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Abstract. The detection and parameter estimation of moving targets is one

of the most important tasks in radar. Arrays of randomly distributed antennas
have been popular for this purpose for about half a century. Yet, surprisingly
little rigorous mathematical theory exists for random arrays that addresses

fundamental question such as how many targets can be recovered, at what
resolution, at which noise level, and with which algorithm. In a different line
of research in radar, mathematicians and engineers have invested significant
effort into the design of radar transmission waveforms which satisfy various

desirable properties. In this paper we bring these two seemingly unrelated
areas together. Using tools from compressive sensing we derive a theoretical
framework for the recovery of targets in the azimuth-range-Doppler domain via
random antennas arrays. In one manifestation of our theory we use Kerdock

codes as transmission waveforms and exploit some of their peculiar properties
in our analysis. Our paper provides two main contributions: (i) We derive the
first rigorous mathematical theory for the detection of moving targets using

random sensor arrays. (ii) The transmitted waveforms satisfy a variety of
properties that are very desirable and important from a practical viewpoint.
Thus our approach does not just lead to useful theoretical insights, but is
also of practical importance. Various extensions of our results are derived and

numerical simulations confirming our theory are presented.

1. introduction

The detection and parameter estimation of moving targets is one of the most
important radar applications. The use of antenna arrays greatly improves our
ability to perform this task. Antenna arrays make it possible to estimate not only
the range and Doppler frequency, but also the azimuth of the target. Furthermore,
using multiple antennas can significantly increase signal strength and thus in turn
can greatly enhance accuracy and our ability to locate low contrast targets (“faint”
or “weak” targets).

Therefore it does not come as a surprise that in recent years radar systems em-
ploying multiple antennas at the transmitter and the receiver (also referred to as
MIMO radar, where MIMO stands for multiple-input multiple-output) have at-
tracted enormous attention in the engineering and signal processing community.
Despite the significant resources that have been devoted to MIMO radar, there
exists fairly little rigorous mathematical theory for MIMO radar that addresses
fundamental questions, such as how many targets can be detected at which azimuth-
range-Doppler resolution and at what signal-to-noise ratio. Existing theory focuses
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mainly on the detection of a single target [12, 26]. Only very recently, in the foot-
steps of compressive sensing, do we see the emergence of a rigorous mathematical
theory for MIMO radar that addresses the more realistic and more interesting case
of multiple targets [33]. However, for the widely popular case of randomly spaced
antennas1, the mathematical theory is still in its infancy.

In an independent and seemingly disparate line of research in radar, mathemati-
cians and engineers have devoted substantial efforts to the design of radar trans-
mission waveforms that satisfy a variety of desirable properties. The vast majority
of this research has focused on single antenna radar systems, and it is a priori not
clear if and how these waveforms can be utilized for MIMO radar. In this paper we
bring together these two independent areas of research, MIMO radar with random
antenna arrays and radar waveform design, by developing a rigorous mathematical
framework for accurate target detection via random arrays, which at the same time
utilizes some of the most attractive radar waveforms, such as Kerdock codes.

A radar system illuminates a region of interest in order to detect the location,
velocity, and reflectivity of the objects (targets) in its field of view. We consider
the following standard (narrowband) radar model [32]. Suppose a target located
at range r is traveling with constant velocity v and has reflection coefficient a.
Suppose further just for the moment that we have only one target, one transmitter
and one receiver (in which case we cannot detect direction). After transmitting
signal s(t), the receiver observes the reflected signal

y(t) = as(t − τr)e
2πiωvt (1)

where τr = 2r/c is the round trip time of flight, c is the speed of light, ωv ≈ −2ω0v/c
is the Doppler shift, and ω0 is the carrier frequency. The basic idea is that the range-
velocity information (r, v) of the target can be inferred from the observed time delay-
Doppler shift (τr, ωv) of s in (1). For only one target this can be done conveniently
by correlating the received signal y with time-frequency shifted versions of the
transmitted signal. Since we are dealing with bandlimited signals, it suffices to
consider discrete signals sampled at a properly chosen rate ∆t. It is therefore
common practice to compute

V (τ, ω) :=
∑

l

y(l∆t)s(l∆t − τ)e2πiωl (2)

and then locate the largest value of |V (τ, ω)| in order to detect the target in the
range-Doppler domain.

In the presence of multiple targets more sophisticated methods are necessary. In
order to resolve azimuth in addition to range and Doppler, we need to employ an
array of antennas. We assume an array of NT transmit and NR receiver antennas
that are co-located (also known as mono-static radar) as illustrated in Figure 1.
A more detailed description of the setup is postponed to Section 2. The transmit
antennas send simultaneously probing signals, which can differ from antenna to
antenna and can be chosen to our specifications. It is convenient to divide the region
of interest into range-azimuth-Doppler cells corresponding to distance, direction and
velocity, respectively. Let A be a measurement matrix whose columns correspond
to the signal recorded at each receive antenna from a single unit-strength scatterer

1In this paper we only consider the case of co-located transmitters and receivers, which is the
most relevant situation in practice. We do not discuss the case of widely separated antennas [15].
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at a specific range-azimuth-Doppler cell. Let x denote a vector whose elements
represent the complex amplitudes of the scatterers. In many cases the radar scene
is sparse in the sense that only a small fraction (often a very small fraction) of the
cells is occupied by the objects of interest. In this case most of the entries of x
will be zero, but we do not know which ones, otherwise we would have located the
targets already. With w representing a noise vector, we are faced with the linear
system of equations

y = Ax + w, (3)

where y is a vector of measurements collected by the receive antennas over an
observation interval. Typically this system will be underdetermined, which implies
that it will have infinitely many solutions. What comes to our rescue here is the
sparsity of x. While conventional radar processing techniques do not take full
advantage of sparsity of the radar scene, the recent development of compressive
sensing provides us with the possibility to optimally utilize this property [17, 31, 33].
The approach pursued in this paper to obtain a sparse solution of (3) is based on
the lasso [36], which gained tremendous popularity in connection with compressive
sensing. The lasso solves

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1, (4)

where the parameter λ > 0 trades off goodness of fit with sparsity.
However, one of the main challenges in bringing compressive sensing theory

into radar is that in radar the sensing matrix A cannot be freely chosen. Its
structure is dictated by the laws of physics on which radar is based. The crux is to
carefully balance the desired resolution in the azimuth-range-Doppler domain with
the degrees of freedom at our disposal in the formation of A, such as the antenna
locations and the transmit waveforms.

