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ABSTRACT
A stylized compressed sensing radar is proposed in which the time-
frequency plane is discretized into an N × N grid. Assuming the
number of targets K is small (i.e., K � N2), then we can transmit
a sufficiently “incoherent” pulse and employ the techniques of com-
pressed sensing to reconstruct the target scene. A theoretical upper
bound on the sparsity K is presented. Numerical simulations ver-
ify that even better performance can be achieved in practice. This
novel compressed sensing approach offers great potential for better
resolution over classical radar.

Index Terms— Compressed sensing, radar, sparse recovery,
system identification, Gabor analysis.

1. INTRODUCTION

Radar, sonar and similar imaging systems are in high demand in
many civilian, military, and biomedical applications. The resolution
of these systems is limited by classical time-frequency uncertainty
principles. Using the concepts of compressed sensing (CS), we pro-
pose a radically new approach to radar, which under certain condi-
tions provides better time-frequency resolution. In this simplified
version of a monostatic, single-pulse radar system we assume that
the targets are radially aligned with the transmitter and receiver. As
such, we will only be concerned with the range and velocity of the
targets. Future studies will include cross-range information.

Throughout this discussion we only consider functions with fi-
nite energy; that is, if f ∈ L2(R), then ‖f‖22 =

�
R
|f(t)|2dt < ∞.

For two functions f, g ∈ L2(R), the cross-ambiguity function of
τ, ω ∈ R is defined as

Afg(τ, ω) =

�
R

f(t + τ/2)g(t− τ/2)e−2πiωtdt (1)

where · denotes complex conjugation, and the upright Roman let-
ter i =

√−1. When f = g we have the (self) ambiguity func-
tionA(τ, ω), and its shape |A(τ, ω)| above the time-frequency plane
is called the ambiguity surface. The radar uncertainty principle [1]
states that if��

U

|Afg(τ, ω)|2dτdω ≥ (1− ε) ‖f‖22‖g‖22 (2)

for some support U ⊆ R
2 and ε ≥ 0, then |U | ≥ (1− ε).

In classical radar, the ambiguity function of f is the main factor
in determining the resolution between targets [2]. Thus, the ability
to identify two targets in the time-frequency plane is limited by the
essential support of Af (τ, ω) as dictated by the radar uncertainty
principle. The main result of this paper is that, under certain condi-
tions, CS radar achieves better target resolution than classical radar.
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2. COMPRESSED SENSING

Recently, the signal processing/mathematics community has seen
a paradigmatic shift in the way information is represented, stored,
transmitted and recovered [3, 4, 5]. This area is often referred to as
Sparse Representations and Compressed Sensing. Consider a dis-
crete signal s of length M . We say that it is K-sparse if at most
K � M of its coefficients are nonzero (perhaps under some appro-
priate change of basis). With this point of view the true information
content of s lives in at most K dimensions rather than M . In terms
of signal acquisition it makes sense then that we should only have to
measure a signal N∼K times instead of M . We do this by observ-
ing N non-adaptive, linear measurements in the form of y = Φs,
where Φ is a dictionary of size N×M . If Φ is sufficiently “incoher-
ent,” then the information of s will be embedded in y such that it can
be perfectly recovered with high probability. Current reconstruction
methods include using greedy algorithms such as orthogonal match-
ing pursuit (OMP) [5], and solving the convex problem: min ‖s′‖1
such that Φs′ = y. The latter program is often referred to as Basis
Pursuit (BP) [3, 4].

3. MATRIX IDENTIFICATION VIA CS

3.1. Problem Formulation

Consider an unknown matrix H ∈ C
N×N′

and an orthonormal ba-
sis (ONB) (H i)i for C

N×N′
. Note that there are necessarily NN ′

elements in this basis, and their ortho-normality is with respect to
the Frobenius norm. Then there exist coefficients (si)i such that

H =

NN′−1�
i=0

siH i. (3)

Our goal is to identify/discover the coefficients (si)i. Since
the basis elements are fixed, identifying (si)i is tantamount to
discovering H . We will do this by designing a test function

f = (f0, . . . , fN′−1)
T ∈ C

N′
and observing Hf ∈ C

N . Here,
( · )T denotes the transpose of a vector or a matrix. Figure 1 depicts
this from a systems point of view where H is an unknown “block
box.” Systems like this are ubiquitous in engineering and the sci-
ences. For instance, H may represent an unknown communications
channel which needs to be identified for equalization purposes.

f −→ H −→ y = Hf
Black Box

Fig. 1. Unknown system H with input f and output observation y.
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For simplicity, from now on assume that N ′ = N . The obser-
vation vector can be reformulated as

y =

N2−1�
i=0

siH if =

N2−1�
i=0

siϕi = Φs (4)

where the ith atom ϕi = H if is a column vector of length N ,
the concatenation of the atoms Φ = ( ϕ0 |ϕ1 | · · · |ϕN2−1 ) is an

N ×N2 matrix, and s = ( s0, s1, · · · , sN2−1 )T is a column vec-
tor of length N2. The system of equations in (4) is clearly highly
underdetermined. If s is sufficiently sparse, then there is hope of
recovering s from y. To use the reconstruction methods of CS we
need to design f so that the dictionary Φ is sufficiently incoherent.

