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Abstract

The Kaczmarz method for solving linear systems of equations Ax = b is an
iterative algorithm that has found many applications ranging from computer
tomography to digital signal processing. Despite the popularity of this method,
useful theoretical estimates for its rate of convergence are still scarce. We
introduce a randomized version of the Kaczmarz method for overdetermined
linear systems and we prove that it converges with expected exponential rate.
Furthermore, this is the first solver whose rate does not depend on the number
of equations in the system. The solver does not even need to know the whole
system, but only its small random part. It thus outperforms all previously
known methods on extremely overdetermined systems. Even for moderately
overdetermined systems, numerical simulations reveal that our algorithm can
converge faster than the celebrated conjugate gradient algorithm.

1 Introduction and state of the art

We study a linear system of equations

Ax = b, (1)

where A is a full rank m × n matrix with m ≥ n, and b ∈ Cm. One of the most
popular solvers for such overdetermined systems is Kaczmarz’s method [12], which
is a form of alternating projection method. This method is also known under the
name Algebraic Reconstruction Technique (ART) in computer tomography [9, 13],
and in fact, it was implemented in the very first medical scanner [11]. It can also
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be considered as a special case of the POCS (Projection onto Convex Sets) method,
which is a prominent tool in signal and image processing [15, 1].

We denote the rows of A by a∗1, . . . , a
∗
m, where a1, . . . , am ∈ Cn, and let b =

(b1, . . . , bm)T . The classical scheme of Kaczmarz’s method sweeps through the rows
of A in a cyclic manner, projecting in each substep the last iterate orthogonally onto
the solution hyperplane of 〈ai, x〉 = bi and taking this as the next iterate. Given
some initial approximation x0, the algorithm takes the form

xk+1 = xk +
bi − 〈ai, xk〉

‖ai‖2
ai, (2)

where i = k mod m +1. Note that we refer to one projection as one iteration, thus
one sweep in (2) through all m rows of A consists of m iterations. We will refer to
this as one cycle.

While conditions for convergence of this method are readily established, useful
theoretical estimates of the rate of convergence of the Kaczmarz method (or more
generally of the alternating projection method for linear subspaces) are difficult to
obtain, at least for m > 2. Known estimates for the rate of convergence are based on
quantities of the matrix A that are hard to compute and difficult to compare with
convergence estimates of other iterative methods (see e.g. [2, 3, 6] and the references
therein). What numerical analysts would like to have is estimates of the convergence
rate with respect to standard quantities such as ‖A‖ and ‖A−1‖. The difficulty that
no such estimates are known so far stems from the fact that the rate of convergence
of (2) depends strongly on the ordering of the equations in (1), while quantities such
as ‖A‖, ‖A−1‖ are independent of the ordering of the rows of A.

It has been observed several times in the literature that using the rows of A in
Kaczmarz’s method in random order, rather than in their given order, can greatly
improve the rate of convergence, see e.g. [13, 1, 10]. While this randomized Kacz-
marz method is thus quite appealing for applications, no guarantees of its rate of
convergence have been known.

In this paper, we propose the first randomized Kaczmarz method with expo-
nential expected rate of convergence, cf. Section 2. Furthermore, this rate does not
depend on the number of equations in the system. The solver does not even need
to know the whole system, but only its small random part. Thus our solver out-
performs all previously known methods on extremely overdetermined systems. We
analyze the optimality of the proposed algorithm as well as of the derived estimate,
cf. Section 3. Our numerical simulations demonstrate that even for moderately
overdetermined systems, this random Kaczmarz method can outperform the cele-
brated conjugate gradient algorithm, see Section 4.

Notation: For a matrix A, ‖A‖ := ‖A‖2 denotes the spectral norm of A, ‖A‖F is
the Frobenious norm, i.e. the square root of the trace of A∗A, where the superscript ∗
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stands for the conjugate transpose of a vector or matrix. The left inverse of A
(which we always assume to exist) is written as A−1. Thus ‖A−1‖ is the smallest
constant M such that the inequality ‖Ax‖ ≥ 1

M ‖x‖ holds for all vectors x. As usual,
κ(A) := ‖A‖‖A−1‖ is the condition number of A. The linear subspace spanned by
a vector x is written as lin(x). Finally, E denotes expectation.

