of Pn. Let the quadratic form QM (v) :
N+1
2 ! 2 be given by

QM(v) =
n�l

Mn;lvnvl; v 2 N+1
2 : (23)

Similar to before we introduce diagonal matrices Dn by setting

Dn = diag [(�1)Q (v)]v2V ; for n = 0; . . . ; K � 1:

The K binary orthonormal bases in K are now given by Bn =
DnHK . We note that compared to the quaternary case above, we have
only half as many binary ONBs.

1Furthermore, we only consider the case where the symplectic spread under-
lying the algorithm produces a desarguesian affine plane, but we note that other
choices for the symplectic spread are possible.

Example 8: We illustrate the above algorithm by an example. Let
N = 3, i.e., K = 23 = 8 and we construct 9 ONBs for 8. As is
common practice, we represent polynomials c0 + c1� + c2�

2 (with
cn 2 f0; 1g) for GF (23) either in binary notation or by its corre-
sponding decimal number. For example, 1+�$ (0; 1; 1)$ 3. Then
the matrix on the left-hand side of (19) can be written as

A =

1 2 4

2 4 3

4 3 6

:

(In MATLAB A can be computed via the commands a =
gf(2:^[0:2]',3),A = a*a'.) An easy calculation shows that the
matrices B0; B1; B2 on the right-hand-side of (19) are

B0 =

1 0 0

0 0 1

0 1 0

B1 =

0 1 0

1 0 1

0 1 1

B2 =

0 0 1

0 1 0

1 0 1

:

The coefficients vectors cn in (20) are c0 = [0; 0; 0]; c1 =
[0; 0; 1]; . . . ; c7 = [1; 1; 1], and the matrices P0; . . . ; P7 of (20)
are given by

P0 =

0 0 0

0 0 0

0 0 0

; P1 =

0 0 1

0 1 0

1 0 1

P2 =

0 1 0

1 0 1

0 1 1

; P3 =

0 1 1

1 1 1

1 1 0

P4 =

1 0 0

0 0 1

0 1 0

; P5 =

1 0 1

0 1 1

1 1 1

P6 =

1 1 0

1 0 0

0 0 1

P7 =

1 1 1

1 1 0

1 0 0

:

To save space we list the diagonals of the diagonal matrices Dn; n =
0; . . . ; 7 computed via the 4-quadratic form (21) as column vectors
of the matrix

1 1 1 1 1 1 1 1

1 j j 1 1 j j 1

1 j 1 j 1 j 1 j

1 �1 j j �1 1 j j

1 1 1 1 j j j j

1 j j �1 j 1 �1 j

1 j �1 j j �1 j 1

1 1 j j j j 1 �1

: (24)

The nine ONBs are now given by B0 = I8; Bn = DnHK; n =
1; . . . ; K�1. We also compute one of the matricesMn, say for n = 1.
By (22)

M1 =

0 0 1 0

0 0 1 1

1 1 0 1

0 1 1 0

(25)
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Fig. 1. Comparison of the average mean, maximum, and minimum interference levels as the number of active codes increases. For the equiangular case the mean,
minimum, and maximum are the same for all signatures. For the other cases we take the average over a series of random trials. The mean for each set of vectors is
plotted with a solid line. The min/max are plotted with dashed lines.

and the diagonal of DM is dM = [0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0].
Hence DM H16 gives one of the binary MUB for 16.

A different construction of MUB sequences for the case of prime
p � 5 was proposed by Alltop [41]. The Alltop-sequences can be con-
structed as follows. Let p � 5 be a prime number and set

sssk;l(n) =
1p
p
e
j2�(n �k)=p

e
j2�nl=p

; k; l; n = 1; . . . ; p: (26)

We obtain p + 1 orthonormal bases for p given by the sets UUUk =
fsssk;lgpl=1; k = 1; . . . ; p and the standard basis in p. Due to the spe-
cific construction rule the correlation of any Alltop sequence with any
of its cyclically shifted versions is 1p

p
. Furthermore we note that the

Alltop sequences cannot be derived from the construction proposed in
[39].

