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Abstract

The stochastic block model is a canonical random graph model for clustering and commu-
nity detection on network-structured data. Decades of extensive study on the problem have
established many profound results, among which the phase transition at the Kesten-Stigum
threshold is particularly interesting both from a mathematical and an applied standpoint.
It states that no estimator based on the network topology can perform substantially better
than chance on sparse graphs if the model parameter is below certain threshold. Never-
theless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a
fundamental limitation will disappear completely. We prove that with arbitrary fraction
of the labels revealed, the detection problem is feasible throughout the parameter domain.
Moreover, we introduce two efficient algorithms, one combinatorial and one based on op-
timization, to integrate label information with graph structures. Our work brings a new
perspective to stochastic model of networks and semidefinite program research.

Keywords: clustering, semi-supervised learning, stochastic block model, Kesten-Stigum
threshold, semidefinite programming

1. Introduction

Clustering has long been an essential subject of many research fields, such as machine learn-
ing, pattern recognition, data science, and artificial intelligence. In this section, we include
some background information of its general setting and the semi-supervised approach.

1.1 Clustering on Graphs

The basic task of clustering or community detection in its general form is, given a (pos-
sibly weighted) graph, to partition its vertices into several densely connected groups with
relatively weak external connectivity. This property is sometimes also called assortativity.
Clustering and community detection are central problems in machine learning and data
science with various applications in scientific research and industrial development. A con-
siderable amount of data sets can be represented in the form of a network that consists of
interacting nodes, and one of the first features of interest in such a situation is to understand
which nodes are “similar”, as an end or as preliminary step towards other learning tasks.
Clustering is used to find genetically similar sub-populations Padhukasahasram (2014), to
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segment images Shi and Malik (2000), to study sociological behavior Newman et al. (2002),
to improve recommendation systems Linden et al. (2003), to help with natural language
processing Gopalan and Blei (2013), etc. Since the 1970s, in different communities like
social science, statistical physics and machine learning, a large diversity of algorithms have
been developed such as:

• Hierarchical clustering algorithms Johnson (1967) build a hierarchy of progressive
communities, by either recursive aggregation or division.

• Model-based statistical methods, including the celebrated EM clustering algorithm
proposed in Dempster et al. (1977), fit the data with cluster-exhibiting statistical
models.

• Optimization approaches identify the best cluster structures in regard to carefully
designed cost functions, for instance, minimizing the cut Hartuv and Shamir (2000)
and maximizing the Girvan-Newman modularity Newman and Girvan (2004).

Multiple lines of research intersect at a simple random graph model, which appears
under many different names. In the machine learning and statistics literature around social
networks, it is called the stochastic block model (SBM) Holland et al. (1983), while it is
known as the planted partition model Bui et al. (1984) in theoretical computer science and
referred to as inhomogeneous random graph model Bollobás et al. (2007) in the mathematics
literature. Moreover, it can also be interpreted as a spin-glass model Decelle et al. (2011), a
sparse-graph code Abbe and Sandon (2015) or a low-rank random matrix model McSherry
(2001) and more.

The essence of SBM can be summarized as follows: Conditioned on the vertex labels,
edges are generated independently and the probability only depends on which clusters the
pairs of vertices belong to. We consider its simplest form, namely the symmetric SBM
consisting of two blocks, also known as the planted bisection model.

Definition 1 (Planted bisection model) For n ∈ N and p, q ∈ (0, 1), let G(n, p, q) de-
note the distribution over graphs with n vertices defined as follows. The vertex set is parti-
tioned uniformly at random into two subsets S1, S2 with |Si| = n/2. Let E denote the edge
set. Conditional on this partition, edges are included independently with probability

P
(
(i, j) ∈ E|S1, S2

)
=

{
p if {i, j} ⊆ S1 or {i, j} ⊆ S2,

q if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.
(1)

Note that if p = q, the planted bisection model is reduced to the so-called Erdős–Rényi
random graph where all edges are generated independently with the same probability. Hence
there exists no cluster structure. But if p ≫ q, a typical graph will have two well-defined
clusters. The scale of p and q also plays a significant role in the resulting graph, which
will be discussed in detail later. They govern the amount of signal and noise in the graph
generating process. As the key parameters that researchers work with, various regimes and
thresholds are described by them.

The SBMs generate labels for vertices before the graph. The ground truth allows us
to formally discuss the presence of community structures and measure the performance of
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algorithms in a meaningful way. It also supplies a natural basis to rigorously define the
semi-supervised clustering problem. But as a parametrized statistical model, one can only
hope that it serves as a good fit for the real data. Although not necessarily a realistic
model, SBM provides us an insightful abstraction and captures some of the key phenomena
Mossel et al. (2015); Chen and Xu (2016); Banks et al. (2016); Abbe et al. (2016); Abbe
and Sandon (2018).

Given a single realization of the graph G, our goal is to recover the labels x, up to
certain level of accuracy. Formally, the ground truth of the underlying community structure
is encoded using the vector x ∈ {+1,−1}n, with xi = +1 if i ∈ S1, and xi = −1 if i ∈ S2.
An estimator is a map x̂ : Gn → {+1,−1}n where Gn is the space of graphs over n vertices.
We define the overlap between an estimator and the ground truth as

Overlap(x, x̂(G)) =
1

n
|⟨x, x̂(G)⟩|. (2)

Overlap induces a measure on the same probability space as the model, which represents
how well an (unsupervised) estimator performs on the recovery task. To intuitively interpret
the result, we put requirements on its asymptotic behavior, which takes place with high
probability as n → ∞.

Definition 2 Let G ∼ G(n, p, q). The following recovery requirements are solved if there
exists an algorithm that takes G as an input and outputs x̂ = x̂(G) such that

• Exact recovery: P{Overlap(x, x̂(G)) = 1} = 1− o(1)

• Weak recovery: P{Overlap(x, x̂(G)) ≥ Ω(1)} = 1− o(1)

In other words, exact recovery requires the entire partition to be correctly identified. Weak
recovery only asks for substantially better performance than chance. In some literature,
exact recovery is simply called recovery. Weak recovery is also called detection since as long
as one can weakly recover the ground truth, there must exist community structure.

Note that if G is an Erdős–Rényi random graph (p = q) then the overlap will be op(1) for
all estimators. This can be seen by noticing that x and G are independent in this setting and
then applying Markov’s inequality. This has led to two additional natural questions about
SBMs. On the one hand, we are interested in the distinguishability (or testing): is there
a hypothesis test to distinguish random graph generated by Erdős–Rényi model (ERM)
from random graph generated by SBMs that succeeds with high probability? One the
other hand, we can ask about the model learnability (or parameter estimation): assuming
that G is drawn from an SBM ensemble, is it possible to obtain a consistent estimator
for the parameters (p, q)? Although each of these questions is of independent interest, for
symmetric SBMs with two symmetric communities (planted bisection model) the following
holds Abbe (2018):

learnability ⇐⇒ weak recovery ⇐⇒ distinguishability (3)

The equivalence benefits the analysis of the model in turn. For example, direct analysis
about weak recovery leads to the converse of phase transition theory Mossel et al. (2015).
While the achievability of the phase transition threshold Massoulié (2014) is proved by
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counting non-backtracking walks on the graph which gives consistent estimators of param-
eters. In the recent work Montanari and Sen (2016), hypothesis testing formulation is
studied.

SBMs demonstrate the ’fundamental limits’ of clustering and community detection as
some necessary and sufficient conditions for feasibility of recovery, information-theoretically
or computationally. Moreover, they are usually expressed in the form of phase transition.
Sharp transitions exist in the parameter regimes between phases where the task is resolvable
or not. For example, when the average degree grows as log n, if the structure is sufficiently
obvious then the underlying communities can be exactly recovered Bickel and Chen (2009),
and the threshold at which this becomes possible has also been determined Abbe et al.
(2016). Above this threshold, efficient algorithms exist Agarwal et al. (2017); Abbe and
Sandon (2015); Perry and Wein (2017); Deng et al. (2021) that recover the communities
exactly, labeling every vertex correctly with high probability; below this threshold, exact re-
covery is information-theoretically impossible. Yun and Proutiere (2016); Gao et al. (2017)
studied a slightly weaker requirement that allows a vanishing proportion of misclassified
nodes and proposed algorithms that achieve the optimal rates for various models. In con-
trast, we study a rather different regime where the reasonable question to ask is whether
one can guarantee a misclassification proportion strictly less than 1

2 .

1.2 Sparse Regime and Kesten-Stigum Threshold

In the sparse case where the average degree of the graph is O(1), it is more difficult to find
the clusters and the best we can hope for is to label the vertices with nonzero correlation
or mutual information with the ground truth, i.e. weak recovery. Intuitively, we only have
access to a constant amount of connections about each vertex. The intrinsic difficulty can
be understood from the topological properties of the graphs in this regime. The following
basic results are derived from Erdos and Rényi (1984):

• For a, b > 0, the planted bisection model G(n, a lognn , b lognn ) is connected with high

probability if and only if a+b
2 > 1.

• G(n, a
n ,

b
n) has a giant component (i.e. a component of size linear in n) with high

probability if and only if d := a+b
2 > 1.

The graph will only have vanishing components if the average degree is too small. Therefore,
it is not possible to even weakly recover the labels. But we will see in the next section
that semi-supervised approaches amazingly piece the components together with consistent
labeling.

Although it is mathematically challenging to work in the sparse regime, real-world data
are likely to have bounded average degrees. Leskovec et al. (2008) and Strogatz (2001)
studied a large collection of the benchmark data sets, including power transmission net-
works, web link networks and complex biological systems, which had millions of nodes with
average degree of no more than 20. For instance, the LinkedIn network they studied had
approximately seven million nodes, but only 30 million edges.

The phase transition for weak recovery or detection in the sparse regime was first con-
jectured in the paper by Decelle, Krzakala, Moore, Zdeborová Decelle et al. (2011), which
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sparked the modern study of clustering and SBMs. Their work is based on deep but non-
rigorous insights from statistical physics, derived with the cavity method (a.k.a. belief prop-
agation). Since then, extensive excellent research has been conducted to understand this
fundamental limit, see e.g. Mossel et al. (2015); Massoulié (2014); Mossel et al. (2018); Abbe
et al. (2020a). A key result is the following theorem.

Theorem 3 [Kesten-Stigum threshold] Let G(n, a/n, b/n) be a symmetric SBM with two
balanced clusters and a, b = O(1). The weak recovery problem is solvable and efficiently so
if and only if (a− b)2 > 2(a+ b).