2 Randomized Kaczmarz algorithm and its rate of con-
vergence

It has been observed [13, 1, 10] that the convergence rate of the Kaczmarz method
can be significantly improved when the algorithm (2) sweeps through the rows of A
in a random manner, rather than sequentially in the given order. Here we propose a
specific version of this randomized Kaczmarz method, which chooses each row of A
with probability proportional to its relevance – more precisely, proportional to the
square of its Euclidean norm. This method of sampling from a matrix was proposed
in [5] in the context of computing a low-rank approximation of A, see also [14] for
subsequent work and references. Our algorithm thus takes the following form:

Algorithm 1 (Random Kaczmarz algorithm). Let Ax = b be a linear system of
equations as in (1) and let x0 be arbitrary initial approximation to the solution
of (1). For k = 0, 1, . . . compute

xk+1 = xk +
br(i) − 〈ar(i), xk〉

‖ar(i)‖2
ar(i), (3)

where r(i) is chosen from the set {1, 2, . . . ,m} at random, with probability propor-
tional to ‖ar(i)‖2.

Our main result states that xk converges exponentially fast to the solution of (1),
and the rate of convergence depends only on the norms of the matrix and its inverse.

Theorem 2. Let x be the solution of (1). Then Algorithm 1 converges to x in
expectation, with the average error

E‖xk − x‖2 ≤
(
1− 1

R

)k
· ‖x0 − x‖2, (4)

where R = ‖A−1‖2 ‖A‖2
F .

Proof. There holds
m∑

j=1

|〈z, aj〉|2 ≥
‖z‖2

‖A−1‖2
for all z ∈ Cn. (5)
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Using the fact that ‖A‖2
F =

∑m
j=1 ‖aj‖2 we can write (5) as

m∑
j=1

‖aj‖2

‖A‖2
F

∣∣∣〈z,
aj

‖aj‖

〉∣∣∣2 ≥ 1
R
‖z‖2 for all z ∈ Cn. (6)

The main point in the proof is to view the left hand side in (6) as an expectation of
some random variable. Namely, recall that the solution space of the j-th equation
of (1) is the hyperplane {y : 〈y, aj〉 = b}, whose normal is aj

‖aj‖ . Define a random
vector Z whose values are the normals to all the equations of (1), with probabilities
as in our algorithm:

Z =
aj

‖aj‖
with probability

‖aj‖2

‖A‖2
F

, j = 1, . . . ,m. (7)

Then (6) says that

E|〈z, Z〉|2 ≥ 1
R
‖z‖2 for all z ∈ Cn. (8)

The orthogonal projection P onto the solution space of a random equation of (1) is
given by Pz = z − 〈z − x,Z〉Z.

Now we are ready to analyze our algorithm. We want to show that the error
‖xk − x‖2 reduces at each step in average (conditioned on the previous steps) by at
least the factor of (1 − 1

R). The next approximation xk is computed from xk−1 as
xk = Pkxk−1, where P1, P2, . . . are independent realizations of the random projection
P . The vector xk−1−xk is in the kernel of Pk. It is orthogonal to the solution space
of the equation onto which Pk projects, which contains the vector xk−x (recall that
x is the solution to all equations). The orthogonality of these two vectors then yields

‖xk − x‖2 = ‖xk−1 − x‖2 − ‖xk−1 − xk‖2.

To complete the proof, we have to bound ‖xk−1−xk‖2 from below. By the definition
of xk, we have

‖xk−1 − xk‖ = 〈xk−1 − x,Zk〉

where Z1, Z2, . . . are independent realizations of the random vector Z. Thus

‖xk − x‖2 ≤
(
1−

∣∣∣〈 xk−1 − x

‖xk−1 − x‖
, Zk

〉∣∣∣2) ‖xk−1 − x‖2.

Now we take the expectation of both sides conditional upon the choice of the random
vectors Z1, . . . , Zk−1 (hence we fix the choice of the random projections P1, . . . , Pk−1

and thus the random vectors x1, . . . , xk−1). Then

E|{Z1,...,Zk−1}‖xk − x‖2 ≤
(
1− E{Z1,...,Zk−1}

∣∣∣〈 xk−1 − x

‖xk−1 − x‖
, Zk

〉∣∣∣2) ‖xk−1 − x‖2.
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By (8) and the independence,

E|{Z1,...,Zk−1}‖xk − x‖2 ≤
(
1− 1

R

)
‖xk−1 − x‖2.

Taking the full expectation of both sides, by induction we complete the proof.

Remark (Dimension-free perspective, robustness): The rate of convergence
in Theorem 2 does not depend on the number of equations nor the number of
variables, and obviously also not on the order of the projections. It is only controlled
by the intrinsic and stable quantity R of the matrix A. This continues the dimension
free approach to operators on finite dimensional normed spaces, see [14].