A great deal of work has been devoted in the mathematical and engineering
literature to the design of radar transmission waveforms, see for instance [1, 3,
9, 13, 14, 29, 38] for a small sample of references. The design criteria for radar
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waveforms can be roughly split into two categories: (i) properties that are impor-
tant from the viewpoint of hardware implementation, and (ii) properties that are
relevant for target detection. Waveforms that fall in the first category are for exam-
ple polyphase sequences2, since they give rise to signals with low peak-to-average
power ratio3 (PAPR). A low PAPR is desirable in the digital-to-analog conversion
of signals, since signals with large PAPR would require expensive power amplifiers.
Polyphase sequences also have the advantage that they can be very convientiently
implemented in hardware via simple look-up tables. The second category usually
includes waveforms with low auto-correlation and (nearly) ideal ambiguity function.
Quite a number of polyphase sequences, such as Alltop sequences or Kerdock codes,
fall in this category. With the exception of [17] a rigorous mathematical theory con-
cerning the benefits (or even optimality) of such sequences has only existed for the
detection of a single target. Common to all these carefully constructed sequences
in both categories is that they have been designed for single-antenna radar systems
and it is a priori not clear at all if any of these sequences are useful in exploiting
the potential benefits of a MIMO radar system.

Our paper provides two main contributions: (i) We derive the first rigorous math-
ematical theory for the detection of moving targets in the azimuth-range-Doppler
domain for random sensor arrays. (ii) The transmitted waveforms satisfy a vari-
ety of properties that are very desirable and important from a practical viewpoint.
In particular, we show that Kerdock sequences, which would perform very poorly
in single-antenna radar, are nearly ideally suited for MIMO radar with randomly
spaced antennas. Since Kerdock codes are polyphase sequences, they have excel-
lent PAPR and they are easy to implement in hardware via a simple look-up table.
Thus, our framework does not just lead to useful theoretical insights, but also has
a very strong practical appeal.

1.1. Connections with prior work and innovations. Random sensor arrays
have been around for half a century. The pioneering work [27, 28] by Lo contains a
mathematical analysis of important specific characteristics of random arrays, such
as sidelope behavior and antenna gain. There is extensive engineering literature
that deals with random arrays in connection with phased array radar technology,
e.g. see [11]. Recently, Carin made an explicit connection between the areas of
random sensor arrays and compressive sensing [6]. He has shown that algorithms
developed in these two seemingly different areas are in fact highly inter-related.
The setup in [6] is quite different from ours, since the paper is only concerned
with angular resolution (thus transmission waveforms do not even explicitly enter
into the model), while it is often crucial in practice to be able to estimate range
and Doppler as well. Moreover, the theoretical analysis in [6] follows more an
engineering style and places less emphasis on mathematical rigor. The paper [7]
provides interesting results for the angular estimation of stationary targets. Its
setup is similar to that in [6], and quite different from ours, as it does not deal with
waveform design nor with moving targets.

Kerdock codes have been proposed for radar in [20]. However in the setting of
a single transmit antenna. Kerdock codes are known to perform rather poorly4

2A polyphase sequence is a sequence whose coefficients are of the form e2πitk/p for some
tk ∈ {0, . . . , p − 1}, see e.g. [13].

3The peak-to-aver power ratio of a signal s is defined, up to different normalizations, as
‖s‖∞
‖s‖2

.
4This poor performance is caused by Property (ii) in Theorem 3.1.
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even in the case of single targets as considered in [20]. Only in the setting of
mulitple transmit antennas can Kerdock codes exhibit their enormous potential.
Our paper utilizes some properties of Kerdock codes proved in [20], but otherwise
there is no overlap. In our paper we also present an extension of the main result,
that allows for instance the use of the so-called finite harmonic oscillator system
as transmission waveforms. These sequences have been derived in [14], where the
authors also briefly sketch their use in a single-antenna radar system for the simple
case of a single target. Thus, while our framework allows one to employ the finite
harmonic oscillator system, there is essentially no overlap of our results with those
in [14].

The paper [33] (coauthored by one of the authors) is closest to this paper, but
the setting is in a sense complementary. [33] considers a MIMO radar setting
with a very specific (non-random) choice for the antenna locations, but random
waveforms, while the current paper deals with randomly spaced antennas, but very
specific, deterministic waveforms. At first glance, the difference may appear to be
mainly semantic. But in practice, the second setting has many advantages. From
an engineer’s viewpoint random waveforms have several drawback over properly
designed deterministic waveforms: they are much harder to implement on a digital
device (requiring more complicated hardware, more memory, ...); and they exhibit
a larger peak-to-average-power ratio. On the other hand it makes no difference
from the viewpoint of physics or hardware, if we place the antennas at random or
at deterministic locations. In particular, the current paper yields some important
insights, which cannot be inferred from [33]: We obtain a theoretical framework for
radar operating with random antenna arrays, a technique which have been around
for half a century; we show that Kerdock sequences, which are not useful for SISO
or SIMO radar5, are excellent for MIMO radar; our approach allows for waveforms
that satisfy a number of properties which are very desirable in practice, and are
not satisfied by random waveforms. Indeed, as mentioned above, we also show that
the finite harmonic oscillator system “plays well” with random antenna arrays.

Our paper is organized as follows. Section 2 describes the problem setup and the
radar model. We review key properties of Kerdock codes in Section 3. Our main
theorem is presented in Section 4 and Section 5 is devoted to the proof of the main
theorem. In Section 6 we extend our framework to other deterministic waveforms,
such as the finite harmonic oscillator system. Numerical simulations are presented
in Section 7.

1.2. Notation. For a matrix A, we use A∗ to denote its adjoint matrix, which is
its conjugate transpose. The operator norm of A is the largest singular value of A
and is denoted by ‖A‖op. We denote the k-th column of A by Ak and the element
in the i-th row and k-th column by A[i,k]. The coherence of A is defined as

µ(A) := max
k 6=l

|〈Ak,Al〉|
‖Ak‖2‖Al‖2

. (5)

The n × n Discrete Fourier Transform (DFT) matrix is written as Fn and the
n × n identity matrix as In. For x ∈ C

n, let Tτ denote the circulant translation

5SISO stands for single-input-single-output radar, and SIMO for single-input-multiple-output

radar (i.e., a radar with one transmit and multiple receive antennas).
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operator, defined by

Tτx(l) = x(l − τ), τ ∈ C
n, (6)

where l−τ is understood modulo n, and let Mf be the modulation operator defined
by

Mfx(l) = x(l)e2πifl/n. (7)

Acknowledgements. The authors acknowledge generous support by the National
Science Foundation under grant DTRA-DMS 1042939 and by DARPA under grant
N66001-11-1-4090.

2. Problem Setup

We consider a MIMO radar employing NT antennas at the transmitter and NR

antennas at the receiver. We assume for convenience that transmitters and receivers
are co-located, cf. Figure 1. Furthermore, we assume a coherent propagation sce-
nario, i.e., the element spacing is sufficiently small so that the radar return from
a given scatterer is fully correlated across the array. The arrays and all the scat-
terers are assumed to be in the same 2-D plane. The extension to the 3-D case is
straightforward.