In particular, if we denote the probability measures induced by the ERM G(n, a+b
2n , a+b

2n )

and the SBM G(n, a
n ,

b
n) by P

(0)
n and P

(1)
n correspondingly, they are mutually contiguous,

that is for any sequence of events {En}’s, P (0)
n (En) → 0 if, and only if, P

(1)
n (En) → 0.

Conventionally, the quantity (a − b)2/[2(a + b)] is called signal-to-noise ratio (SNR).
It is worth noting that we only quoted the KS threshold for the two communities case
(k = 2). For sufficiently large k, namely k ≥ 5, there is a ’hard but detectable’ area where
the weak recovery is information-theoretically possible, but computationally hard Abbe and
Sandon (2018); Banks et al. (2016). This gap between the KS threshold and information-
theoretic (IT) threshold only shows up in the constant degree regime, making it a fertile
ground for studying the fundamental tradeoffs in community detection. We focus on the
cardinal case, symmetric SBM with two balanced clusters, where two thresholds coincide
and semi-supervised approach crosses them together.

Figure 1: The left image represents the adjacency matrix of one realization of
G(100, 0.12, 0.05), where the detection is theoretically possible. Yet the data
is given non-colored (middle) and also non-ordered (right).

The terminology ’KS threshold’ can be traced back to the work of Kesten and Stigum
concerning reconstruction on infinite rooted trees in 1966 Kesten and Stigum (1966). The
problem consists in broadcasting the root label of a tree with fixed degree c down to its
leaves, and trying to recover it from the leaves at large depth. We start with drawing
the root label uniformly in {0, 1}. Then, in a top-down manner, we independently label
every child the same as its parent with probability 1 − ϵ and the opposite as its parent
otherwise. Let x(t) denote the labels at depth t in this tree with t = 0 being the root.
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We say the reconstruction is solvable if limt→∞ E |E(x(0)|x(t)) − 1/2| > 0 or, equivalently,
limt→∞ I(x(0);x(t)) > 0, where I is the mutual information. Although it was shown in the
original paper, reconstruction is solvable when c(1 − 2ϵ)2 > 1, the non-reconstruction was
proved 30 years later, namely it is not solvable if c(1− 2ϵ)2 ≤ 1 Bleher et al. (1995); Evans
et al. (2000). Based on that finding, Mossel, Neeman, and Sly proved the converse part of
Theorem 3 by coupling the local neighborhood of an SBM vertex with a Gaton-Watson tree
with a Markov Process Mossel et al. (2015). Inspired by this elegant approach, we propose
our ’census method’ to solve the semi-supervised clustering problem, and we will see in
Section 3 how it works by amplifying revealed information with tree-like neighborhoods.

1.3 Basic Algorithms

Information-theoretic bounds can provide the impossibility side of phase transitions, but
we still need specific efficient algorithms for the achievability side. One straight forward
approach is spectral method. Under the Definition 1, let A be the adjacency matrix of the
graph G ∼ G(n, a/n, b/n), a > b. Up to reordering indices, its expectation is a block matrix
except for the diagonal,

EA ≈ 1

n

(
a b
b a

)
⊗ In/2×n/2 (4)

which has three eigenvalues, (a + b)/n > (a − b)/n > 0. 0 has multiplicity n − 2 and the

eigenvector associated with the second largest eigenvalue is
(

1n/2

−1n/2

)
which is consistent

with the ground truth of the labels. But we do not observe the expected adjacency matrix.
Instead, we only have access to one realization of the model. In modern terms, community
detection is a ’one-shot learning’ task. But one can still hope that A−EA is small and the
second eigenvector of A gives a reasonable estimator. For example, denoting the ordered
eigenvalues of EA and A as {λi}’s and {λ̂i}’s respectively, the Courant-Fischer-Weyl min-
max principle implies

|λ̂i − λi| ≤ ∥A− EA∥op, i = 1, . . . , n. (5)

Recall that the operator norm of a symmetric matrix M , with ξi(M) being its i-th largest
eigenvalue, is ∥M∥op = max(ξ1(M),−ξn(M)). If one can bound ∥A−EA∥op by half of the
least gap between the three eigenvalues mentioned above, the order will be preserved. Then
the Davis-Kahan theorem guarantees the eigenvectors are correlated. Namely, if θ denotes
the angle between the second eigenvectors (spectral estimator and ground truth), we have

sin θ ≤ ∥A− EA∥op/min{∥λi − λ2∥/2 : i ̸= 2}. (6)

Thus, the key is to control the norm of the perturbation. Many deep results from random
matrix theory come into play here Vu (2007); Nadakuditi and Newman (2012); Abbe et al.
(2020b).

This nice and simple approach stops working as we step into the sparse regime Feige and
Ofek (2005); Coja-Oghlan (2009); Keshavan et al. (2009); Decelle et al. (2011); Krzakala
et al. (2013). The main reason is that leading eigenvalues of A are about the order of
square root of the maximum degree. High degree vertices mess up the desired order of
eigenvalues. In particular, for Erdős–Rényi random graphs (G(n, d/n)), we have λ̂1 =
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(1 + o(1))
√
log n/ log log n almost surely Krivelevich and Sudakov (2003). Furthermore,

the leading eigenvectors are concentrated at these high degree ’outliers’ and contain no
structural information of the underlying model.

Take the star graph for example, where we assume that only the first node is connected
to k neighbors. It is easy to see that the corresponding adjacency matrix has eigenvalue

√
k

and eigenvector (
√
k, 1, . . . , 1). Various interesting spectrum based methods are proposed

to overcome this challenge Mossel et al. (2018); Massoulié (2014); Bordenave et al. (2015).
The key idea is to replace adjacency with some combinatorically constructed matrices.
However, they typically rely on model statistics and underlying probabilistic assumptions,
which leads to the problem of adversarial robustness. For example, they are non-robust to
’helpful’ perturbations. Namely, if we let an adversary to perform following changes on the
graph: (1) adding edges within communities and/or (2) removing edges across communities,
spectral approaches are going to fail. It is surprising since, intuitively, these changes help
to emphasize community structures.

Meanwhile, semidefinite programming (SDP) sheds the light on how we may be able to
overcome the limitations of spectral algorithms, which is shown to be robust when SNR is
sufficiently large Moitra et al. (2016). In fact, it is another major line of work on clustering
and community detection concerning performance of SDPs on SBMs. While a clear picture
of the unbounded degree case is figured out in Abbe et al. (2016); Hajek et al. (2016);
Amini and Levina (2018); Bandeira (2018); Agarwal et al. (2017); Perry and Wein (2017),
the results for sparse networks are more complicated. Guédon and Vershynin (2014) proved
a sub-optimal condition, SNR ≥ 104, using Grothendieck inequality. Then, with a Linde-
berg interpolation process Tao (2011), Montanari et al. proved that a SDP algorithm as
proposed in Montanari and Sen (2016) is nearly optimal for large bounded average degree
by transferring analysis of the original SDPs to the analysis of SDPs of Gaussian random
matrices.

Theorem 4 Montanari and Sen (2016) Assume G ∼ G(n, a/n, b/n). If for some ϵ > 0,
SNR ≥ 1 + ϵ and d > d∗(ϵ) then the SDP estimator solves the weak recovery.

If we fix d and view ϵ as its function, the condition becomes SNR ≥ 1 + od(1). Numerical
estimation and non-rigorous statistical mechanism approximation suggest that it is at most
2% sub-optimal. This result seems to be the ceiling of SDP according to the preliminary
calculation in Javanmard et al. (2016). Moreover, they address the irregularity of high
degree nodes by showing SDPs return similar results for Erdős–Rényi random graphs and
random regular graphs, which appear to be sensitive only to the average degree. See Section
4 for more discussion on the estimation. Inspired by their work, we propose a natural
modification of SDP to incorporate revealed labels in the semi-supervised setting and show
that it not only achieves, but even crosses, the KS threshold. In turn, our result brings a
new perspective to study the (non-)achievability and robustness of (unsupervised) SDPs.

1.4 Semi-Supervised Learning

Within machine learning there are three basic approaches: supervised learning, unsuper-
vised learning and the combination of both, semi-supervised learning. The main difference
lies in the availability of labeled data. While unsupervised learning (e.g. clustering, associa-
tion and dimension reduction) operates without any domain-specific guidance or preexisting
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knowledge, supervised learning (e.g. classification and regression) relies on all training sam-
ples being associated with labels. However, it is often the case where existing knowledge
for a problem domain doesn’t fit either of these extremes.

In real-world applications, unlabeled data comes with a much lower cost not requir-
ing expensive human annotation and laboratory experiments. For example, documents
crawled from the Web, images obtained from surveillance cameras, and speech collected
from broadcast are relatively more accessible comparing to their labels which are required
for prediction tasks, such as sentiment orientation, intrusion detection, and phonetic tran-
script. Motivated by this labeling bottleneck, the semi-supervised approach utilizes both
labeled and unlabeled data to perform learning tasks faster, better, and cheaper. Since the
1990s, semi-supervised learning research has enjoyed an explosion of interest with applica-
tions like natural language processing Qiu et al. (2019); Chen and Xu (2016) and computer
vision Xie et al. (2020); Lee (2013).

This paper is closely related to the subtopic called constrained clustering, where one
has some must-links (i.e. two nodes belong to the same cluster) and cannot-links (i.e. two
nodes are in different clusters) as extra information. Although constrained versions of
classic algorithms have been studied empirically, such as expectation–maximization Shental
et al. (2003), k-means Wagstaff et al. (2001) and spectral method Kamvar et al. (2003),
our methods take different approaches than hard-coding these pairwise constraints into the
algorithms and provide theoretically insightful guarantees under SBM.

There also has been some excellent work considering introducing node information into
SBMs. One interesting direction is overlaying a Gaussian mixture model with SBM, namely
at each node of the graph assuming there is a vector of Gaussian covariates, which are
correlated with the community structure. Yan and Sarkar (2016) proposed an SDP with k-
means regularization and showed that such node information indeed improves the clustering
accuracy. While Lu and Sen (2020) formally established the information theoretic threshold
for this model when the average degree exceeds one. The node information is depicted as
noisy observations for all nodes in Mossel and Xu (2015). In this setting, random guessing
is obviously no longer a meaningful baseline. Hence, the authors refer to the Maximum
A Posteriori (MAP) estimator instead, and show a local belief propagation algorithm’s
performance converges to the MAP accuracy in various regimes of the model. They also
conjectured that those regimes can be extended to the entire domain of a > b with arbitrary,
but non-vanishing, strength of node information. We will see in the next section that
our result establishes this conjecture in the sense that with arbitrary, but non-vanishing,
knowledge of the labels, we can beat the meaningful baseline for all a > b.