A hitherto overlooked but quite useful property of Alltop-sequences
is that their Fourier transform is nearly unimodular, as the following
lemma shows.

Lemma 9: Let the vector sss be an Alltop-sequence. Then

jŝss(k)j � 2p
p
; for k = 1; . . . ; p: (27)

Proof: An easy calculation shows that

ŝssk;l(m) =
1

p

p

n=1

e
�j2�[(n �k)+n(m�k)]=p

e
�j2�ml=p

; (28)

for m = 1; . . . ; p hence

jŝssk;l(m)j = 1

p

p

n=1

e
�j2�[(n �k)+n(m�k)]=p

: (29)

Inequality (27) follows now by applying to (29) an estimate of A. Weil
[42] who showed that for prime numbers p which satisfy p > r; r 2
and gcd(ar; p) = 1 there holds

p

n=1

e
j2� � (r � 1)

p
p: (30)

Except for the fact that the length of Alltop sequences is not a power
of 2, they have several nice properties including nice shift-correlations
as well as good spreading properties.

V. NUMERICAL RESULTS

Here, we compare the interference generated by different signatures
for the case of N = 64 and K = 128. We compare a randomly gener-
ated complex WBE (generated using the procedure in [11], initialized
with a randomly chosen N � K complex Gaussian matrix), a maxi-
mally spaced equiangular signature sequence found through the confer-
ence matrix construction, and a MUB constructed from the algorithm
described in Section IV-B.

Since we are interested in the overloaded case, we focus on the in-
terference variability as we increase the number of active sequences
from N to K . We begin with N signatures. For the WBE sequence
set, we choose the N signatures that have SSS with the smallest con-
dition number. For the equiangular signature set we pick an arbitrary
N signatures. For the MUB set, we pick any N signatures that form
an orthonormal basis. Then we add 0 < n � N vectors, randomly
chosen, to that set to form the active signature set K and then com-
pute I(k) = m2K;m6=k jhsssk; sssmij2 for k = 1; 2; . . . ; N + n. For
each set we compute Imin := mink I(k); Imax := maxk I(k), and
Iavg := 1

N+n
N+nz
l=1 I(l). We averaged each of these metrics over

20 different randomly chosen sets of vectors and plot all three in Fig. 1.
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Fig. 2. Comparison of the average standard deviation as the number of active codes increases. For the equiangular case the standard deviation is zero. For the
other cases we take the average over a series of random trials.

Fig. 3. Comparison of the total squared correlation as the number of active codes increases. For the MWBE case the standard deviation is zero due to the
equiangular property. For the other cases we compute the standard deviation as we add signatures using the default equiangular signature ordering.
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As expected, the equiangular signatures have the same interference
in part due to the equiangular property. Interestingly, note that the
WBE set has a mean interference level that is almost the same as the
equiangular set (this was proven in [15]). The interference experienced
by each code, however, varies between the maximum and minimum
average interference curves. This extra variability creates additional
fluctuations in signal-to-interference ratio that must be reduced in the
power control algorithms. The MUB set performs quite differentlythan
the equiangular set. The average interference for the MUB set is
actually lower than the average interference for either equiangular or
the WBE sets. The maximum and minimum, however, are significantly
more extreme. The maximum is 1 for the MUB because the absolute
value of the inner product between any signature aaa in one basis and
sss in the other basis is jhaaa; sssij = 1=

p
N while signatures within the

basis are mutually orthogonal. Thus signatures in the MUB can see
higher levels of interference but on average the interference is lower
than with a randomly chosen WBE or an equiangular signature.

To illustrate the variability of I(k), in Fig. 2. we plot the standard
deviation of fI(k)gN+n

k=1
averaged over 20 different randomly chosen

sets of vectors. The standard deviation gives a measure of how much
power control would be required to compensate for nonideal-quasi-
orthogonality in the signature sequence.

Finally, for comparison with other work on signature design based
on the total squared correlation we plot the total squared correlation as
a function of the number of added signatures and Welch’s bound on
total squared correlation in Fig. 3. As we expect, the MUB sequence
agrees with Welch’s bound at two points corresponding to the inclusion
of one or two complete basis. Interestingly the total squared correlation
of the WBE and the equiangular signature sequence is quite close. Both
approach the bound for larger numbers of signatures but incur a loss at
smaller numbers of vectors.