The array manifolds aT (β), aR(β) with randomly spaced antennas are given by

aT (β) =
[

e2πip1β , e2πip2β , . . . , e2πipNT
β
]T

, (8)

and

aR(β) =
[

e2πiq1β , e2πiq2β , . . . , e2πiqNR
β
]T

, (9)

where we assume that the relative antenna spacings pj ’s and qj ’s are i.i.d. uniformly

on [0, NRNT

2 ]. The j-th transmit antenna repeatedly transmits the signal sj(t),
which is assumed to be a periodic, continuous-time signal of period-duration T
seconds and bandwidth B. We observe the back-scattered signal over a duration
T , and since its bandwidth is B, it suffices that each receive antennas takes Ns

samples6, where Ns = T/∆s and ∆s = 1
2B . It is convenient to introduce the

finite-length vector sj associated with sj , via sj(l) := sj(l∆s), l = 1, . . . , Ns.
Let Z(t;β, τ, f) be the NR × Ns noise-free received signal matrix from a unit

strength target at direction β, delay τ , and Doppler f (corresponding to its radial
velocity with respect to the radar). Then

Z(t;β, τ, f) = aR(β)aT
T (β)ST

τ,f ,

where Sτ,f is a Ns × NT matrix whose columns are the circularly delayed and
Doppler shifted signals sj(t − τ)e2πift.

We let z(t;β, τ, f) = vec{Z}(t;β, τ, f) be the noise-free vectorized received signal.
We set up a discrete azimuth-range-Doppler grid {βl, τj , fk} for 1 ≤ l ≤ Nβ , 1 ≤ j ≤
Nτ and 1 ≤ k ≤ Nf , where ∆β ,∆τ and ∆f denote the corresponding discretization
stepsizes. Using vectors z(t;βl, τj , fk) for all grid points (βl, τj , fk) we construct a
complete response matrix A whose columns are z(t;βl, τj , fk) for 1 ≤ l ≤ Nβ and
1 ≤ j ≤ Nτ , 1 ≤ k ≤ Nf . In other words, A is a NRNs × NτNβNf matrix with
columns

Aβ,τ,f = aR(β) ⊗ Sτ,faT (β). (10)

6Actually the received signal will have a somwhat larger bandwidth B1 > B due to the Doppler

effect. However, in practice this increase in bandwidth is small, so we can assume B ≈ B1.
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Assume that the radar illuminates a scene consisting of S scatterers located on S
points of the (βl, τj , fk)-grid. Let x be a sparse vector whose non-zero elements are
the complex amplitudes of the scatterers in the scene. The zero elements correspond
to grid points which are not occupied by scatterers. We can then define the radar
signal y received from this scene by

y = Ax + w (11)

where y is an NRNs × 1 vector, x is an NτNβNf × 1 sparse vector and w is
an NRNs × 1 complex Gaussian noise vector. Our goal is to solve for x, i.e., to
locate the scatterers (and their reflection coefficients) in the azimuth-delay-Doppler
domain.

Remark: The assumption that the targets lie on the grid points, while common
in compressive sensing, is certainly restrictive. A violation of this assumption will
result in a model mismatch, sometimes dubbed gridding error, which can potentially
be quite severe [18, 8]. Recently some interesting strategies have been proposed to
overcome this gridding error [10, 35]. But these methods – at least in their current
form – are not directly applicable to our setting. This model mismatch issue is
beyond the scope of this paper and will be addressed in our future research.

3. Kerdock codes

In this section we introduce one particularly useful set of transmission waveforms.
Due to the setup in Section 2 it suffices that we deal with discrete, finite-length
signals as transmission waveforms. We briefly review the construction of Kerdock
codes and some of their fundamental properties. There is a long list of properties
that radar waveforms should satisfy. As we will see in this paper, Kerdock codes
fulfill many of them. Kerdock codes over Z2 (i.e., binary Kerdock codes) were origi-
nally introduced in [23]. In the seminal paper [4] the authors extend Kerdock codes
from Z2 to Z4. By doing so, they uncover many fascinating properties of Kerdock
codes and reveal numerous deep connections between coding theory, discrete geom-
etry and group theory. In the same paper, the authors also extend Kerdock codes
to the setting of Zp, where p is an odd prime.

Kerdock codes are an example of so-called mutually unbiased bases [39, 34].
Kerdock codes have also been proposed for use in communications engineering [16,
22]. In [20] the authors suggest the use of Kerdock codes for radar, based on
the peculiar properties of the discrete ambiguity function associated with Kerdock
codes. We emphasize however that for the single transmit antenna radar scenario
Kerdock codes would actually perform rather badly, as discussed after Theorem 3.1
and shown by Figure 5 in Section 7. It is only in the setting of multiple transmit
antennas that Kerdock codes become useful for radar.

For the remainder of this paper we will only be concerned with Kerdock codes
over Zp. Some of the Kerdock codes over Zp, namely those corresponding to desar-
guesian planes in the language of [4], have also been derived earlier in [25] and [24].
A simple way to construct these Kerdock codes is the following, in which they arise
as eigenvectors of time-frequency shift operators. Let p be an odd prime number.
For each k = 0, . . . , p − 1 we compute the eigenvector decomposition of T0Mk

(which always exists, since T0Mk is a unitary matrix)

U(k)Σ(k)U
∗
(k) = T0Mk, (12)
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where the unitary matrix U(k) contains the eigenvectors of T0Mk and the diagonal

matrix Σ(k) the associated eigenvalues7. Furthermore, we define U(p) := Ip. Now,

let uk,j be the j-th column of U(k). The set consisting of the p2 + p vectors
{uk,j , k = 0, . . . , p; j = 0, . . . , p− 1} forms a Zp-Kerdock code. There are numerous
equivalent ways to derive this Kerdock code, but, as pointed out earlier, not all
Kerdock codes over Zp are equivalent (see also the comment following Corollary
11.6 in [4]). But we will be a bit sloppy, and simply refer to the Kerdock code
constructed above as the Kerdock code.

In the following theorem we collect those key properties of Kerdock codes that
are most relevant for radar. These properties are either explicitly proved in [4, 20]
or can be derived easily from properties stated in those papers.

Theorem 3.1. Kerdock codes over Zp, where p is an odd prime, satisfy the follow-
ing properties:

(i) Mutually unbiased bases: For all k = 0, . . . , p and all j = 0, . . . , p− 1, there
holds:

|〈uk,j ,uk′,j′〉| =











1 if k = k′, j = j′,

0 if k = k′, j 6= j′,
1√
p if k 6= k′.

(ii) Time-frequency “autocorrelation”:
(a) For any fixed (f, l) 6= (0, 0) there exists a unique k0 such that

|〈MfTluk0,j ,uk0,j〉| = 1 for j = 0, . . . , p − 1, (13)

|〈MfTluk,j ,uk,j〉| = 0 for k 6= k0. (14)

(b) For any fixed 0 ≤ k ≤ p − 1, there exist (fr, lr), r = 1, . . . , p such that

|〈Mfr
Tlruk,j ,uk,j〉| = 1 for j = 0, . . . , p − 1, (15)

(iii) Time-frequency crosscorrelation: For all k 6= k′ and all f and l there holds:

|〈MfTluk,j ,uk′,j〉| ≤
1√
p

for j = 0, . . . , p − 1. (16)

(iv) Polyphase property (Roots of unity property) in time and in frequency:
For any k = 0, . . . , p − 1; j = 0, . . . , p − 1, there holds:

uk,j(l) = e2πir/p for some r ∈ {0, . . . , p − 1}. (17)

For any k = 1, . . . , p; j = 0, . . . , p − 1, there holds:

ûk,j(l) = e2πir/p for some r ∈ {0, . . . , p − 1}. (18)

Proof. Property (i) is proved for instance in Lemma 11.3 in [4]. Properties (ii)
and (iii) appear in Theorem 3 of [20]. Statement (17) of property (iv) follows
from the comment right after Corollary 11.6 in [4]. Finally, statement (18) of
property (iv) follows from (12) together with property (3) and the well-known
fundamental relationships

FpTxF
∗
p = M−x, FpMxF

∗
p = Tx.