All of these models require input on every node, which does not really fall within the
scope of semi-supervised learning. While, we consider a realistic and intuitive generalization
of SBM where a small random fraction of the labels is given accurately. Kanade et al. (2014)
studied basically the same model as ours. They demonstrated that a vanishing fraction of
labels improves the power of local algorithms. In particular, when the number of clusters
diverges, it helps their local algorithm to go below the conjectured algorithmic threshold
of the unsupervised case. Elegantly, they also proved the following result, which is closely
related to this paper.
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Theorem 5 Kanade et al. (2014) When the fraction of revealed node labels is vanishingly
small, (unsupervised) weak recovery problem on the planted bisection model is not solvable
if SNR is under the Kesten-Stigum threshold.

2. Our Results

The main goal of this paper is to answer the long-standing open question regarding the
semi-supervised learning on probabilistic graph models. We would like to quote the version
from Abbe (2018):

”How do the fundamental limits change in a semi-supervised setting, i.e.,
when some of the vertex labels are revealed, exactly or probabilistically?”

In the previous section, we have discussed deep research related to the clustering / com-
munity detection problem on the SBM. Establishing the phase transition phenomenon at
KS threshold is a major focal point. However, such a sharp and intrinsic limit totally disap-
pears when an arbitrarily small fraction of the labels is revealed. This astonishing change
is first observed in Zhang et al. (2014) where the authors provide non-trivial conjectures
based on calculations of the belief propagation approach.

The theory of semi-supervised clustering contains some fascinating and fundamental
algorithmic challenges arising from both the sparse random graph model itself and the
semi-supervised learning perspective. To address them rigorously, we first define the semi-
supervised SBM in a way that it captures the essence of realistic semi-supervised learning
scenarios and is a natural and simple generalization of unsupervised models.

Definition 6 (Semi-supervised planted bisection model) For n ∈ N, p, q ∈ (0, 1)
and ρ ≥ 0, let G(n, p, q, ρ) denote the distribution over graphs with n vertices and n-
dimensional vectors defined as follows. The vertex set is partitioned uniformly at random
into two subsets S1, S2 under the balance constraint |S1| = |S2| = n/2. Then conditional on
the partition, two processes are undertaken independently:

• Let E denote the edge set of the graph G. Edges are included independently with
probability defined as follows.

P
(
(i, j) ∈ E|S1, S2

)
=

{
p if {i, j} ⊆ S1 or {i, j} ⊆ S2,

q if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.
(7)

• An index set R of size m := 2⌊ρ· n2 ⌋ is chosen uniformly at random such that |R∩S1| =
|R ∩ S2| = m/2. The revealed labels are given as

x̃i =


1, i ∈ R ∩ S1,

−1, i ∈ R ∩ S2,

0, otherwise.

(8)

Remark 7 The revealing process is independent from edge formation, i.e. G ⊥ x̃|S1, S2.
Moreover, if we set ρ = 0 or simply ignore the revealed labels, the model is exactly the
unsupervised SBM. In other words, the marginal distribution of the random graph is indeed
G(n, p, q) from Definition 1.

9



Semi-Supervised Clustering of Sparse Graphs

Remark 8 One can also consider revealing uniformly at random over the index set inde-
pendent of G(n, p, q) (instead of requiring revealed communities to have the same size), but
this modification makes almost no difference in the context of this work. In practice, one
can always achieve the balance requirement by either sampling a few more or dropping the
uneven part.

Remark 9 The definition is versatile in the sense that it keeps unsupervised setting as a
special case (and with it all the interesting phase transitions). On the other hand, it can be
easily generalized to the multiple and/or asymmetric communities case.

Under semi-supervised setting, we naturally extend community detection problems in a
non-trivial way that includes the unsupervised situation as a special case and captures its
essence. We will discuss these items in detail when it comes to the corresponding section.

Definition 10 Semi-supervised weak recovery: finding an estimator to perform substan-
tially better than chance on the unrevealed vertices.
Semi-supervised distinguishability: finding a test that with high probability, tells G(n, d/n, d/n,ρρρ)
from G(n, a/n, b/n,ρρρ) where d = a+b

2 , a > b.

Based on the fact that a ln(n)-neighborhood in (G, x) ∼ G(n, a/n, b/n) asymptotically
has the identical distribution as a Galton-Watson tree with Markov process, we propose
our first semi-supervised clustering algorithm, called census method. Namely, we decide the
label estimation of a certain node according to the majority of its revealed neighbors,

x̂v = sgn

 ∑
i∈{u∈R: d(u,v)=t}

xi

 (9)

where d(u, v) is the length of the shortest path connecting u and v. We conclude that when
SNR ≤ 1, the optimal choice of t is indeed 1.

Theorem 11 The 1-neighbors census method solves the semi-supervised weak recovery prob-
lem with any reveal ratio ρ > 0 for arbitrary SNR > 0.

Note that if ρ → 0, semi-supervised weak recovery is equivalent to unsupervised weak
recovery. Therefore, Theorem 5 implies that our result is also sharp in the sense of minimum
requirement on the fraction of revealed labels.

Although it successfully solves the weak recovery problem in the largest possible regime,
there are some limitations hindering the census method’s utility in practice. Its performance
depends on a sufficient amount of revealed labels, hence requiring n to be really large. Be-
sides, without an unsupervised counterpart, it is not applicable when revealing is unreliable.

To address these challenges, we propose our second semi-supervised clustering algo-
rithm which performs well in practice and covers the unsupervised setting as special case.
As discussed in the previous section, SDPs enjoy many nice properties, among which the
monotone-robustness is particularly interesting to us. In the semi-supervised setting, the
revealed labels are supposed to enhance the community structure. However, the work from
Moitra et al. (2016) suggests such enhancement may not help with, but to the contrary can
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hurt the performance of many algorithms, which makes SDP an ideal starting point for us.
We define the Constrained Semidefinite Program (CSDP) as

CSDP(M) = max
X⪰0

Xii=1, ∀i∈[n]

{⟨M,X⟩ : Xij = xi · xj , ∀i, j ∈ R} (10)

and show that it solves the semi-supervised community detection problem in the form of
hypothesis testing.

Theorem 12 Let (G, xR) ∼ G(n, a/n, b/n, ρ) and A be the adjacency matrix associated
with G. For any a > b, there exists ρ0 < 1 such that if ρ ≥ ρ0, the CSDP-based test
T (G, xR; ∆) = 1{CSDP(A− d

n
11⊤)≥n[(a−b)/2−∆]} will succeed with high probability for some

∆ > 0.

2.1 Proof Techniques

The technical challenges of establishing Theorem 11 are mainly due to the fact that the
advantage created by revealed labels can be easily blurred out by various approximations of
the limit distribution. Instead of the central limit theorem, one needs a Berry–Esseen-type
inequality to derive a more quantitative result of the convergence rate. Moreover, since the
distribution of each underlying component also depends on n, the conventional sample mean
formulation does not apply here. We overcome the difficulty above with a direct analysis of
non-asymptotic distributions, which leads to a detailed comparison between two binomial
variable sequences with constant expectations.

It is quite surprising that this calculation can be carried out in rather elegant manner,
since many other applications of this method are much more technically involved. For
example to establish the independence among estimators, one may need to consider the
’leave-one-out’ trick. But in our case, it comes in a very natural way.

Regarding CSDP, we first show it can be coupled to a SDP with the surrogate input
matrices. Moreover, its optimal value lies in between two unsupervised SDPs associated
with the same random graph model (different parameters). This means all the analytical
results from SDP research can be transferred into the CSDP study. However, we notice that
it is common to make assumptions on the average degree d in the relevant literature. It is
quite reasonable in the unsupervised setting since the graph topology is a strong indicator
for the possibility of weak recovery, e.g. when d ≤ 1, there will not exist a giant component
that is of size linear in n.

To establish our result without such extra assumptions, we derive a probabilistic bound
on the cut norm of centered adjacency matrix and then use Grothendieck’s inequality to
bound the SDP on ERMs from above. This idea follows from Guédon and Vershynin (2014);
we give a slightly different analysis fitting for our purpose. A generalized weak law of large
number is also derived to address the issue that distributions of the entries change as n → ∞.
Then we conclude the proof with a lower bound of the CSDP on SBMs considering a witness
that consists of the ground truth of labels.

2.2 Outline

The rest of the paper is organized in the following way. In Section 3, we formally derive
the census method and prove that it can solve the weak recovery problem throughout

11
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the entire parameter domain. In section 4, we introduce the constrained SDP and the
associated hypothesis test, through which we show that even under the KS threshold (also
the information-theoretic threshold), the ERMs and the SBMs become distinguishable in
the semi-supervised setting. Section 5 includes some numerical simulation results. We end
the paper with concluding remarks in Section 6.

2.3 Notation

For any n ∈ N, we denote the first n integers by [n] = {1, 2, . . . , n}. For a set S, its
cardinality is denoted by |S|. We use lowercase letters for vectors (e.g. v = (v1, v2, . . . , vn))
and uppercase letters for matrices (e.g. M = [Mij ]i,j∈[n]). In particular, for adjacency
matrices, we omit their dependency on underlying graphs. Instead of AG, we simply write
A. 1n = (1, . . . , 1) ∈ Rn stands for the all-ones vector and In is the n× n identity matrix.
ei ∈ Rn represents the i’s standard basis vector. For two real-valued matrices A and B
with the same dimensions, we define the Frobenius inner product as ⟨A,B⟩ =

∑
i,j Aij ·

Bij = Tr(A⊤B). Vector inner product is viewed as a special case of n × 1 matrices. Let
∥v∥p = (

∑p
i=1 ∥vi∥p)1/p be the ℓp norm of vectors with standard extension to p = ∞.

Let ∥M∥p→q = sup∥v∥p≤1 ∥Mv∥q be the ℓp-to-ℓq operator norm and ∥M∥op := ∥M∥2 :=
∥M∥2→2. Random graphs induce measures on the product space of label, edge and revealed
node assignments over n vertices. For any n ∈ N, it is implicitly understood that one such
measure is specified with that graph size. The terminology with high probability means ‘with
probability converging to 1 as n → ∞’. Also, we follow the conventional Big-Oh notation
for asymptotic analysis. op(1) stands for convergence to 0 in probability.

3. Census Method

Analysis of Model 1 is a challenging task since conditioned on the graph, it is neither an Ising
model, nor a Markov random field. This is mainly due to following facts: (1) The balance
requirement puts a global condition on the size of each cluster; (2) Even if conditioned on
sizes, there is a slight repulsion between unconnected nodes. Namely, if two nodes do not
form an edge, the probability of them being in the same community is different from them
being in the opposite communities.