VI. CONCLUSIONS AND FUTURE WORK

In this correspondence we investigated two signature sequences that
are robust in different ways to the number of active users. Equiangular
sequences are interference invariant and thus do not depend on the spe-
cific signatures of the active users. We showed that they satisfy a cer-
tain SINR maximizing over all Welch bound equality sequences. Mu-
tually unbiased basis contain multiple orthonormal basis and thus can
behave like orthonormal basis with few users, can augment existing
sequences, and are Welch bound equality sequences for multiple sub-
sets. We studied the specific case of augmented the Walsh sequences
and derived the maximum number of mutually orthonormal bases that
can be concatenated with minimal correlation and presented a specific
construction algorithm.

Our correspondence was focused on signature design for the AWGN
channel. Future work should consider signature sequences with addi-
tional structure suitable for fading channels such as generalized Welch
bound equality sequences (e.g., [4]). In the asynchronous case or sys-
tems with multipath interference, signatures should satisfy additional
properties like have low auto- and cross correlation for example. Sig-
nature design criteria for these more complicated channels is an active
area of research.
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On Information Transmission Over a Finite Buffer Channel
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Abstract—We study information transmission through a finite buffer
queue. We model the channel as a finite-state channel whose state is
given by the buffer occupancy upon packet arrival; a loss occurs when
a packet arrives to a full queue. We study this problem in two contexts:
one where the state of the buffer is known at the receiver, and the other
where it is unknown. In the former case, we show that the capacity of the
channel depends on the long-term loss probability of the buffer. Thus,
even though the channel itself has memory, the capacity depends only
on the stationary loss probability of the buffer. The main focus of this
correspondence is on the latter case. When the receiver does not know the
buffer state, this leads to the study of deletion channels, where symbols
are randomly dropped and a subsequence of the transmitted symbols is
received. In deletion channels, unlike erasure channels, there is no side-in-
formation about which symbols are dropped. We study the achievable
rate for deletion channels, and focus our attention on simple (mismatched)
decoding schemes. We show that even with simple decoding schemes,
with independent and identically distributed (i.i.d.) input codebooks, the
achievable rate in deletion channels differs from that of erasure channels
by at most ( ) log bits, for 1 , where

is the deletion probability, is the alphabet size, and ( ) is the
binary entropy function. Therefore, the difference in transmission rates
between the erasure and deletion channels is not large for reasonable
alphabet sizes. We also develop sharper lower bounds with the simple de-
coding framework for the deletion channel by analyzing it for Markovian
codebooks. Here, it is shown that the difference between the deletion and
erasure capacities is even smaller than that with i.i.d. input codebooks
and for a larger range of deletion probabilities. We also examine the noisy
deletion channel where a deletion channel is cascaded with a symmetric
discrete memoryless channel (DMC). We derive a single letter expression
for an achievable rate for such channels. For the binary case, we show that
this result simplifies tomax(0 1 [ ( ) + ( )]) where is
the cross-over probability for the binary symmetric channel.

Index Terms—, Common subsequences, channel capacity, deletion chan-
nels, erasure channels.

I. INTRODUCTION

In a packet-switched communication network, such as the Internet,
the source of a session encodes information in a set of packets, which
are transported as independent units through a set of links to reach their
destination. A packet reaches its destination if there exists a route to the
destination, and if there is buffer space available at every node along
the path followed by this packet. The context motivating our problem
formulation is that of a packet-switched communication network where
packet flows share resources, which gives rise to random packet losses
due to the randomness of packet arrivals to buffers in the network, and
the effects of congestion control protocols such as TCP that regulate
the packet generation rate of flows. We assume that a) a packet ei-
ther reaches its destination or is lost completely, and b) the original
order of packets is conserved. We propose an abstraction for this fi-
nite buffer channel, and examine reliable transmission rates over this
channel. We ignore the possibility of information transmission through
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