�

7The attentive reader will have noticed that U(0) is just the p × p DFT matrix Fp.
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Kerdock codes have been proposed for adaptive radar in [20]. We emphasize
again though that Kerdock codes would not be very effective for a radar system
with a single transmit antenna (SISO or SIMO radar). This can be easily seen as
follows: Assume we only have one antenna that transmits one waveform s. Because
of (15), s is (up to a constant phase factor) equal to MfTls for some (f, l). In
practice this ambiguity prevents us from determining the distance and the velocity
of the object, when using Kerdock codes for SISO or SIMO.

As a consequence of the aforementioned ambiguity we will not use all of the
Kerdock codes as transmission signals for our MIMO radar, instead we will choose
one code for each index k. The reason is that we need the waveforms to have low
time-frequency crosscorrelation, while (16) only holds when k and k′ are different.

Definition 3.2 (Kerdock waveforms). Let {uk,j , k = 0, . . . , p, j = 0, . . . , p − 1}
be a Kerdock code over Zp. The Kerdock waveforms k0, . . . ,kr, where r < p, are
given by kk = uk,j for some arbitrary j. In other words, for each k = 0, . . . , r − 1

we pick an arbitrary vector from the orthonormal basis {uk,j}p−1
j=0 .

Note that Kerdock waveforms do not include any unit vectors, since only the
first r unitary matrices U(0), . . . ,U(r−1) are considered and r is strictly less than p
(recall that U(p) = Ip).

4. The main result

As mentioned in the introduction, a standard approach to solve (11) when x is
sparse, is

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1, (19)

which is also known as lasso [36]. But instead of (19), we will use the debiased

lasso. That means first we compute an approximation Ĩ for the support of x by
solving (19). This is the detection step. Then, in the estimation step, we “debias”
the solution by computing the amplitudes of x via solving the reduced-size least
squares problem min ‖AĨxĨ − y‖2, where AĨ is the submatrix of A consisting of

the columns corresponding to the index set Ĩ, and similarly for xĨ .
We assume that the locations of the targets are random. To be precise, we

assume that the S nonzero coefficients of x are selected uniformly at random and
the phases of the non-zero entries of x are random and uniformly distributed in
[0, 2π). We will refer to this model as the generic S-sparse model.

We are now ready to state our main result.

Theorem 4.1. Consider y = Ax + w, where A is defined as in (10) and wj ∈
CN(0, σ2). Assume that the positions of the transmit and receive antennas pj’s and

qj’s are chosen i.i.d. uniformly on [0, NRNT

2 ] at random. Suppose further that each
transmit antenna sends a different Kerdock waveform, i.e. the columns of the signal
matrix S are different Kerdock waveforms. Choose the discretization stepsizes to be
∆β = 2

NRNT
,∆τ = 1

2B , ∆f = 1
T and suppose that

max
(

NRNT , 32N3
T log NτNfNβ

)

≤ Ns = Nτ , (20)

and also

log2 NτNfNβ ≤ NT ≤ NR. (21)
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If x is drawn from the generic S-sparse scatterer model with

S ≤ c0Nτ

log NτNfNβ
(22)

for some constant c0 > 0, and if

min
k∈I

|xk| >
8
√

3σ√
NRNT

√

2 log NτNfNβ , (23)

then the solution x̃ of the debiased lasso computed with λ = 2σ
√

2 log NτNfNβ

satisfies

supp(x̃) = supp(x), (24)

with probability at least

1 − p1, (25)

and

‖x̃ − x‖2

‖x‖2
≤ 5σ

√
3NRNs

‖y‖2
(26)

with probability at least

(1 − p1)(1 − p2), (27)

where

p1 = 16N−2
τ N−1

R + 8N−2
τ N−2

f + 4NT N−2
τ N−2

f + 4(NτNf )−1

+4N−3
τ N−3

f N−2
R N−1

T + 8N−2
T (NτNfNR)−3,

and

p2 = 2(NτNfNβ)−1(2π log(NτNfNβ) + K(NτNfNβ)−1) + O((NτNfNβ)−2 log 2).

Remarks:

(1) The condition NT ≤ NR in (21) is by no means necessary, but rather to
make our computation a little cleaner. We could change it into NT ≤ 2NR,
then the theorem would remain true with a slightly different probability of
success.

(2) It may seem that the conditions in (20) and (21) are a bit restrictive. But,
in practice, our method works with a broad range of parameters as the
simulations show in Section 7.

5. Proof of the result

To prove Theorem 4.1, we use a theorem by Candès and Plan (Theorem 1.3
in [5]) which requires to estimate the operator norm of A and the coherence of
A. The original theorem only treats the real-valued case, it can be extended to
complex-values case after some straightforward modifications (see Appendix B in
[33]).
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5.1. Auxiliary results. We first need the following Bernstein type lemma.

Lemma 5.1. Suppose M is an m × m matrix, α and β are two joint independent
random vectors in C

m with zero means and |αk| = |βk| = 1 for k = 1, . . . ,m. If n
is a positive constant, then for any t > 0 and s > 0,

(1) if |mkj | ≤ 1√
n

for all k, j, then

P

(

|〈Mα,β〉| ≤ mt
)

≥ 1 − 4m exp
(

− t2

4m
n

)

. (28)

and

P

(

|〈Mα,α〉| ≤ 2mt
)

≥ 1 − 8m exp
(

− t2

2m
n

)

, (29)

(2) if |mkj | ≤ 1√
n

for k 6= j and mjj = 1, then

P

(

|〈Mα,β〉| ≤ s + mt
)

≥ 1 − 4 exp
(

− s2

4m

)

− 4m exp
(

− t2

4m
n

)

, (30)

and

P

(

m(1 − 2t) ≤ |〈Mα,α〉| ≤ m(1 + 2t)
)

≥ 1 − 8m exp
(

− t2

2m
n

)

. (31)

Proof.

〈Mα,β〉 =

m
∑

k,j=1

mkjαj β̄k

=

m
∑

l=1

m
∑

j=1

mj⊕l,jαj β̄j⊕l,

where ⊕ denotes addition modulo m.
Let us first assume that |mkj | ≤ 1√

n
.