Recent years have witnessed a series of excellent contributions on the phase transitions
in the sparse regime. Our census method for semi-supervised clustering is mainly inspired
by the natural connection between community detection on SBMs and reconstruction on
trees, which is formally established in Mossel et al. (2015). Intuitively, for a vertex v
in G(n, a/n, b/n), it is not likely that a node from its small neighborhood has an edge
leading back to v. Therefore, the neighborhood looks like a random labelled tree with high
probability. Furthermore, the labelling on the vertices behaves like the broadcasting a bit
from the root of a tree down to its leaves (see the survey Mossel (2001) for a detailed
discussion).

In this section, we will first look into the census method of t-neighbors, i.e., deciding
the label of a node by the majority on its neighbors at depth t. After defining the general
framework, we will show that when SNR ≤ 1, 1-neighbors voting is optimal in terms of
recovering the cluster structure via informal calculation. Then, we rigorously prove that
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census on 1-neighbors solves the semi-supervised weak recovery problem for any SNR > 0
with an arbitrarily small fraction of the labels revealed.

3.1 Majority of t-Neighbors

Let (G, x) obey the planted bisection model G(n, a/n, b/n). We denote the set of all vertices
by V (G). For a fixed vertex v and t ∈ N, let Nt(v) denote the number of vertices which are
t edges away from v. ∆t(v) is defined as the difference between the numbers of t-neighbors
in each community. Namely,

Nt(v) = |Kt(v)| (11)

∆t(v) =
∑

u∈Kt(v)

xu (12)

where Kt(v) := {u ∈ V (G) : d(u, v) = t} denotes the t-neighbors of v.
If one assume that the subgraph of G induced by the vertices within t edges of v is a

tree, the expected value of Nt(v) is approximately [(a + b)/2]t and the expected value of
xv · ∆t(v), i.e., the expected number of these vertices in the same community as v minus
the expected number of these vertices in the other community, is approximately [(a−b)/2]t.
So, if one can somehow independently determine which community a vertex is in with an
accuracy of 1/2 + α for some α > 0, one will be able to predict the label of each vertex
with an accuracy of roughly 1/2+ [(a− b)2/(2(a+ b))]t/2 ·α, by guessing it as the majority
of v’s t-neighbors. Under the unsupervised learning setting, one can get a small advantage,
α ∼ Θ(1/

√
n), by randomly initializing labels. It is guaranteed by the central limit theorem

that such a fraction exists in either an agreement or disagreement form.
To amplify this lucky guess, we need t to be sufficiently large so that [(a − b)2/(2(a +

b))]t/2 >
√
n, which implies [(a+ b)/2]t > n. Note d = (a+ b)/2 is the average degree. This

means before the signal is strong enough for our purpose, not only our tree approximation
will break down, but vertices will be exhausted. However, if we have access to some of
the true labels, i.e., in the semi-supervised setting, we can leverage the tree structure for a
non-vanishing advantage over random guessing.

Let A be the adjacency matrix associated with G. Consider the random variables Yu
representing votes of directly connected neighbors,

Yu =

{
xu if Auv = 1

0 otherwise
(13)

We have

N1(v) =
∑

u∈V (G)

|Yu| (14)

∆1(v) =
∑

u∈V (G)

Yu (15)

By definition of the planted bisection model,

P(Yu = 1|xv = 1) =
P(Yu = 1, xv = 1)

P(xv = 1)
≈ a

2n
(16)
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Figure 2: Neighborhood of node v with a tree structure. True clusters are coded in black
and white. The shaded area indicates those nodes randomly guessed to be in the
same community or the opposite community as v. The annulus represents the
collection of its t-neighbors.

Similarly,

P(Yu = −1|xv = 1) ≈ b

2n
(17)

It is not exact due to the balanced community constraint. But when n is large, such an
effect is negligible. Furthermore, if we consider the definition of the planted bisection model
without balance constraint, the equation will be exact.

Without loss of generality, we only consider the case where xv = 1 and omit the condition
on it. We have

∆1(v) =
∑

u∈V (G)

Yu with Yu =


1 w.p. a

2n

−1 w.p. b
2n

0 w.p. 1− a+b
2n

(18)
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where the Yu’s are independent. Note that E(Yu) =
a−b
2n and E(Y 2

u ) =
a+b
2n .

Recall that ρ ∈ [0, 1] is the ratio of revealed labels. For the sake of simplicity, we assume
the total number of revealed vertices m = ρn ∈ 2N to be an even integer. The revealed
vertices are chosen arbitrarily, denoted as R := {u1, u2, . . . , un−m}. The model also provides
that the number of revealed vertices in each community is ρn

2 . Then the majority of revealed
vertices among 1-neighborhood of v can be written as

∆̃1(v) =
∑
u∈R

Yu (19)

Therefore,

E(∆̃1(v)) =
∑
u∈R

E(Yu) = ρ
a− b

2
(20)

Var(∆̃1(v)) =
∑
u∈R

Var(Yu) = ρ
a+ b

2
+ o(1) (21)

3.2 Locally Tree-Like Structure

Proceeding to the t-neighbors, we need to understand a bit better the structure of a small
neighborhood in the SBM. The neighborhoods in a sparse network locally have no loops.
So they have a nice tree-like structure. Moreover, the labels also obey some random broad-
casting processes on trees.

A broadcasting process transmit the information from the root of a tree to all the nodes.
At each level, nodes inherit the information from its parent. But error could happen with
certain amount of probability. Usually the edges are assumed to be included according
to the same rule and work independently. It was firstly considered in genetics Cavender
(1978) since it perfectly describes the propagation of a gene from ancestor to descendants.
It can also be interpreted as a communication network that pass out the information from
the root. So such processes were intensively studied in information theory and statistical
physics Spitzer (1975); Higuchi (1977); Bleher et al. (1995). In particular, we are interested
in the following Markov process since it can be identified with the labeling process of a
small neighborhood in SBM.

Definition 13 (Galton–Watson tree with Markov process) Let T be an infinite rooted
tree with root v. Given a number 0 ≤ ϵ < 1 and the offspring rate d > 0, we define a random
labelling τ ∈ {1,−1}T . First, draw τv uniformly in {1,−1}. Then recursively construct the
labelling as follows.

• Generate children of each parent node according to a Poisson distribution with mean
d.

• Conditionally independently given τv, for every child u of v, set τu = τv with probability
1− ϵ and τu = −τv otherwise.

The following lemma shows that a ln(n)-neighborhood in (G, x) looks like a Galton-
Watson tree with Markov process. For any v ∈ G, let GR be the induced subgraph on
{u ∈ G : d(u, v) ≤ R}.
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Lemma 14 Mossel et al. (2015) Let R = R(n) = lnn
10 ln(2(a+b)) . There exists a coupling

between (G, x) and (T, τ) such that (GR, xGR
) = (TR, τTR

) a.a.s.

Hence, for fixed t ∈ N, t ≤ R and any v ̸∈ R, we can denote the label of a vertex in v’s

t-neighborhood as Y
(t)
i := Πt

k=1
kYu, where {kYu}tk=1 are independent copies of Yu. Then

we have E(Y
(t)
i ) = (a−b

2n )t and E((Y
(t)
i )2) = (a+b

2n )t. Moreover, {Y (t)
i }’s are independent.

Therefore, the census of v’s revealed t-neighbors can be written as

∆̃t(v) =
∑

i∈[ρ·nt]

Y
(t)
i a.a.s (22)

The central limit theorem suggests

∆̃t(v) → N (ρ(
a− b

2
)t, ρ(

a+ b

2
)t) as n → ∞ (23)

Hence,

P(∆̃t(v) > 0|xv = 1) =
1

2

1 + erf

(
ρ[(a− b)/2]t√
ρ[(a+ b)/2]t

√
2

)+ o(1) (24)

=
1

2
+

1

2
erf

√ρ SNRt

2

+ o(1) (25)

where erf(x) = 2√
π

∫ x
0 exp(−t2) dt is the Gauss error function.

So one can see that once SNR is less than or equal to 1, it is not beneficial to look
into t-neighbors. The optimal choice of t is 1 in this situation. Since we also know that
weak recovery is solvable when SNR > 1, it makes the majority of 1-neighbors particularly
interesting.

Suppose SNR ≤ 1 and include the symmetric part of xv = −1, we have

P(sgn(∆̃1(v)) = xv) >
1

2
+

1

3

√
ρ SNR (26)

Consider the estimator of unrevealed labels

x̂R∁ := sgn
(
[∆̃1(u1), ∆̃1(u2), . . . , ∆̃1(un−m)]⊤

)
(27)

and the ground truth xR∁ = [xu1 , xu2 , . . . , xun−m ]
⊤. Recall that

Overlap(xR∁ , x̂R∁) =
1

n−m
|⟨xR∁ , x̂R∁⟩| (28)
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We can conclude that

E[Overlap(xR∁ , x̂R∁)] = E

 1

n−m

∣∣∣∣∣∣
∑

i∈[n−m]

sgn(∆̃1(ui))xui

∣∣∣∣∣∣
 (29)

≥ 1

n−m

∣∣∣∣∣∣
∑

i∈[n−m]

E
[
sgn(∆̃1(ui))xui

]∣∣∣∣∣∣ (30)

>
2

3

√
ρ SNR (31)

The expected overlap is not vanishing which suggests the weak recovery is solvable for
any SNR. But it is technically impractical to rigorously describe the limit distribution of
our census estimator without blurring this edge out. From Figure 3, we can see that our
calculation is close to the expectation. But the convergence rate depends on ρ. In particular,
when both SNR and ρ are small, the asymptotic behavior of our algorithm remains unclear.
Hence we go through a direct analysis to establish the desired result.

Figure 3: The simulation result of G(3000, 5/3000, 2/3000), SNR ≈ 0.64. Horizontal coordi-
nate is the ratio of revealed labels. The blue curve stands for the average overlap
of 60 independent realizations of the random graph with the shaded area being
its standard error band. The purple dashed curve stands for the asymptotic lower
bound we conclude from our calculation.