3.2. The Basis of Time-frequency Shifts

It is well-known from pseudo-differential operator theory [1] that
any matrix can be represented by a basis of time-frequency shifts.
Let the N × N matrices T and M respectively denote the unit
shift and modulation operators where T (f0, . . . , fN−2, fN−1)

T =
(fN−1, f0, . . . , fN−2)

T, M = diag(ω0
N , . . . , ωN−1

N ), and ωN =

e2πi/N is the N th root of unity. The ith time-frequency basis ele-
ment is defined as H i = M i mod N ·T �i/N� for i = 0, . . . , N2−1,
where �·� is the floor function. Under this basis, it is known [6, 7]
that some practical systems H with meaningful applications have a
sparse representation s.

A collection of vectors which are time-frequency shifts of a gen-
erating vector is called a Gabor matrix [1]. Without loss of general-
ity assume ‖f‖2 = 1. Since each H i is a unitary matrix we have
that ‖ϕi‖2 = 1 for all i. We can also express Φ as the concatenation
of N blocks

Φ =
�
Φ(0) |Φ(1) | · · · |Φ(N−1)

�
(5)

where the kth block Φ(k) = Dk ·WN is composed of Dk =
diag(fk, . . . , fN−1, f0, . . . , fk−1) and WN = (ωpq

N )N−1
p,q=0.

3.3. The Coherence of a Dictionary

We are interested in how the atoms of a general dictionary Φ =
(ϕi)i ∈ C

N×M (with N ≤ M ) are “spread out.” This can be
quantified by examining the magnitude of the inner product between
its atoms. The coherence μ(Φ) is defined as the maximum of all
of the distinct pairwise comparisons μ(Φ) = maxi�=i′ |〈ϕi, ϕi′〉|.
Assuming each ‖ϕi‖2 = 1, the mutual coherence is bounded [8] by�

M −N

N(M − 1)
≤ μ(Φ) ≤ 1. (6)

When a dictionary can be expressed as the union of 2 or more ONBs,
this lower bound becomes 1/

√
N [9].

3.4. The Probing Test Function f

We now introduce a candidate probe function f which results in re-
markable incoherence properties for the dictionary Φ. Consider the
Alltop sequence fA = (fn)N−1

n=0 for some prime N ≥ 5 where [10]

fn =
1√
N

e2πin3/N . (7)

Let ΦA denote the Gabor matrix generated by the Alltop se-
quence (7). Since its atoms are already grouped into N ×N blocks

in (5), we will maintain this structure by denoting the jth atom of

the kth block as ϕ
(k)
j . Within the same block (i.e., k = k′) we have

Property 1: |〈ϕ(k)
j , ϕ

(k)

j′ 〉| =

�
0, if j �= j′

1, if j = j′.

Thus, each Φ(k) is an ONB for C
N . Moreover, for different blocks

(i.e., k �= k′) we have

Property 2: |〈ϕ(k)
j , ϕ

(k′)
j′ 〉| =

1√
N

for all j, j′ = 0, . . . , N − 1. This means that there is a mutual inco-
herence between the atoms of different blocks. Trivially, it follows
that μ(ΦA) = 1/

√
N . Furthermore, with M = N2 in (6) we see

that the lower bound of 1/
√

N + 1 is practically attained! (See [11]
for more details on this and on equiangular line sets.)

3.5. Identifying Matrices via CS: Theory

Having established the incoherence properties of the dictionary ΦA
we can now move on to apply the concepts and techniques of CS. It
is worth pointing out that most CS scenarios deal with a K-sparse
signal s (for some fixed K), and one is tasked with determining how
many observations are necessary to recover the signal. Our situation
is markedly different. Due to the fact that ΦA is constrained to be
N×N2, we know y = ΦAs we will contain exactly N observations.
With N fixed, our CS dilemma is to determine how sparse s should
be such that it can be recovered from y. We hope to recover any K-
sparse signal for K ≤ C ·N/ log N for some C > 0. The following
two theorems [11] summarize the recovery of matrices via CS when
identified with the Alltop sequence with prime N ≥ 5.

Theorem 1. Suppose H =
�

i siH i ∈ C
N×N has a K-sparse

representation under the time-frequency ONB, with K < 1
2
(
√

N +
1), and that we have observed y = HfA. Then we are guaranteed
to recover s either via BP or OMP.