Since α and β are joint independent, then for any l, the entries in
∑m

j=1 mj⊕l,jαj β̄j⊕l

are all joint independent and it is easy to check that E(mj⊕l,jαj β̄j⊕l) = 0 and
|mj⊕l,jαj β̄j⊕l| = |mj⊕l,j |, then Theorem 4.5 in [21] will give,

P

(

|
m

∑

j=1

mj⊕l,jαj β̄j⊕l| ≤ t
)

≥ 1 − 4 exp
(

− t2

4
∑

j |mj⊕l,j |2
)

≥ 1 − 4 exp
(

− t2

4m
n

)

. (32)

We take all m different choices of l, then

P

(

|
m

∑

l=1

m
∑

j=1

mi⊕l,jαj β̄j⊕l| ≤ mt
)

≥ 1 − 4m exp
(

− t2

4m
n

)

, (33)

which proves (28).

〈Mα,α〉 =
m

∑

l=1

m
∑

j=1

mj⊕l,jαjᾱj⊕l,
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different from above, the entries in
∑m

j=1 mj⊕l,jαjᾱj⊕l are no longer all jointly

independent. But similar to the proof of Theorem 5.1 in [30] and Lemma 3 in
[33], we observe that for any l we can split the index set 1, . . . ,m into two subsets
T 1

l , T 2
l ⊂ {1, . . . ,m}, each of size m/2, such that the m/2 variables αjᾱj⊕l are

jointly independent for j ∈ T 1
l , and analogous for T 2

l . (For convenience we assume
here that m is even, but with a negligible modification the argument also applies for
odd m.) In other words, each of the sums

∑

j∈T r
l

mj⊕l,jαjᾱj⊕l, r = 1, 2, contains

only jointly independent terms.
So for each l,

P

(

|
∑

j∈T r
l

mj⊕l,jαjᾱj⊕l| ≤ t
)

≥ 1 − 4 exp
(

− t2

2m
n

)

, (34)

which implies that

P

(

|
∑

j

mj⊕l,jαjᾱj⊕l| ≤ 2t
)

≥ 1 − 8 exp
(

− t2

2m
n

)

, (35)

Again, we take all m different choices of l, then

P

(

|
m

∑

l=1

m
∑

j=1

mj⊕l,jαjᾱj⊕l| ≤ 2mt
)

≥ 1 − 8m exp
(

− t2

2m
n

)

, (36)

which proves (29).
Now let us assume that |mkj | ≤ 1√

n
for k 6= j and mjj = 1.

〈Mα,β〉 =

m
∑

j=1

mjjαj β̄j +

m−1
∑

l=1

m
∑

j=1

mj⊕l,jαj β̄j⊕l

=

m
∑

j=1

αj β̄j +

m−1
∑

l=1

m
∑

j=1

mj⊕l,jαj β̄j⊕l.

Since α and β are joint independent and |αj β̄j | = 1,

P

(

|
m

∑

j=1

αj β̄j | ≤ s
)

≥ 1 − 4 exp
(

− s2

4m

)

. (37)

Similar to the proof of (33) above, we have that

P

(

|
m−1
∑

l=1

m
∑

j=1

mj⊕l,jαj β̄j⊕l| ≤ (m − 1)t
)

≥ 1 − 4(m − 1) exp
(

− t2

4m
n

)

, (38)

together with (37), it follows

P

(

|〈Mα,β〉| ≤ s + (m − 1)t
)

≥ 1 − 4 exp
(

− s2

4m

)

− 4(m − 1) exp
(

− t2

4m
n

)

,

(39)

which proves (30).

〈Mα,α〉 =
m

∑

j=1

mjj +
m−1
∑

l=1

m
∑

j=1

mj⊕l,jαjᾱj⊕l = m +
m−1
∑

l=1

m
∑

j=1

mj⊕l,jαjᾱj⊕l,
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then (31) results from similar proof as for (29) and the triangle inequality. �

5.2. Estimation of the Operator Norm.

Lemma 5.2. Let A be the matrix in Theorem 4.1 satisfying (20). Then

P

(

‖A‖2
op

≤ 2NfN2
RN2

T

)

≥ 1 − 8N−2
τ N−1

R . (40)

Proof. Since ‖A‖2
op = ‖AA∗‖op, we consider matrix B = AA∗ as block matrix







B1,1 B1,2 . . . B1,NR

...
. . .

...
BNR,1 . . . BNR,NR






,

where the blocks {Bj,j′}NR

j,j′=1 are matrices of size Nt × Nt.

Via a simple permutation, we can turn B into a matrix C with blocks {Cl,l′}Ns

l,l′=1

of size NR × NR, where the (j, j′)-th entry of the block Cl,l′ is defined as

C[l,j;l′j′] = B[j,l;j′,l′] = (AA∗)[j,l;j′,l′] =
∑

β

∑

τ

∑

f

A[j,l;τ,f,β]A[j′,l′;τ,f,β]

=
∑

β

e2πi(qj−qj′ )β
NT
∑

k=1

NT
∑

k′=1

e2πi(pk−pk′ )β〈Tlkk,Tl′kk′〉
Nf
∑

m=1

e2πi(l−l′)∆tm∆f

= Nfδl,l′

∑

β

e2πi(qj−qj′ )β
NT
∑

k=1

NT
∑

k′=1

e2πi(pk−pk′ )β〈Tlkk,Tl′kk′〉. (41)

Then it is easy to see that C is block-diagonal, and all the diagonal-blocks are
identical. So we only have to bound the first block C1,1.

C[1,j;1,j′] = Nf

∑

β

e2πi(qj−qj′ )β
NT
∑

k=1

NT
∑

k′=1

e2πi(pk−pk′ )β〈kk,kk′〉

= Nf

NRNT −1
∑

n=0

e
2πi(qj−qj′ )

n
NRNT

NT
∑

k=1

NT
∑

k′=1

e
2πi(pk−pk′ ) n

NRNT 〈kk,kk′〉.

(42)

Define cn =
∑NT

k=1

∑NT

k′=1 e
2πi(pk−p′

k) n
NRNT 〈kk,kk′〉, then

C1,1 = Nf

NRNT −1
∑

n=0

cnXn,

where Xn is the matrix-valued random variable given by (Xn)j,j′ = e
2πi(qj−qj′ )

n
NRNT

and therefore ‖Xn‖op = NR.

Note that E(e2πi(pk−pk′ )n) = 0 and |〈kk,kk′〉| ≤ 1√
Ns

for k 6= k′. Choosing

t = 2
√

NT

Ns

√
log NτNRNT in (31) of Lemma 5.1, we arrive at

P

(

|cn| ≤ NT (1 + 4

√

NT

Ns

√

log NτNRNT )
)

≥ 1 − 8NT (NτNRNT )−2,
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then the assumption in (20) implies that 16NT log NτNRNT ≤ Ns, therefore

P

(

|cn| ≤ 2NT

)

≥ 1 − 8NT (NτNRNT )−2.

We apply the union bound over the NRNT possibilities associated with n and
get

P

(

max |cn| ≤ 2NT

)

≥ 1 − 8N−2
τ N−1

R ,

which implies that

P

(

‖C1,1‖op ≤ 2NfN2
RN2

T

)

≥ 1 − 8N−2
τ N−1

R .