3.3 Majority of 1-Neighbors

Since the algorithm is invariant under index reordering, without loss of generality, we let the
adjacency matrix A be a symmetric matrix with diagonal entries Aii = 0, i = 1, 2, . . . , n.
For 1 ≤ i < j ≤ n, {Aij}’s are independent,
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Aij ∼ Bernoulli

(
a

n

) (
i ≤ n

2
and j ≤ n

2

)
or

(
i ≥ n

2
and j ≥ n

2

)
(32)

Aij ∼ Bernoulli

(
b

n

)
i ≥ n

2
and j ≤ n

2
(33)

The true label x and revealed label x̃ are, respectively,

xi =

{
1, i = 1, 2, . . . , n2 ,

−1, i = n
2 ,

n
2 + 1, . . . , n,

x̃i =


1, i = 1, 2, . . . , m2 ,

−1, i = n
2 ,

n
2 + 1, . . . , n+m

2 ,

0, otherwise.

(34)

For a unrevealed vertex, we consider the majority of its 1-neighbors,

∆̃1(i) = ⟨A[i, :], x̃⟩ =
∑

j:x̃j ̸=0

Aij x̃j =
∑

j:x̃j ̸=0

Ajix̃j (35)

Therefore, {∆̃1(i)}’s are independent for all i : x̃i = 0 since they have no common term.
Notice it is not the case for all i ∈ [n]. But we only need to predict the unrevealed labels,
hence the independence.

The estimator given by majority voting of 1-neighbors is

x̂i =

{
x̃i if x̃i ̸= 0

sgn∗(∆̃1(i)) if x̃i = 0
(36)

We toss a fair coin when ∆̃1(i) = 0 to break the tie, i.e.

P(sgn∗(∆̃1(i)) = 1|∆̃1(i) = 0) = P(sgn∗(∆̃1(i)) = −1|∆̃1(i) = 0) =
1

2
(37)

Notice that it is only introduced for analysis purpose and is equivalent to the conventional
sign function in practice.

Suppose (G, x) is an Erdős–Rényi random graph with revealed label x̃, any estimator
can only have vanishing correlation with the true label among the unrevealed vertices. So
the semi-supervised weak recovery problem on SBM requires finding an estimator such that
the correlation restricted on the unrevealed part is non-vanishing. Formally, we want to
show that

P
(
Overlap(x|x̃i=0, x̂|x̃i=0) ≥ Ω(1)

)
= 1− o(1) (38)

As discussed in Section 2.1, we start off with a critical result scrutinizing binomial
variable sequences. It gives us an edge over direct analysis via a Berry–Esseen-type in-
equality, which usually assumes distribution of individual random variable in the sequence
independent of n.
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Lemma 15 Let X and Y be two independent binomial random variables with X ∼ Binomial(n, a
n)

and Y ∼ Binomial(n, b
n), a > b. Denote δ = δ(a, b) := a−b

2 exp (a+b) . Then, for sufficiently
large n,

P(X > Y )− P(X < Y ) ≥ δ (39)

Remark 16 By symmetry, we always have P(X > Y ) − P(X < Y ) > 0. This lemma
guarantees the difference will not vanish as n → ∞.

Proof By the law of total probability and independence, we have

P(X > Y ) =

n∑
x=1

P(Y < x) P(X = x) (40)

=
n∑

x=1

x−1∑
y=0

P(Y = y) P(X = x) (41)

=

n∑
x=1

x−1∑
y=0

[(
n

x

)(
a

n

)x(
1− a

n

)n−x(n
y

)(
b

n

)y (
1− b

n

)n−y
]

(42)

Let ∆ := P(X > Y )− P(X < Y ), then

∆ =

n∑
x=1

(
n

x

)(
a

n

)x(
1− a

n

)n−x( b

n

)x(
1− b

n

)n−x

{
x−1∑
y=0

(
n

y

)[(
b

n

)y−x(
1− b

n

)x−y

−
(
a

n

)y−x(
1− a

n

)x−y
]}

=
n∑

x=1

(
n

x

)(
ab

n

)x(
1− a+ b

n
+

ab

n2

)n−x

{
x−1∑
y=0

(
n

y

)
1

ny

[(
1

b
− 1

n

)x−y

−
(
1

a
− 1

n

)x−y
]}

Let f(x) = αx − βx, α > β > 0. Since f ′(x) = αx lnα − βx lnβ > 0, we have

f(m) ≥ f(1) = α− β, ∀m ∈ N. So
(
1
b −

1
n

)x−y
−
(
1
a − 1

n

)x−y
≥ a−b

ab .

Also notice that
(
n
m

)
=
∏m−1

i=0
n−i
m−i ≥

(
n
m

)m
, ∀1 ≤ m ≤ n. We have,

∆ ≥
n∑

x=1

(
ab

x

)x(
1− a+ b

n

)n−x
x−1∑

y=0

1

yy
· a− b

ab

 (43)

≥ (a− b)

(
1− a+ b

n

)n

(44)

≥ a− b

2 exp (a+ b)
(for sufficiently large n) (45)
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where we follow the convention that 00 = 1.

Then, we can simply resort to a classical concentration inequality to bound the overlap.

Lemma 17 (Chernoff–Hoeffding theorem Chernoff (1952)) Suppose X1, . . . , Xn are
i.i.d. random variables, taking values in {0, 1}. Let p = E(X) and ϵ > 0. Then

P

(
1

n

∑
Xi ≤ p− ϵ

)
≤

((
p

p− ϵ

)p−ϵ( 1− p

1− p+ ϵ

)1−p+ϵ
)n

= e−D(p−ϵ∥p)n (46)

where D(x∥y) = x ln x
y +(1−x) ln(1−x

1−y ) is the Kullback–Leibler-divergence between Bernoulli
distributed random variables with parameters x and y.

We now convert the KL divergence to the total variation distance, which is easier
to work with. Let P1 and P2 be two probability measures defined on the same sample
space Ω and sigma-algebra F . The total variation distance between them is defined as
dTV (P1, P2) = supE∈F |P1(E) − P2(E)|. Moreover, in the discrete case, we have following
identity dTV (P1, P2) = 1

2∥P1 − P2∥1 =
∑

ω∈Ω
1
2∥P1(ω) − P2(ω)∥. It is related to the KL

divergence through Pinsker’s inequality (see, eg. Tsybakov (2009), Chapter 3). For com-
pleteness, we include an elementary proof of the Bernoulli special case that is sufficient for
our usage later.

Lemma 18 Let P1 and P2 be two Bernoulli distributions, where P1(1) = x and P2(1) = y.
We have

2(dTV (P1, P2))
2 ≤ D(x∥y) (47)

Proof We can manipulate both sides of the inequality as

D(x∥y) = x ln
x

y
+ (1− x) ln(

1− x

1− y
) (48)

2(dTV (P1, P2))
2 =

1

2
∥P1 − P2∥21 = 2(x− y)2 (49)

We denote f(x, y) = x ln x
y + (1− x) ln 1−x

1−y − 2(x− y)2. Therefore,

∂f

∂y
= (x− y)[4− 1

y(1− y)
] (50)

Notice that since 0 ≤ y ≤ 1, y(1− y) ≤ 1
4 . So 4− 1

y(1−y) is always negative. Thus, for fixed

x, f(x, y) ≥ f(x, x) = 0, ∀y. Hence,

D(x∥y)− 2(dTV (P1, P2))
2 ≥ 0 (51)

Now we prove the main result for the census method.
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Proof [Proof of Theorem 11] Recall that for any i such that x̃i = 0, our estimator is defined
as x̂i = sgn∗(∆̃1(i)) and

∆̃1(i) =
∑

j:x̃j ̸=0

Aij x̃j =

 ∑
ρn

2
<j≤n

2

Aij

−

 ∑
(1+ρ)n

2
<j≤n

Aij

 (52)

It is indeed the difference between two independent binomial variables with parameters
(ρn, ρa

ρn) and (ρn, ρb
ρn). By Lemma 15, we have

P(sgn(∆̃1(i)) = xi)− P(sgn(∆̃1(i)) = −xi) ≥ δ =
ρ(a− b)

2eρ(a+b)
(53)

for sufficiently large n. Also notice that

P(sgn(∆̃1(i)) = −xi) = 1− P(sgn(∆̃1(i)) = xi)− P(∆̃1(i) = 0) (54)

Therefore,

P(sgn(∆̃1(i)) = xi) ≥
1 + δ

2
− 1

2
P(∆̃1(i) = 0) (55)

Then, by the law of total probability, we have

P(x̂i = xi) = P(sgn∗(∆̃1(i)) = xi) (56)

= P(sgn(∆̃1(i)) = xi) +
1

2
P(∆̃1(i) = 0) (57)

≥ 1

2
+

δ

2
(58)

Since {x̂i}’s are independent for all unrevealed vertices as {∆̃1(i)}’s and E
[
x̂ixi+1

2

]
=

P(x̂i = xi), Lemma 17 and Lemma 18 give us that

P

 1

(1− ρ)n

∑
i:x̃i=0

x̂ixi + 1

2
≤ 1

2
+

δ

2
− ϵ

 ≤ e−2ϵ2(1−ρ)n (59)

Taking ϵ = δ
4 , we have

P

(
Overlap(x|x̃i=0, x̂|x̃i=0) ≥

δ

2

)
≥ 1− e−

δ2(1−ρ)n
8 (60)

As long as a > b, we have δ > 0, which concludes the proof.

Corollary 19 The semi-supervised SBM and ERM are not mutually contiguous for any
given a > b ≥ 0 and ρ > 0.

21



Semi-Supervised Clustering of Sparse Graphs

Proof Let P
(0)
n = G(n, a+b

2n , a+b
2n , ρ) and P

(1)
n = G(n, a

n ,
b
n , ρ). Then consider the same

constant δ > 0 from the proof of Theorem 11 and denote the event sequence En =
{Overlap(x|x̃i=0, x̂|x̃i=0) ≥ δ

2} where x̂ is our semi-supervised census estimator. We have

P (0)
n (En) → 0 (Law of large number) (61)

P (1)
n (En) ↛ 0 (Bounded from below) (62)

4. Semi-Supervised SDP

We have seen that the census method solves the semi-supervised community detection
problem. But the algorithm is desirable in practice only when the amount of revealed labels
is sufficient to support a reasonable performance. In other words, it has no unsupervised
’fallback’ built in. Meanwhile, SDPs enjoy nice properties like optimality and robustness as
mentioned earlier. It is also well known that approximate information about the extremal
cuts of graphs can be obtained by computing the optimizer for SDP of their adjacency
matrix, see for example Goemans and Williamson (1995). From both a practical and a
mathematical point of view, we are interested in developing an SDP based semi-supervised
clustering approach, and through which we shall be able to see the models, algorithms and
phase transitions with a fresh perspective.