2.1 Quadratic time

Let n denote the number of variables in (1). Clearly, n ≤ R ≤ κ(A)2n, where κ(A)
is the condition number of A. Then as k →∞,

E‖xk − x‖2 ≤ exp
(
[1− o(1)]

k

κ(A)2n

)
· ‖x0 − x‖2. (9)

Thus the algorithm converges exponentially fast to the solution in O(n) iterations
(projections). Each projection can be computed in O(n) time; thus the algorithm
takes O(n2) operations to converge to the solution. This should be compared to
the Gaussian elimination, which takes O(mn2) time. (Strassen’s algorithm and its
improvements reduce the exponent in Gaussian elimination, but these algorithms
are, as of now, of no practical use). Of course, we have to know the (approximate)
Euclidean lengths of the rows of A before we start iterating; computing them takes
O(nm) time. But the lengths of the rows may in many cases be known a priori.
For example, all of them may be equal to one (as is the case for Vandermonde
matrices arising in trigonometric approximation) or be tightly concentrated around
a constant value (as is the case for Gaussian random matrices).

The number m of equations is essentially irrelevant for our algorithm, as seen
from (9). The algorithm does not even need to know the whole matrix, but only
O(n) random rows. Such Monte-Carlo methods have been successfully developed for
many problems, even with precisely the same model of selecting a random submatrix
of A (proportional to the squares of the lengths of the rows), see [5] for the original
discovery and [14] for subsequent work and references.

3 Optimality

We discuss conditions under which our algorithm is optimal in a certain sense, as
well as the optimality of the estimate on the expected rate of convergence.
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3.1 General lower estimate

For any system of linear equations, our estimate can not be improved beyond a
constant factor of R, as shown by the following theorem.

Theorem 3. Consider the linear system of equations (1) and let x be its solution.
Then there exists an initial approximation x0 such that

E‖xk − x‖2 ≥
(
1− 2k

R

)
· ‖x0 − x‖2 (10)

for all k, where R = R(A) = ‖A−1‖2 ‖A‖2
F .

Proof. For this proof we can assume without loss of generality that the sys-
tem (1) is homogeneous: Ax = 0. Let x0 be a vector which realizes R, that is
R = ‖A−1x0‖2 ‖A‖2

F and ‖x0‖ = 1. As in the proof of Theorem 2, we define the
random normal Z associated with the rows of A by (7). Similar to (8), we have
E|〈x0, Z〉|2 = 1/R. We thus see lin(x0) as an “exceptional” direction, so we shall
decompose Rn = lin(x0)⊕ (x0)⊥, writing every vector x ∈ Rn as

x = x′ · x0 + x′′, where x′ ∈ R, x′′ ∈ (x0)⊥.

In particular,
E|Z ′|2 = 1/R. (11)

We shall first analyze the effect of one random projection in our algorithm. To
this end, let x ∈ Rn, ‖x‖ ≤ 1, and let z ∈ Rn, ‖z‖ = 1. (Later, x will be the running
approximation xk−1, and z will be the random normal Z). The projection of x onto
the hyperplane whose normal is z equals

x1 = x− 〈x, z〉z.

Since
〈x, z〉 = x′z′ + 〈x′′, z′′〉, (12)

we have

|x′1 − x′| = |〈x, z〉z′| ≤ |x′||z′|2 + |〈x′′, z′′〉z′| ≤ |z′|2 + |〈x′′, z′′〉z′| (13)

because |x′| ≤ ‖x‖ ≤ 1. Next,

‖x′′1‖2 − ‖x′′‖2 = ‖x′′ − 〈x, z〉z′′‖2 − ‖x′′‖2

= −2〈x, z〉〈x′′, z′′〉+ 〈x, z〉2‖z′′‖2 ≤ −2〈x, z〉〈x′′, z′′〉+ 〈x, z〉2
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because ‖z′′‖ ≤ ‖z‖ = 1. Using (12), we decompose 〈x, z〉 as a + b, where a = x′z′

and b = 〈x′′, z′′〉 and use the identity −2(a + b)b + (a + b)2 = a2 − b2 to conclude
that

‖x′′1‖2 − ‖x′′‖2 ≤ |x′|2|z′|2 − 〈x′′, z′′〉2 ≤ |z′|2 − 〈x′′, z′′〉2 (14)

because |x′| ≤ ‖x‖ ≤ 1.
Now we apply (13) and (14) to the running approximation x = xk−1 and the next

approximation x1 = xk obtained with a random z = Zk. Denoting pk = 〈x′′k, Z ′′
k 〉, we

have by (13) that |x′k − x′k−1| ≤ |Z ′
k|2 + |pkZ

′
k| and by (14) that ‖x′′k‖2 − ‖x′′k−1‖2 ≤

|Z ′
k|2 − |pk|2. Since x′0 = 1 and x′′0 = 0, we have

|x′k − 1| ≤
k∑

j=1

|x′j − x′j−1| ≤
k∑

j=1

|Z ′
j |2 +

k∑
j=1

|pjZ
′
j | (15)

and

‖x′′k‖2 =
k∑

j=1

(
‖x′′j ‖2 − ‖x′′j−1‖2

)
≤

k∑
j=1

|Z ′
j |2 −

k∑
j=1

|pj |2.