Then the fact that ‖B‖op = ‖C‖op = ‖C1,1‖op will give us the conclusion.
�

5.3. Estimation of the Coherence.

Lemma 5.3. Let A be the matrix in Theorem 4.1 satisfying (20) and (21). Then

max
(τ,f,β) 6=(τ ′,f ′,β′)

∣

∣〈Aτ,f,β ,Aτ ′,f ′,β′〉
∣

∣ ≤ 16NR log NτNfNRNT (43)

with probability at least

1−8N−2
τ N−2

f −4NT N−2
τ N−2

f −4(NτNf )−1−4N−3
τ N−3

f N−2
R N−1

T −8N−2
T (NτNfNR)−3.

Proof. We need to find an upper bound for

max |〈Aτ,f,β ,Aτ ′,f ′,β′〉| for (τ, f, β) 6= (τ ′, f ′, β′).

Recall the Sτ,f = MfTτS, it follows from the definition that

Aτ,f,β = aR(β) ⊗ (Sτ,faT (β)),

from which we readily compute

|〈Aτ,f,β ,Aτ ′,f ′,β′〉| = |〈aR(β),aR(β′)〉||〈Sτ,faT (β),Sτ ′,f ′aT (β′)〉|.

We use the discretization β = n∆β , β′ = n′∆β , where ∆β = 2
NRNT

, n, n′ =
1, . . . , Nβ , with Nβ = NRNT .

Since

|〈Sτ,faT (β),Sτ ′,f ′aT (β′)〉| = |〈Sτ−τ ′,f−f ′aT (β),SaT (β′)〉|
for τ, τ ′ = 0, . . . , Nτ − 1, f, f ′ = 0, . . . , Nf − 1. We can confine the range of values
for τ, τ ′ to τ ′ = 0, τ = 0, . . . , Nτ − 1 and f, f ′ to f ′ = 0, f = 0, . . . , Nf − 1, then we
only need to estimate |〈Sτ,faT (β),SaT (β′)〉|. We now consider three cases.
Case (i) β 6= β′, τ = 0, f = 0:

By Theorem 4.5 in [21], for any t1 > 0

P

(

|〈aR(β),aR(β′)〉| ≥ t1

)

≤ 4 exp
(

− t21
4NR

)

,

choosing t1 = 2
√

2
√

NR

√

log NτNfNRNT will give us that

P

(

|〈aR(β),aR(β′)〉| ≤ 2
√

2
√

NR

√

log NτNfNRNT

)

≥ 1 − 4(NτNfNRNT )−2.

(44)
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Define M = S∗S then |mkj | = |〈kk,kj〉| ≤ 1√
Ns

for k 6= j and mjj = 1. We

choose s = 2
√

2
√

NT

√

log NτNfNRNT and t = 2
√

2
√

NT

Ns

√

log NτNfNRNT in

(30) of Lemma 5.1 and get

P

(

|〈S∗SaT (β),aT (β′)〉| ≤ (2
√

2
√

NT + 2
√

2NT

√

NT

Ns
)
√

log NτNfNRNT

)

≥ 1 − 4(NτNfNRNT )−2 − 4NT (NτNfNRNT )−2,

combined with (44),

P

(

|〈Aτ,f,β ,Aτ,f ′,β′〉| ≤ 8(
√

NRNT + NT

√

NRNT

Ns
) log NτNfNRNT

)

≥ 1 − 8(NτNfNRNT )−2 − 4NT (NτNfNRNT )−2.

After taking the union bound over (NRNT )2 different possibilities associated
with β, β′, we will have that

P

(

max |〈Aτ,f,β ,Aτ,f ′,β′〉| ≤ 8(
√

NRNT + NT

√

NRNT

Ns
) log NτNfNRNT

)

≥ 1 − 8N−2
τ N−2

f − 4NT N−2
τ N−2

f .

A little algebra, using (20) and (21), shows that

8(
√

NRNT + NT

√

NRNT

Ns
) ≤ 16NR,

therefore

P

(

max |〈Aτ,f,β ,Aτ,f,β′〉| ≤ 16NR log NτNfNRNT

)

≥ 1 − 8N−2
τ N−2

f − 4NT N−2
τ N−2

f . (45)

Case (ii) β 6= β′, (τ, f) 6= (0, 0):

For the same reason, here holds (44).
Define C = S∗

τ,fS, from the properties of kj , we have that

|ckj | = |〈MfTτkk,kj〉| ≤
1√
Ns

for k 6= j

and there exists j0 such that |cj0j0 | = 1 and cjj = 0 for j 6= j0. Then

|〈S∗
τ,fSaT (β),aT (β′)〉| ≤ 1 + |〈C ′aT (β),aT (β′)〉|

where C ′ is a zero-diagonal matrix which coincides C at off-diagonal entries. Cer-

tainly C ′ satisfies the condition for (28) to hold. Choosing t = 4
√

NT√
Ns

√

log NτNfNRNT

in (28) of Lemma 5.1 yields

P

(

|〈S∗
τ,fSaT (β),aT (β′)〉| ≤ 1 + 4

NT

√
NT√

Ns

√

log NτNfNRNT |
)

≥ 1 − 4NT (NτNfNRNT )−4, (46)
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from the assumption that 32N3
T log NτNfNRNT ≤ Ns, together with (44), we will

get

P

(

|〈Aτ,f,β ,Aτ ′,f ′,β′〉| ≤ 4
√

2
√

NR

√

log NτNfNRNT

)

≥ 1 − 4(NτNfNRNT )−2 − 4NT (NτNfNRNT )−4.

By (21), we deduce log NτNfNRNT ≤ NR. Therefore

P

(

|〈Aτ,f,β ,Aτ ′,f ′,β′〉| ≤ 4
√

2NR

)

≥ 1 − 4(NτNfNRNT )−2 − 4NT (NτNfNRNT )−4.

We apply the union bound over NτNfN2
RN2

T possibilities and arrive at

P

(

max |〈Aτ,f,β ,Aτ ′,f ′,β′〉| ≤ 4
√

2NR

)

≥ 1 − 4(NτNf )−1 − 4N−3
τ N−3

f N−2
R N−1

T .

(47)

Case (iii) β = β′, (τ, f) 6= (0, 0):
Note that the matrix C = S∗

τ,fS has exactly the same properties as in Case (ii)

above. Following the same argument as we show (46) and applying (29) of Lemma
5.1 combined with the assumption as in (20) gives us that

P

(

|〈S∗
τ,fSaT (β),aT (β)〉| ≤ 1 + 4

√
2
NT

√
NT√

Ns

√

log NτNfNRNT

)

≥ 1 − 8NT (NτNfNRNT )−4,

which implies that

P

(

|〈Aτ,f,β ,Aτ ′,f ′,β′〉| ≤ 2NR

)

≥ 1 − 8N−3
T (NτNfNR)−4,

We apply the union bound over the NτNfNRNT possibilities associated with τ ,
f and β

P

(

max |〈Aτ,f,β ,Aτ ′,f ′,β〉| ≤ 2NR

)

≥ 1 − 8N−2
T (NτNfNR)−3. (48)

(45), (47) and (48) will give the conclusion.
�

5.4. Regarding the matrix with unit-norm columns. In order to apply The-
orem 1.3 in [5], we need to normalize the columns of A. We first have the following
result which shows the lower and upper bounds of the norm of columns of A.