In this section, we will focus on the hypothesis testing formulation of the community
detection problem. We have discussed the equivalency between it and the non-vanishing
overlap formulation under the unsupervised setting. In the semi-supervised scenario it is
still an interesting question to ask whether there exists a test that can distinguish SBMs
from ERMs. Here we understand ERM as the special case of SBM with a = b. It also
has ground truth of labels, which is uniformly random under the balance constraint. Given
that they are originally contiguous when SNR ≤ 1, we want to show that revealed labels
together with random graphs can separate them.

4.1 SDP for Community Detection

Under the Planted Bisection Model 1, MAP estimator is equivalent to the Maximum Like-
lihood estimator, which is given by min-bisection, i.e., a balanced partition with the least
number of crossing edges. Formally, it can be written the following optimization problem,

max
x∈{1,−1}n
x⊤1=0

x⊤Ax (63)

By lifting the variable X := xx⊤, we can rewrite it as

X̂MAP(G) = argmax
X⪰0

Xii=1, ∀i∈[n]
rank(X)=1

X1=0

⟨A,X⟩ (64)
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Although min-bisection of G is optimal (in the MAP sense) for exact recovery, finding
it is NP-hard. Various relaxations have been proposed for the MAP estimator. Since the
rank constraint makes the optimization difficult, we can remove it to make the problem
convex. One can also get rid of the balance constraint by centralizing the adjacency matrix,
Ã := A − d

n11
⊤ with d = (a + b)/2 the average degree. This can also be justified using

Lagrangian multipliers. And the resulting semidefinite relaxation is given by

X̂SDP(G) = argmax
X⪰0

Xii=1, ∀i∈[n]

⟨Ã,X⟩ (65)

The feasible region {X ∈ Rn×n : X ⪰ 0, Xii = 1 ∀i ∈ [n]} is indeed the space of
correlation matrices, which defines a subset of the unit hypercube and is also called the
elliptope. Although it is derived from the relaxation of MAP, one can define the SDP for
general symmetric matrices as

SDP(Mn×n) = max{⟨M,X⟩ : X ∈ elliptopen} (66)

Proposition 20 For any n × n symmetric matrix M , if we denote its leading eigenvalue
as λ1, then

1

n
SDP(M) ≤ λ1 (67)

Proof For any feasible X ⪰ 0 and Xii = 1, we have Tr(X) = n.

⟨X,M = UΛU⊤⟩ = Tr(U⊤XUΛ) = ⟨Y := U⊤XU,Λ⟩ =
∑

Yiiλi ≤ nλ1 (68)

The last inequality follows from Tr(Y ) = n and Y ⪰ 0 so that Yii ≥ 0.

This proposition relates SDPs to spectra of the underlying matrices, which suffer from
those high degree nodes as we mentioned in the introduction. In contrast, SDPs behave
similarly on SBMs and random regular graphs. The optimal values of the SDPs for both
are approximately 2n

√
d, see Montanari and Sen (2016). Random regular graphs obey

the uniform distribution over graphs with n vertices and uniform degree d, which provide
a simple example to illustrate the regularity property of SDPs. We cite an intermediate
result from the original proof as Lemma 25.

An important way to understand SDPs is considering the Burer-Monteiro factorization
of X, which characterizes the constraints. We have X = ΣΣ⊤ with Σ = (σ1, σ2, . . . , σn)

⊤

and ∥σi∥2 = 1, ∀i ∈ [n]. Therefore, the i-th node of the graph is associated with the vector σi
that lies on the unit sphere. Xij = ⟨σi, σj⟩ can be interpreted as the affinity metric between
nodes i and j. SDP maximizes the likelihood score of this affinity matrix with respect to
the given centralized adjacency matrix. The optimizer X∗ is a better representation of the
structure information than the vanilla adjacency matrix. Then we can identify the labels
by simply running a k-means method on it or compute the eigenvector corresponding to
the largest eigenvalue.
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4.2 Constrained SDP and Semi-Supervised Testing

In this section, we introduce our SDP modification and prove that it solves the semi-
supervised community detection problem with the hypothesis testing formulation. Let x
denote labels of G(n, a

n ,
b
n). And m of them are revealed uniformly at random in a balanced

manner. Conditioning on the ground truth of clusters, indices of revealed nodesR and edges
are independent. So without loss of generality, we denote revealed labels x̃ as follows.

xi =

{
1, i = 1, 2, . . . , n2
−1, i = n

2 ,
n
2 + 1, . . . , n

x̃i =


1, i = 1, 2, . . . , m2
−1, i = n

2 ,
n
2 + 1, . . . , n+m

2

0, otherwise

(69)

We have shown that the entry value of the optimizer X can be interpreted as an affinity
metric among nodes. Moreover, we have Xij ∈ [−1, 1], ∀ i, j. It is natural to force the
optimizer to have large entry values for those vertex pairs in which we have high confidence
to be in the same community and vice versa. Therefore, we propose the CSDP approach to
integrate the information provided by semi-supervised approach. If node i and node j are
revealed to have the same label, we add the constraint Xij = 1 to the optimization model.
If they are revealed to have the opposite labels, we add Xij = −1. Formally, the CSDP is
defined as

CSDP(Mn×n) = max{⟨M,X⟩ : X ∈ elliptopen, Xij = xi · xj ∀i, j ∈ R} (70)

where R denotes the collection of revealed nodes. After reordering the indices, we can
assume it as {1, 2, . . . , m2 }

⋃
{n
2 ,

n
2 + 1, . . . , n+m

2 }. It is worth noting that the optimization
remains a positive semidefinite programming, which can be solved efficiently, for example
by interior point methods Alizadeh (1995).

Then let Sn−1 := {v ∈ Rn : ∥v∥2 = 1} be the unit (n−1)-sphere and σ = (σ1, σ2, . . . , σn) ∈
(Sn−1)n. Consider the CSDP in the form of Burer-Monteiro factorization. We have the
identity

SDP(M) = max


n∑

i,j=1

Mij⟨σi, σj⟩ : σi ∈ Sn−1 ∀i ∈ [n]

 (71)

CSDP(M) = max
σ∈(Sn−1)n


n∑

i,j=1

Mij⟨σi, σj⟩ : σ⊤
i σj = xixj ∀i, j ∈ R

 (72)

= max
σ∈(Sn−1)n

 ∑
i,j∈[n]\R

Mijσ
⊤
i σj +

∑
i,j∈R

Mijxixj + 2
∑
i∈R

∑
j∈[n]\R

xiMijσ
⊤
0 σj

 (73)

where σ0 ≡ xiσi, ∀i ∈ R. Now one can consider an alternative matrix with a special margin
denoting the algebraic sum of the blocks from M that are associated with R. We define
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Magg to be the (n−m+ 1)× (n−m+ 1) symmetric matrix indexed from 0 that

Magg
00 =

∑
i,j∈R

Mijxixj (74)

Magg
0j =

∑
i∈R

xiMi,j+m
2
, ∀j ∈ [

n

2
− m

2
] (75)

Magg
0j =

∑
i∈R

xiMi,j+m, ∀j ∈∈ [n−m] \ [n
2
− m

2
] (76)

Magg
ij = Mi+m

2
,j+m

2
, ∀i, j ∈ [

n

2
− m

2
] (77)

Magg
ij = Mi+m,j+m, ∀i, j ∈ [n−m] \ [n

2
− m

2
] (78)

Essentially, we aggregate the rows and columns related to revealed vertices according to
their communities into the 0-th row and column and reindex the matrix. It introduces
spikiness to the underlying matrix.

Magg =



∑
i,j∈RMijxixj Magg

01 Magg
02 · · · Magg

0,n−m

Magg
01

Magg
02
...

Magg
0,n−m

MR∁

 (79)

Although Montanari and Sen (2016) takes a rather different approach to study SDPs, they
also notice that the critical change comes with such built-in structures, where the authors
state ”we expect the phase transition in SDP(λvv⊤+W )/n to depend—in general—on the
vector v, and in particular on how ‘spiky’ this is”.

Combining the transformed input matrix with equation (73), we conclude that CSDP
is indeed an SDP regarding Magg,

CSDP(M) = max
σi∈Sn−m

i=0,1,...,n−m

 ∑
i,j∈[n−m]

Magg
ij σ⊤

i σj +Magg
00 + 2

∑
j∈[n−m]

Magg
0j σ⊤

0 σj

 (80)

= SDP(Magg) (81)

Lemma 21 Let MR∁ be the principle submatrix of M obtained by removing the rows and
columns associated with R. The following inequalities hold,

SDP(MR∁) ≤ CSDP(M)−Magg
00 (82)

Proof Let X∗ be the optimizer of SDP(MR∁). Define its (n−m+1)×(n−m+1) extension

X̂∗ as

X̂∗
ij =


1 i = j = 0

0 i ∈ [n−m], j = 0

0 j ∈ [n−m], i = 0

X∗
ij otherwise

(83)
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Due to the identity from above and the fact that X̂∗ ∈ elliptopen−m+1 is feasible, we can
conclude that

CSDP(M) = SDP(Magg) ≥ ⟨X̂∗,Magg⟩ = SDP(MR∁) +Magg
00 (84)

So far, all the results are deterministic, M can be arbitrary symmetric matrix and R
can be any balanced index set. Next, we will consider M = Ã := A− d

n11
⊤ to study CSDPs

on probabilistic models.

Remark 22 As shown in the Lemma 23, Ãagg
00 ≥ m · a−b

2 ≥ 0 with high probability. By

definition, we have CSDP(Ã) ≤ SDP(Ã). So, with high probability,

SDP(ÃR∁) ≤ CSDP(Ã) ≤ SDP(Ã) (85)

The CSDP always lies in between the SDPs of the original adjacency matrix and the
submatrix of unrevealed vertices. Moreover, if Ã ∼ G(n, a

n ,
b
n), we have ÃR∁ ∼ G(n −

m, a(1−ρ)
n−m , b(1−ρ)

n−m ). It is worth mentioning that although ÃR∁ is just a submatrix of the origi-
nal centered adjacency matrix, its probabilistic distribution as a random matrix is not simply
changed from n nodes to n−m nodes. The edge probability parameters are also changed by
a factor of (1−ρ). It leads to some technical challenges, which we are going to handle later.
But intuitively, from the asymptotic behavior of SDP, we can derive a rough understanding
of CSDP as n → ∞. Recall that the phase transition theory tells us that when SNR ≤ 1, the
optimal value of SDP for SBM will not be large enough to distinguish from the optimal value
of SDP for ERM. Therefore, the order of above quantities from inequality (85) suggests that
semi-supervised SDP can not help to increase the statistics associated with SBM. The best
one can hope for is that it will make the statistics associated with ERM smaller by a factor
depending on ρ. This turns out to be enough for community detection.