The sparsity condition in Theorem 1 is rather strict. Instead
of the requirement of guaranteed perfect recovery, we can ask to
achieve it with only high probability. This more modest expectation
provides us with a much more realistic sparsity condition.

Theorem 2. Suppose random H =
�

i siH i ∈ C
N×N has

a K-sparse representation under the time-frequency ONB where
K ≤ N/16 log (N/ε) with ε ≤ 1/

√
2, and that we have observed

y = HfA. Then BP will recover s with probability greater than
1 − 2ε2 − K−ϑ for some ϑ ≥ 1 s.t.

�
ϑ log N/ log (N/ε) ≤ c

where c is an absolute constant.

3.6. Identifying Matrices via CS: Simulation

Numerical simulations were performed and indicate that the theory
above is actually somewhat pessimistic. The simulations were con-
ducted as follows. The values of prime N ranged from 5 to 127, and
1 ≤ K ≤ N . For each ordered pair (N, K) a K-sparse vector s
of length N2 was randomly generated. The nonzero locations were
chosen from a uniform distribution, and their magnitudes were in-
dependently chosen from a Gaussian distribution of zero mean and
unit variance. With this random s the observation y = ΦAs was
generated. Then, y and ΦA were input to a linear program [12] to
solve min ‖s′‖1 s.t. ΦAs′ = y. This procedure was repeated 15
times and averaged.
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Figure 2 shows how the numerical simulations compare to The-
orems 1 and 2. The error ‖s − s′‖2 as a function of (N, K) is
shown as solid, gray-black contour lines. The dashed, red line rep-
resents K = N/ log N . The zone of “perfect reconstruction” lies
below this line. In this region random N × N matrices with 1 ≤
K ≤ N/ log N nonzero entries can be perfectly recovered with high
probability. This is empirical evidence that the denominator of K in
Theorem 2 can be relaxed from log (N/ε) to just log N as desired.
However, it is still an open mathematical problem to prove this for
the Alltop sequence. Note also, the proportionality constant is ex-
actly unity here. Furthermore, the overly strict constraint of Theo-
rem 1 can be seen by the lower dash-dotted, blue line representing
K = 1

2
(
√

N + 1).

Fig. 2. Matlab simulation solving: min ‖s′‖1 s.t. ΦAs′ = ΦAs.

4. RADAR

4.1. Classical Radar Primer

Consider the following simple (narrowband) 1-dimensional, mono-
static, single-pulse radar model. Suppose a target located at range
x is traveling with constant velocity v and has reflection coefficient
sxv . After transmitting signal f(t), the receiver observes the re-
flected signal

r(t) = sxvf(t− τx)e2πiωvt, (8)

where τx = 2x/c is the round trip time of flight, c is the speed of
light, ωv ≈ −2ω0v/c is the Doppler shift, and ω0 is the carrier fre-
quency. The basic idea is that the range-velocity information (x, v)
of the target can be inferred from the observed time delay-Doppler
shift (τx, ωv) of f in (8). Hence, a time-frequency shift basis is a
natural representation for radar systems.

Using a matched filter at the receiver, the magnitude of the cross-
ambiguity function (1) between r and f is calculated

|Arf (τ, ω)| =
���
�

R

r(t)f(t− τ)e−2πiωtdt
���

=
���sxvAf (τ − τx, ω − ωv)

��� (9)

From this we see that the time-frequency plane consists of the ambi-
guity surface of f centered at the target’s “location” (τx, ωv). Ex-
tending (9) to include multiple targets is straightforward. Targets

which are too close will have overlapping ambiguity functions and
this may blur the exact location of the targets, or how many there are
in a given region of the time-frequency plane.

4.2. CS Radar

We now propose our stylized CS radar which under appropriate con-
ditions can “beat” the classical uncertainty principle! Consider K
targets with unknown range-velocities and corresponding reflection
coefficients. Next, discretize the time-frequency plane into an N×N
grid so that the targets lie on the grid-points. Recognizing that each
point on the grid represents a unique time-frequency shift H i, it is
easy to see that each possible combination of target scenes can be
represented by some matrix H as in (3). If the number of targets
K � N2, then the time-frequency grid will be sparsely populated.
By “vectorizing” the grid, we can represent it as an N2× 1 sparse
vector s. Assume that the Alltop sequence is sent by the transmit-
ter1. If the number of targets obey the sparsity constraints in Theo-
rems 1 and 2, then we will be able to reconstruct the original target
scene using CS techniques.