Lemma 5.4. Let A be defined as in Theorem 4.1 satisfying (20), then

P

(1

3
NRNT ≤ min ‖Aτ,f,β‖2

2 ≤ max ‖Aτ,f,β‖2
2 ≤ 5

3
NRNT

)

≥ 1 − 8N−2
τ N−1

R . (49)

Proof. Recall that

‖Aτ,f,β‖2
2 = ‖aR(β)‖2

2‖Sτ,faT (β)‖2
2 = NR〈S∗

τ,fSτ,faT (β),aT (β)〉
= NR〈S∗SaT (β),aT (β)〉.
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Setting t = 2
√

NT

Ns

√
log NτNRNT in (31) of Lemma 5.1 yields

P

(

NT (1 − 4

√

NT

Ns

√

log NτNRNT ) ≤ |〈S∗SaT (β),aT (β)〉| ≤

NT (1 + 4

√

NT

Ns

√

log NτNRNT )
)

≥ 1 − 8NT (NτNRNT )−2.

An easy calculation from (20) leads

4

√

NT

Ns

√

log NτNRNT ≤ 2

3
,

which indeed implies

P

(1

3
NT ≤ |〈S∗SaT (β),aT (β)〉| ≤ 5

3
NT

)

≥ 1 − 8NT (NτNRNT )−2. (50)

Since the above probability does not depend on τ or f , we take all NRNT possibil-
ities of β and conclude the proof of the lemma. �

Corollary 5.5. Suppose Ã = AD−1 where D is the NτNfNβ ×NτNfNβ diagonal

matrix defined by D(τ,f,β),(τ,f,β) = ‖Aτ,f,β‖2, or in other words Ã is the matrix
with unit-norm columns from A. Then

P

(

‖Ã‖2
op

≤ 6NfNRNT

)

≥ 1 − 16N−2
τ N−1

R , (51)

and

P

(

µ
(

Ã
)

≤ 48
log NτNfNRNT

NT

)

≥ 1 − p3, (52)

where

p3 = 8N−2
τ N−1

R + 8N−2
τ N−2

f + 4NT N−2
τ N−2

f + 4(NτNf )−1

+4N−3
τ N−3

f N−2
R N−1

T + 8N−2
T (NτNfNR)−3.

Proof. This corollary is a direct consequence of Lemma 5.2, Lemma 5.3 and Lemma
5.4. �

5.5. Assembling the proof of Theorem 4.1.

Proof. (of Theorem 4.1) Recall that we are trying to use Theorem 1.3 in [5] to
prove Theorem 4.1. We thus need to verify that all assumptions of that theorem
are satisfied.

We first point out that the assumptions of Theorem 4.1 imply that the conditions
of Lemma 5.2 and Lemma 5.3 are fulfilled.

Note that solution x̃ of (19) and the solution z̃ of the following lasso problem

min
z

1

2
‖AD−1z − y‖2

2 + λ‖z‖1, with λ = 2σ
√

2 log(NτNRNT ), (53)

are related by x̃ = D−1z̃.
We will first establish the claims in Theorem 4.1 for the system Ãz = y where

Ã = AD−1, z = Dx.
First, the assumption (23) and the fact that z = Dx imply that

|zk| ≥
8
√

3 min ‖Aτ,f,β‖2√
NRNT

σ
√

2 log(NτNfNβ) ≥ 8σ
√

2 log(NτNfNβ), for k ∈ S,

(54)



18 THOMAS STROHMER AND HAICHAO WANG

with probability at least 1− 8N−2
τ N−1

R ,thus establishing the first condition of The-
orem 1.3 in [5].

Using the assumptions in Theorem 4.1, and the coherence bound (52) we com-
pute

µ(Ã) ≤ 48
log NτNfNRNT

NT
≤ 48

log NτNfNβ
, (55)

which holds with probability as in (52), and thus the coherence property (1.5) in [5]
is fulfilled.

Furthermore, using (51) we see that condition (22) implies

S ≤ c0Nτ

log(NτNfNβ)
≤ 6c0NτNfNβ

‖Ã‖2
op log(NτNfNβ)

(56)

with probability at least 1 − 16N−2
τ N−1

R . Thus the sparsity assumption of Theo-
rem 1.3 in [5] is also fulfilled and we obtain that

supp(z̃) = supp(z), (57)

with probability at least 1−p1. We note that the relation supp(x̃) = supp(x) holds
with the same probabiltity as the relation supp(z̃) = supp(z), since supp(z) =
supp(x) and multiplication by an invertible diagonal matrix does not change the
support of a vector. This establishes (24) with the corresponding probability.

Once we have recovered the support of x, call it I, we can solve for the coefficients
of x by solving the standard least squares problem min ‖AIxI − y‖2, where AI is
tbe submatrix of A whose columns correspond to the support set I, and similarly
for xI . Note that the proof of Theorem 3.2 in [5] yields as side result that with high
probability the eigenvalues of any submatrix A∗

IAI with |I| ≤ S are contained in

the interval [1/2, 3/2], which of course implies that κ(AI) ≤
√

3. By substituting
this bound into the standard error bound, (5.8.11) in [19], we have that

‖z̃ − z‖2

‖z‖2
≤ σ

√
3NRNs

‖y‖2
(58)

which holds with probability at least

(

1 − p1)(1 − p2

)

. (59)

Using the fact that z̃ = Dx̃, we compute

1

κ(D)

‖x̃ − x‖2

‖x‖2
≤ ‖D(x̃ − x)‖2

‖Dx‖2
=

‖z̃ − z‖2

‖z‖2
,

or, equivalently,

‖x̃ − x‖2

‖x‖2
≤ κ(D)

‖z̃ − z‖2

‖z‖2
. (60)

The bound (26) follows now from combining (58), (60) with the fact that κ(D) ≤ 5
(from Lemma 5.4) .

�
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6. Extension of the main result: Beyond Kerdock codes

In this section, we present a modified version of Theorem 4.1 that applies to
waveforms that satisfy slightly more restrictive incoherence conditions. As such,
Theorem 6.1 below does not hold for Kerdock waveforms, but the advantage com-
pared to Theorem 4.1 is that the result also applies to radar systems with only one
transmit antenna.

Theorem 6.1. Consider y = Ax + w, where A is defined as in (10) and wj ∈
CN(0, σ2). Suppose the transmission waveforms sj’s satisfy the following conditions

|〈sj ,MfTτ 〉sj | ≤
γ√
p

for (f, τ) 6= (0, 0), (61)

|〈sk,MfTτ 〉sj | ≤
γ√
p

for k 6= j, (62)

where γ > 0 is a fixed constant. Assume that the positions of the transmit and
receive antennas pj’s and qj’s are chosen i.i.d. uniformly on [0, NRNT

2 ] at random.