Recall the community detection problem can be formalized as a binary hypothesis testing
problem, whereby we want to determine, with high probability of success, whether the
random graph under consideration has a community structure or not. As discussed in
Section 2, we introduce semi-supervised learning to the problem by revealing a part of the
labels involved in the random graph generating process. Namely, if the labels associated
with a graph G over n vertices are denoted as x, we choose m of them uniformly at random
denote the index set by R, such that

∑
i∈R xi = 0.

Given a realization of the random graph G and the revealed labels xR, we want to decide
which of the following holds,

Hypothesis 0: (G, xR) ∼ G(n, d
n , ρ) is an Erdős–Rényi random graph with edge probability

d
n , d = a+b

2 and reveal ratio ρ. We denote the corresponding distribution
over graphs by P0.

Hypothesis 1: (G, xR) ∼ G(n, a
n ,

b
n , ρ) is a planted bisection random graph with edge prob-

abilities ( an ,
b
n) and reveal ratio ρ. We denote the corresponding distribution

over graphs by P1.
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A statistical test T is a function defined on the graphs and revealed labels with range {0, 1}.
It succeeds with high probability if

P0(T (G, xR) = 1) + P1(T (G, xR) = 0) → 0 (n → ∞) (86)

Notice that this is indeed a generalization of the unsupervised community detection.
Simply looking into the labels, two models are indistinguishable. What characters their
difference is the probabilistic law of how edges are generated, i.e., whether there is a cluster
structure. The revealed labels serve as an enhancement of the graph observed. The phase
transition theory says that under the unsupervised setting (the special case when ρ = 0), no
test can succeed with high probability when SNR ≤ 1, or equivalently, a− b ≤

√
2(a+ b).

While if SNR > 1, several polynomially computable tests are developed. SDP based test is
nearly optimal, in the sense that it requires

a− b√
2(a+ b)

≥ 1 + ϵ(d) (87)

where ϵ(d) → 0 as d → ∞. It is believed to be the best that SDPs can reach. As the
monotone-robustness study suggests Moitra et al. (2016), this gap may be necessary, since
SDP is indeed solving a harder problem where no algorithm can approach the threshold.
However, we are going to see that when ρ is sufficiently large, SDPs can not only reach but
cross the threshold.

4.3 Semi-Supervised Detectability

With the problem and algorithm defined clearly, we are ready to prove that SBM and
ERM can be consistently distinguished in the semi-supervised setting. We take a ’divide
and conquer’ approach to establish an upper bound of CSDP on ERM, while we bound
the CSDP on SBM from below with a witness that consists of the ground truth of labels,
X = xx⊤.

Lemma 23 Let (A, x) obey the planted bisection model G(n, a
n ,

b
n) and denote ⟨xx⊤, Ã⟩ as

Y . Then for any ϵ > 0, we have Y/n ∈ [a−b
2 − ϵ, a−b

2 + ϵ] with probability converging to one
as n → ∞.

Proof

Y = ⟨xx⊤, Ã⟩ = ⟨xx⊤, A⟩ − d

n
⟨xx⊤,11⊤⟩ (88)

d
= 2 ·

Bin((n

2

)2

− n

2
,
a

n

)
− Bin

((
n

2

)2

,
b

n

) (89)

We have EY = n
2 (a− b)− a and

VarY = 4

(
a

(
n

4
− 1

2

)(
1− a

n

)
+ b

n

4

(
1− b

n

))
≤ n(a+ b) (90)
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Then Chebyshev’s inequality implies that for any δ in(0, 1)

P

(
|Y − n

2
(a− b) + a| ≥

√
n(a+ b) · n(1−δ)/2

)
≤ 1

n1−δ
(91)

=⇒ P

(
|Y
n

− a− b

2
+

a

n
| ≥

√
a+ b

nδ/2

)
≤ 1

n1−δ
(92)

(93)

Hence, for sufficiently large n, we have

P

(
Y

n
≥ a− b

2
+ ϵ

)
+ P

(
Y

n
≤ a− b

2
− ϵ

)
≤ 1

n1−δ
(94)

Therefore,

P

(
Y

n
∈ [

a− b

2
− ϵ,

a− b

2
+ ϵ]

)
≥ 1− 1

n1−δ
(95)

Besides bounding the outcomes on the SBM from below, this lemma can also be applied
to the ’all revealed blocks’ to estimate Ãagg

00 , which is used several times throughout our
proofs.

Lemma 24 Let G ∼ G(n, a
n ,

b
n), d = a+b

2 and Ã = A − d
n11

⊤ be its centered adjacency
matrix. Then for any ϵ > 0 and γ > 0, with probability at least 1 − 1

n1−γ , for all n ≥
n0(a, b, ϵ, γ), we have

CSDP(Ã) ≥ n (
a− b

2
− ϵ) (96)

Proof We prove the lower bound by considering a witness of the constrained optimization
problem. Notice that xx⊤ is feasible for both SDP and CSDP, where x is the label vector
associated with G. Therefore,

CSDP(Ã) ≥ ⟨xx⊤, Ã⟩ (97)

Then, we can apply Lemma 23 to get the result.

This result holds for any SNR > 0 and suggests the following test for the semi-supervised
community detection problem:

T (G, xR; ∆) =

{
1 if CSDP(Ã) ≥ n[(a− b)/2−∆]

0 otherwise
(98)

The following lemma bounds the CSDP of ERM from above. Intuitively, the contri-
bution of blocks of adjacency matrix, where columns or rows are associated with revealed
nodes, concentrates well around zero. So the ’effective dimension’ of the SDP is reduced,
hence the optimal value.

28



Semi-Supervised Clustering of Sparse Graphs

Lemma 25 (Theorem 1, Montanari and Sen (2016). Reformulated.) Let G ∼ G(n, d
n)

and Ã = A− d
n11

⊤ be its centered adjacency matrix. There exists absolute constants C and
d0 > 1 such that if d ≥ d0, then with high probability,

1

n
√
d
SDP(Ã) ≤ 2 +

C log d

d1/10
(99)

This result is rigorously derived with profound insights from mathematical physics. How-
ever, there is an implicit condition on the average degree d in the proof. In fact, it is
common to assume at least d > 1 in the literature concerning unsupervised clustering
because otherwise the graph has no giant component, not to mention reconstruction, as
discussed in Section 1.2. However, our approach leads to a subgraph with possibly small
effective average degree. Moreover, we do not want to be limited by the topology structure,
although it is indeed a fundamental limit in the unsupervised setting. Theorem 12 shows
that semi-supervised SDPs are able to integrate those sublinear components. To achieve
that we resort to Grothendieck’s inequality and carry out the analysis without assumption
on d.

Theorem 26 (Grothendieck’s inequality Grothendieck (1952)) Let M be a n × n
real matrix. If for any s, t ∈ {−1, 1}n,∣∣∑

i,j

Mijsitj
∣∣ ≤ 1 (100)

Then for all vectors Xi, Yi ∈ {x ∈ Rn : ∥x∥2 ≤ 1}, i = 1, 2, . . . , n, we have∣∣∑
i,j

Mij⟨Xi, Yi⟩
∣∣ ≤ KG (101)

Here KG is an absolute constant called Grothendieck’s constant. We consider the upper
bound derived in Braverman et al. (2011),

KG <
π

2 log(1 +
√
2)

≤ 1.78 (102)

Notice that if we restrict the vectors Xi’s and Yi’s to the unit sphere Sn−1, the inequality
still holds. Since s, t are arbitrary, the left hand side of equation is the ℓ∞ → ℓ1 norm of
matrix M , which is

∥M∥∞→1 = max
∥x∥∞≤1

∥Mx∥1 = max
s,t∈{−1,1}n

s⊤Mt = max
s,t∈{−1,1}n

∣∣∑
i,j

Mijsitj
∣∣ (103)

This norm is also known as the cut norm, whose importance in algorithmic problems is well
understood in theoretical computer science community. Now we can rewrite the theorem
in the matrix form and combine it with the elliptope definition of SDP from equation (66).

Lemma 27 For arbitrary matrix M ∈ Rn×n, we have

SDP(M) ≤ max
X∈elliptopen

∣∣⟨M,X⟩
∣∣ ≤ KG∥M∥∞→1 (104)
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Next, we use Bernstein’s inequality to establish a probabilistic bound on the cut norm
of A− EA where A is the adjacency matrix of G(n, d

n).

Theorem 28 (Bernstein’s inequality Piaggio (1938)) Let {Xi}ni=1 be independent ran-
dom variables such that EXi = 0 and |Xi| ≤ M for any i ∈ [n]. Denote the average variance
as σ2 = 1

n

∑n
i=1Var(Xi). Then for any t ≥ 0,

P

 1

n

n∑
i=1

Xi > t

 ≤ exp

(
− nt2/2

σ2 + Mt
3

)
(105)

Lemma 29 Let A be the adjacency matrix of an ERM, G(n, d
n). Then, with probability at

least 1− 5−n+2,
∥A− EA∥∞→1 ≤ 6(1 + d)n (106)

Proof According to the identity from equation (100), we want to bound

∥A− EA∥∞→1 = max
s,t∈{−1,1}n

∑
i,j

(A− EA)ij sitj (107)

= max
s,t∈{−1,1}n

∑
i<j

(A− EA)ij (sitj + sjti) (108)

For fixed s, t ∈ {−1, 1}n, denote

Xij = (A− EA)ij (sitj + sjti) (1 ≤ i < j ≤ n) (109)

Then we have EXij = 0, |Xij | ≤ 2 and Var(Xij) ≤ 4 d
n for any i < j. There are totally

n(n− 1)/2 of {Xij}’s. And they are independent by the definition of ERM. So Bernstein’s
inequality implies

P

 2

n(n− 1)

∑
i<j

Xij > t

 ≤ exp

(
−n(n− 1)t2/4

4d
n + 2t

3

)
(110)

Let t = 12(1 + d)/n, which guarantees 4d/n+ 2t/3 < t. Hence,

P

∑
i<j

Xij > 6(1 + d)n

 ≤ exp
(
−3(n− 1)

)
(111)

Apply the union bound to all 22n possible (s, t), we have

P

 max
s,t∈{−1,1}n

∑
i<j

(A− EA)ij (sitj + sjti) > 6(1 + d)n

 ≤ 22n · e−3(n−1) (112)

We conclude the proof with the identity of ℓ∞ → ℓ1 norm and the fact that theright hand
side of the above inequality is less than 5−n+2.