Since ‖x′′k‖2 ≥ 0, we conclude that
∑k

j=1 |pj |2 ≤
∑k

j=1 |Z ′
j |2. Using this, we apply

Cauchy-Schwartz inequality in (15) to obtain

|x′k − 1| ≤
k∑

j=1

|Z ′
j |2 +

( k∑
j=1

|Z ′
j |2

)1/2( k∑
j=1

|Z ′
j |2

)1/2
= 2

k∑
j=1

|Z ′
j |2.

Since all Zj are copies of the random vector Z, we conclude by (11) that E|x′k−1| ≤
2kE|Z ′|2 ≤ 2k

R . Thus E‖xk‖ ≥ E|x′k| ≥ 1 − 2k
R . This proves the theorem, actually

with the stronger conclusion

E‖xk − x‖ ≥
(
1− 2k

R

)
· ‖x0 − x‖.

(the actual conclusion follows by Jensen’s inequality).

3.2 The upper estimate is attained

If κ(A) = 1 then the estimate in Theorem 2 becomes an equality. This follows
directly from the proof of Theorem 2.

Furthermore, there exist arbitrarily large systems and with arbitrarily large κ(A)
for which the estimate in Theorem 2 becomes an equality. More precisely, let n and
m ≥ n, R ≥ n be arbitrary positive numbers such that 1

Rm is an integer. Then
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there exists a system (1) of m equations in n variables and with R(A) = R for which
the estimate in Theorem 2 becomes an equality.

To see this, we define the matrix A with the help of any orthogonal set e1, . . . , en

in Rn. Let the first 1
Rm rows of A be equal to e1, the other rows of A be equal to

one of the vectors ej , j > 1, so that every vector from this set repeats at least 1
Rm

times as a row (this is possible because R ≥ n). Then R(A) = R (note that (5) is
attained for z = e1).

Let us test our algorithm on the system Ax = 0 with the initial approximation
x0 = e1 to the solution x = 0. Every step of the algorithm brings the running
approximation to 0 with probability 1

R (the probability of picking the row of A
equal to e1 in uniform sampling), and leaves the running approximation unchanged
with probability 1− 1

R . By the independence, for all k

E‖xk − x0‖2 =
(
1− 1

R

)k
· ‖x0 − x‖2.

4 Numerical experiments and comparisons

In recent years conjugate gradient (CG) type methods have emerged as the leading
iterative algorithms for solving large linear systems of equations, since they often
exhibit remarkably fast convergence. How does the proposed random Kaczmarz
method compare to CG algorithms?

It is not surprising, that one can easily construct examples for which CG (or
its variations, such as CGLS or LSQR [8]) will clearly outperform the proposed
method. For instance, take a matrix whose singular values, all but one, are equal
to one, while the remaining singular value is ε, a number close to zero, say 10−8.
It follows from well known properties of the CG method (cf. [16]) that CGLS will
converge in two steps, while the proposed Kaczmarz method will converge extremely
slow, since R ≈ ε−2 and thus 1− 1

R ≈ 1 in this example.
On the other hand, the proposed algorithm outperforms CGLS in cases for which

CGLS is actually quite well suited. We consider a Gaussian random matrix with
m ≥ n. While one iteration of CG requires O(mn) operations, one iteration (i.e.,
one projection) of Kaczmarz takes O(n) operations. Thus a cycle of m Kaczmarz
iterations corresponds to one iteration of CG. Therefore, for a fair comparison, in the
following we will compare the number of iteration cycles (1 iteration cycle for CGLS
equals one standard CGLS iteration, and 1 iteration cycle for Kaczmarz equals m
random projections). We let m = 400, n = 100 and construct 1000 random matrices.
For each of them we run CGLS and the random Kaczmarz method described in
Algorithm 1 (which does not require any preprocessing in this case since all rows of
A have approximately the same norm). The resulting average rate of convergence

8



for both methods is displayed in Figure 1.
Somewhat surprisingly, Algorithm 1 gives faster convergence than CGLS. Clas-

sical results about Gaussian random matrices [7, 4], combined with convergence
estimates for the CG algorithm [8] and a little algebra yield that the (expected) con-
vergence rate of CG for Gaussian m× n matrices is governed by (

√
n
m)k. Whereas

for Algorithm 1 the expected convergence rate is bounded by (1 − (
√

m−
√

n)2

mn )
k
2

which is inferior to the value computed for CG. Yet, numerical experiments clearly
demonstrate the better performance of Algorithm 1. We will give a more thorough
discussion of this performance gain compared to its theoretical prediction elsewhere.
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Figure 1: Comparison of rate of convergence for the random Kaczmarz method
described in Algorithm 1 and the conjugate gradient least squares algorithm.
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