Choose the discretization stepsizes to be ∆β = 2
NRNT

,∆τ = 1
2B , ∆f = 1

T and
suppose that

max
(

γ2NRNT , 16γ2NT log3 NτNfNβ

)

≤ Ns = Nτ , (63)

and also

γ2NT log4 NτNfNβ ≤ NsNR, log2 NτNfNβ ≤ NT ≤ NR. (64)

Then if the rest of the conditions of Theorem 4.1 hold, we have the same conclusion
as in Theorem 4.1.

Proof. The proof of this theorem is similar to the one of Theorem 4.1. The main
difference will arise when estimating the coherence of the matrix A. (45) will remain
the same except with an extra γ factor. From the conditions of the waveforms above,
(47) becomes

P

(

max |〈Aτ,f,β ,Aτ ′,f ′,β′〉| ≤ 8
√

2
γNT

√
NT NR√
Ns

log NτNfNRNT

)

≥ 1 − 4(NτNf )−1 − 4N−3
τ N−3

f N−2
R N−1

T ,

and we have to change (48) in the same manner.
Then from the new conditions (63) and (64), we will have a similar estimate for

the coherence of the normalized matrix Ã as in (55). �

There are several examples of signal sets that satisfy the above conditions. Per-
haps the most intriguing example is the finite harmonic oscillator system (FHOS)
constructed in [14]. This signal set in C

p (where p is a prime number) of cardinality
O(p3) satisfies (61) and (62) with γ = 4. An elementary construction of the FHOS
for prime number p ≥ 5 can be found in [37]. We illustrate the performance of the
FHOS and its comparison to Kerodck codes in numerical simulations in the next
section.
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7. Numerical simulations

In this section we will demonstrate the performance of our algorithms via numer-
ical simulations. We use the Matlab Toolbox TFOCS ([2]) and choose in TFOCS
Auslender and Teboulle’s single-projection method to solve (19). The main com-
putational costs per iteration of this method are the operations Ax and A∗y. One
can of course make A explicit and do the regular matrix multiplication, but due
to the special structure of A, we make the following observation to accelerate the
computation.

Recall that
Aτ,f,β = aR(β) ⊗ (Sτ,faT (β)).

First suppose we have x given and we want to compute y = Ax. Here y is
an NRNs × 1 vector and x is an NτNfNβ × 1 vector. Instead of doing the direct
matrix-vector multiplication, we divide y into NR blocks yj , each of which is of size
Ns × 1. Then

yj =
∑

τ,β,f

aR(β)jSτ,faT (β)x(τ, β, f)

=
∑

β

aR(β)j

∑

τ,f

Sτ,faT (β)x(τ, β, f).

Since for any fixed β and f , we can consider xβ,f (τ) = x(τ, β, f) as an Nτ ×1 vector.
Then, recalling that Sτ,faT (β) = MfTτ (SaT (β)), an easy observation yields

yj =
∑

β

aR(β)j

∑

f

Mf

(

∑

τ

TτSaT (β)x(τ, β, f)
)

=
∑

β

aR(β)j

∑

f

Mf

(

SaT (β) ∗ xβ,f

)

,

where the convolution can be implemented via FFT.
Now we suppose that y is given and we want to compute x = A∗y. Note that in

this case we have that the row vector of A∗ is of the form

A∗
τ,f,β = aR(β)

∗ ⊗ (Sτ,faT (β))∗.

We divide x into NβNf blocks xβ,f , each of which is of size Nτ . We also divide
y into NR blocks yj , each of which is of size Ns.

xβ,f =

NR
∑

j=1

aR(β)jCβ,fyj ,

where Cβ,f is the matrix whose rows are (Sτ,faT (β))∗ = (MfSτaT (β))∗, an easy
calculation leads us to

xβ,f =

NR
∑

j=1

aR(β)jBβ(Mfyi),

where Bβ is the matrix whose rows are (SτaT (β))∗. So Bβ is a circulant matrix

and its first column cβ is that cβ(1) = SaT (β)(1) and cβ(k) = SaT (β)(Ns − k) for
k = 2, . . . , Ns. Then we have Bβ(Mfyj) = cβ ⊗ Mfyj , which implies

xβ,f =

NR
∑

j=1

aR(β)j(cβ ⊗ Mfyj).
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In each experiment, the locations of the transmit and receive antennas are chosen
i.i.d. randomly on [0, NRNT

2 ] and S scatterers are placed randomly on the range-
azimuth-Doppler grid, i.e the vector x has S entries at random locations along
the vector. White Gaussian noise is added to the composite data vector Ax with
variance σ2 determined to produce the specified output signal-to-noise ratio. The
lasso solution x̂ is calculated with λ as specified in Theorem 4.1. The experiment
is repeated 50 times. Each experiment uses independent noise realization.

The probabilities of detection Pd and false alarm Pfa are computed as follows.
The values of the estimated vector x̂ corresponding to the true scatterer locations
are compared to a threshold. Detection is declared whenever a value exceeds the
threshold. The probability of detection is defined as the number of detections
divided by the total number of scatterers S. Next the values of the estimated
vector x̂ corresponding to locations not containing scatterers are compared to the
same threshold. A false alarm is declared whenever one of these values exceeds the
threshold. The probability of false alarm is defined as the number of false alarms
divided by n − S, where n is the signal dimension. The probabilities of detection
and false alarm are averaged over the 50 repetitions of the experiment.

The probabilities are computed for a range of values of the threshold to produce
the so-called Receiver Operating Characteristics (ROC) [14, 28, 25] - the graph of
Pd vs. Pfa. As the threshold decreases, the probability of detection increases and
so does the probability of false alarm. In practice the threshold is usually adjusted
to achieve a specified probability of false alarm. We note that the probability
of detection increases as the SNR increases and decreases as S, the number of
scatterers increases.
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Figure 2. MIMO, Kerdock, SNR=15

We carry out two sets of simulations with different parameters to show the
performance of the algorithms.

(1) The first set of simulations is done using Kerdock codes as transmission
waveforms. The following parameters are used: NT = 6, NR = 6, Ns =
37, Nf = 37 (hence we are using Kerdock waveforms of length 37); Smax =
20 and the actual number of targets is S = Smax/2, Smax, 2Smax, while
the SNR is chosen to be 15dB, 20dB and 25dB in Figure 2, Figure 3 and
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Figure 3. MIMO, Kerdock codes, SNR=20

Figure 4 respectively. This set of simulations is aimed to demonstrate the
efficiency of Kerdock codes for MIMO radar at different SNR levels.

(2) The second set of simulations is to compare the Kerdock codes and the finite
harmonic oscillator system for both SIMO and MIMO. We fix the following
parameters in this set of simulations: Smax = 10 and S = Smax/2, Smax, 2Smax,
while the SNR is fixed to be 15dB. We choose NT = 1, NR = 8, Ns =
11, Nf = 11 for SIMO and NT = 2, NR = 8, Ns = 17, Nf = 17 for
MIMO. As we mentioned before, Figure 5 shows that Kerdock codes are
not very good choice in SIMO. But Kerdock codes are already very efficient
when NT = 2 as shown in Figure 6, which also shows that the condition
log2 NτNfNβ ≤ NT in (21) is a restrictive theoretical condition and we can
do much better in practice.
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Figure 4. MIMO, Kerdock codes, SNR=25
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