4.3. CS and Classical Radar Simulations

Figure 3 shows the result of Matlab radar simulations. For purposes
of normalization the grid spacing in these figures is 1/

√
N . Hence,

the numbers shown on the axes represent multiples of 1/
√

N . A
random time-frequency scene with K = 10 targets and N = 47 is
presented in Figure 3(a). Targets which are darker indicate a larger
reflection coefficient. The CS radar simulation [12] used the Alltop
sequence to identify the targets. In Figure 3(b) it is clear that CS
was able to perfectly reconstruct the target scene when there was no
added noise (note, K ≤ N/ log N was satisfied). Based on the grid
of the discretized time-frequency plane in these figures it is obvious
that we can resolve targets located at adjacent grid points. Thus, CS
radar has a resolution of 1/2

√
N .

Figure 3(d) illustrates how CS starts to suffer in the presence of
15 dB of additive white Gaussian noise (AWGN). Some faint false
positives have appeared, yet the target scene has still been identified.
Moreover, the two closest targets in the center are resolved while tra-
ditional radar techniques may fail in this scenario. The performance
of CS radar in the presence of 5 dB AWGN (not shown, see [11])
was somewhat worse. Several targets were lost and there were many
false positives. It remains an open problem in the CS community
how to deal with such noisy situations.

Figures 3(c) and 3(e) show the original target scene recon-
structed when probed with a Gaussian pulse. The ambiguity function
associated with a Gaussian pulse is a 2D Gaussian pulse. Therefore,
according to (9) we see that the radar scenes in these figures consist
of a 2D Gaussian pulse centered at each target in the time-frequency
plane. It is clear that some of the targets are contained within the
Heisenberg boxes of neighboring targets. Depending on the sophis-
tication of subsequent algorithms some of the targets (e.g., the two
closest in the center) may be unresolvable.

As a consequence of the grid spacing, the Heisenberg box asso-
ciated with the Gaussian pulse’s ambiguity surface has been nor-
malized to a square of unit area. This is empirically verified in
Figures 3(c), and 3(e) where we see that the diameter of the un-
certainty region around each target spans approximately seven grid
points. Since the grid spacing is 1/

√
N we confirm that the base and

height of the Heisenberg box are each approximately 7/
√

47 ≈ 1.

1The transmitter sends analog signals. We assume here that there exists a
continuous signal which when discretized is the Alltop sequence (7).
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Therefore, we have a rough measure of the target resolution of a
Gaussian pulse: here classical radar yields a resolution of 1/2.
Comparing the resolution of classical radar with that of CS we see
that 1/2 > 1/2

√
N for N ≥ 2. Thus, we claim that CS radar can

achieve better resolution than classical radar. Moreover, by increas-
ing N the time-frequency plane will be discretized into a finer grid
and this will increase CS’s resolution. Of course, there are practical
limits on how large N can be (refer to the Discussion section).

Fig. 3. Radar simulation. (a) Original target scene. Reconstruction
with no noise: (b) CS and (c) Classical radar. Reconstruction with
15dB AWGN: (d) CS and (e) Classical radar.

5. DISCUSSION

We have provided a sketch for a high-resolution radar system based
on CS. It must be stressed that our model presents radar in an overly
simplified manner. In reality, radar engineers employ highly sophis-
ticated methods to identify targets. For example, rather than a single
pulse, a signal with multiple pulses is often used and information
is averaged over several observations. In particular, the results in
Figures 3(c) and 3(e) are included only for rough comparison. Since
many of the implementation details of our CS radar have yet to be de-
termined, and since classical radar can also be implemented in many
ways we were unable to make a completely conclusive comparison
between their respective resolutions. Regardless, the classical radar
uncertainty principle lies at the core of traditional approaches and
limits their performance. We contend that CS provides the potential
to achieve higher resolution between targets.

We also did not address how to discretize the analog signals used
in both CS and classical radar. A more detailed study addressing
these issues is the topic of another paper. Related to the discretiza-
tion issue is the fact that CS radar does not use a matched filter at the
receiver. This will directly impact analog to digital conversion, and

has the potential to reduce the overall data rate. These matters are
discussed in the paper of Baraniuk and Steeghs [13], although they
do not address the case of moving targets.

The success of this stylized CS radar relied on the incoherence
of the dictionary ΦA resulting from the Alltop sequence. There exist
other probing functions with similar incoherence properties. Nu-
merical simulations with f as a random Gaussian signal, as well as
a constant-envelope random-phase signal indicate similar behavior
to what we have reported for the Alltop sequence. At the time of
writing this paper, we became aware of a similar study by Pfander,
Rauhut and Tanner [14] where they examine some of these issues.

Narrowband radar is by no means the only application to which
the techniques presented here can be used. Wideband radar admits a
received signal which is well-represented by a wavelet basis, and the
dictionary Φ could be reformulated accordingly. There are also ap-
plications to many other linear time-varying systems such as sonar,
estimation of underwater acoustic communication channels [7], and
blind source separation.
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