Since the distribution of each entry in the matrix changes as n → ∞, we now develop
a slightly generalized version of the weak law of large numbers fitting for our purpose. We
use the superscripts to explicitly denote dependence on n.
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Lemma 30 For any n, let {X(n)
i }ni=1 be a collection of independent random variables. As-

sume there exist universal constants µ and σ, such that EX
(n)
i ≤ µ < ∞ and Var(X

(n)
i ) ≤

σ2 < ∞ for any n ∈ N and i ≤ n. If we denote the sample mean as

X̄(n) =
X

(n)
1 +X

(n)
2 + · · ·+X

(n)
n

n
(113)

then for any ϵ > 0,
P
(
X̄(n) ≥ µ+ ϵ

)
→ 0 as n → ∞ (114)

Proof For any n ∈ N, we have

Var(X̄(n)) =
1

n2
Var(X

(n)
1 +X

(n)
2 + · · ·+X(n)

n ) (115)

=

∑n
i=1Var(X

(n)
i )

n2
(by independence) (116)

≤ σ2/n (by uniform boundedness) (117)

Then Chebyshev’s inequality ensures

P
(
|X̄(n) − E X̄(n)| ≥ ϵ

)
≤ σ2

nϵ2
(118)

=⇒ P
(
X̄(n) ≥ 1

n

n∑
i=1

EX
(n)
i + ϵ

)
≤ σ2

nϵ2
(119)

=⇒ P
(
X̄(n) ≥ µ+ ϵ

)
≤ σ2

nϵ2
(120)

Remark 31 Comparing with a standard large deviation theory, this result allows the ran-
dom variables to not be identically distributed. And more importantly, the distributions
can depend on n. Furthermore, the random variables associated with different n are not
necessary to be independent.

Lemma 32 Let G ∼ G(n, d
n), x be the labels, R be the revealed indices and Ã = A− d

n11
⊤

be its centered adjacency matrix. Define

Bij =



∑
i,j∈R Ãijxixj i = j = 0∑
k∈R xkÃkj , i = 0, j ∈ [n] \ R∑
k∈R xkÃik, j = 0, i ∈ [n] \ R

0 otherwise

(121)

Then for any ϵ > 0, with high probability,

SDP(B) ≤ 2dm(1− m

n
) + (2n−m)ϵ (122)
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Proof Notice that for any feasible X of above optimization problem, we have X ⪰ 0, Xii =
1 ∀i ∈ [n+ 1]. So, for any i, j ∈ [n+ 1],

(ei ± ej)
⊤X(ei ± ej) = 2± 2Xij ≥ 0 =⇒ |Xij | ≤ 1 (123)

Therefore,

SDP(B) = max{⟨B,X⟩ : X ∈ elliptopen+1} (124)

= B00 + 2max

 ∑
j∈[n]\R

B0jX0j : X ∈ elliptopen+1

 (125)

≤ B00 + 2
∑

j∈[n]\R

|B0j | (126)

Note that {B0j : j ∈ [n]\R}’s are independent random variables. Moreover, if we let B1, B2

be two independent binomial random variables with the same parameter (m2 ,
d
n) and denote

their difference as Z := B1 − B2, we have B0j
d
= Z for any j ∈ [n] \ R with EZ = 0 and

VarZ ≤ dm
n .

Since Z2 ≥ |Z|, we have

E |Z| ≤ E(Z2) = VarZ ≤ d
m

n
(127)

Var |Z| = E(Z2)− (E |Z|)2 ≤ VarZ ≤ d
m

n
(128)

Then Lemma 30 can be applied to

X̄(n) :=

∑
j∈[n]\R |B0j |
n−m

(129)

So, for any ϵ > 0, we have

lim
n→∞

P

 1

n−m

∑
j∈[n]\R

|B0j | > d
m

n
+ ϵ

 = 0 (130)

Hence,
∑

j∈[n]\R |B0j | ≤ (n−m)(dm
n + ϵ) with high probability.

Lemma 23 implies, with high probability,

B00 ≤ ϵm (131)

Combining the above results with the union bound completes the proof.

Returning to the semi-supervised SDP, based on the notions from Section 4.2, we con-
sider the following decomposition of the transformed input matrix Magg with the unrevealed
part and revealed part as

Magg = M (R∁) +M (R) (132)
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where we define

M
(R)
ij =

{
Magg

ij i = 0 or j = 0

0 otherwise
(133)

To prove the main result of semi-supervised SDP, we control theM (R∁) part by Grothendieck’s
inequity and bound the contribution of M (R) with the generalized law of large numbers
shown above.
Proof [Proof of Theorem 12] Notice that Lemma 24 guarantees the test to succeed under
the SBM. We only need to show, under ERM,

CSDP(Ã) < n[(a− b)/2−∆] w.h.p. (134)

According to the identity from equation (80), we have

CSDP(Ã) = SDP(Ãagg) (135)

= max{⟨Ãagg, X⟩ : X ∈ elliptopen} (136)

= max{⟨Ã(R∁) + Ã(R), X⟩ : X ∈ elliptopen} (137)

≤ SDP(Ã(R∁)) + SDP(Ã(R)) (138)

Recall that ÃR∁ is the principal submatrix of Ã obtained by removing the rows and

columns associated with R. By definition, we have SDP(ÃR∁) = SDP(Ã(R∁)). Under the
null hypothesis, ÃR∁ has the same distribution as the centered adjacency matrix associated

with G(n−m, (1−ρ)d
n−m ). Also,

SDP
(
Ã(R∁)

)
= SDP

(
AR∁ − EAR∁ −

(1− ρ)d

n−m
In−m

)
(139)

= SDP
(
AR∁ − EAR∁

)
− (1− ρ)d (140)

Now we apply the Grothendieck’s inequality and Lemma 29. With probability at least
1− 5−(1−ρ)n+2,

SDP
(
Ã(R∁)

)
≤ 6KG[1 + (1− ρ)d](n−m) < 12(1 + d)(1− ρ)n (141)

Combining above estimations and the result from Lemma 32 with ϵ = d(1− ρ)2, we have

1

n
CSDP(Ã) ≤ 14(1− ρ)(1 + d) w.h.p. (142)

Hence, Equation 134 holds with ∆ = (a− b)/40 and ρ ≥ ρ0 = 1− a−b
30(1+d) . We conclude,

if m
n ≥ ρ0,

P0(T (G, xR) = 1) → 0 (n → ∞) (143)

Remark 33 If ρ = 0, CSDP is naturally reduced to SDP. Hence, it shares the same capa-
bility to solve the (unsupervised) community detection problem when SNR > 1 as stated in
Theorem 4. Although the analysis above cannot be directly generalized to a vanishing ρ → 0
situation, CSDP provides a new perspective for further study on the optimality of SDP.
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5. Numerical Experiments

We include some simulation results below. ρ ∈ [0, 1] is the ratio of revealed labels. Results
associated with unsupervised SDPs are identified as ρ = 0. As discussed in Section 3, to
make the comparison fair and keep the problem meaningful, all overlaps are restricted to
the unrevealed labels.

Figure 4: Disappearance of the phase transition.

Each point in Figure 4 represents one realization of a SBM with n = 1000. The dashed
line stands for the KS and information-theoretic threshold. The graphs are shared by both
the unsupervised and the semi-supervised SDPs. Overlaps of the unsupervised algorithm
essentially drop down to zero on the left-hand side. While, with 20% of the labels revealed,
the outcome of our constraint SDP algorithm goes down gradually as the SNR decreases
and remains substantially greater than zero even when SNR ≤ 1.

The phase transition theory 3 guarantees that the upper left corner of the left image
will be totally dark as n → ∞. But we see semi-supervised SDPs successfully ’light up’ the
area between the two reference lines, see Figure 5. Moreover, when n is sufficiently large,
there will be no pixel with value 0.

Figure 6 shows color-coded entry values of optimizerX∗ in different settings and suggests
that representing of the underlying community structure is significantly enhanced by the
semi-supervised approach, while no such structure is introduced if there should not be one.

To see how such a better representation leads to a successful test that is originally
impossible, we consider the following simulations. We generate 50 independent realizations
of underlying random graphs (n = 200) and compute their SDP values with and without
the semi-supervised constraints (ρ = 0.25). Particularly, the parameters in Figure 7 are
chosen to have SNR > 1. The left two boxes imply that we can tell the difference between
SBM and the ERM with the same average degree d = (a + b)/2. However, as in Figure 8,
the vanilla SDP gives essentially the same result since the two models become contiguous
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Figure 5: Overlap heatmaps of the unsupervised (left) and the semi-supervised (right)
SDPs. The coordinates correspond to the model parameters a and b. The solid
line represents the KS and information-theoretic threshold. The dash line corre-
sponds to a = b.

if SNR ≤ 1. As we have proved in Theorem 12, our semi-supervised SDP algorithm still
manages to distinguish them by bringing down the optimal value of ERM more significantly
comparing to its effect on SBM, which is confirmed by the right two boxes.

6. Conclusion

The census method comes from the combinatorial perspective, while the CSDP is inspired by
convex optimization research. Both algorithms are computationally efficient. The former
has no requirement on the reveal ratio. The latter one is more practical and backward
compatible to the unsupervised setting. By carefully integrating the revealed information
with the observed graph structure, we can not only improve the performance of clustering
algorithms but resolve initially unsolvable problems. The fundamental changes brought by
semi-supervised approach let us cross KS threshold, information-theoretical threshold and
even the topological limitation.

Our work provides a different angle to study stochastic models of network and semidef-
inite programs. In real-world situations, it is almost always the case that we will have
a certain fraction of samples being understood fairly well. So an abstract model should
be able to capture the existence of such knowledge instead of being blindly restricted to
unsupervised setting. Combining the universality of ’revealed’ information and the insight
derived from our census method, it is arguable that the phase transitions, although very
mathematically beautiful, will never be an issue in practice. Our results on CSDPs, in
turn, could be used to study SDPs, e.g. prove or disprove it can reach the phase transition
threshold or the monotone-robustness threshold by a limiting process of ρ → 0.
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Figure 6: Visualization of the optimizer X∗. The upper row is concerned with one realiza-
tion of the SBM G(1000, 12/1000, 5/1000), where the left image shows the value
of optimizer for the unsupervised SDP and the right image is associated with
the semi-supervised SDP with ρ = 0.2. The lower left image is optimizer for
one realization of the ERM of the same size with the associated average degree
d = 8.5, indices of which are reordered such that the entries related to revealed
labels are gathered in four corners. It could be understood as the situation of
null hypothesis we defined in Section 4.2.
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SDP optimal value, when SNR is above KS/IT

Figure 7: a = 9, b = 2 (d = 5.5, SNR ≈ 2.23)

SDP optimal value, when SNR is below KS/IT

Figure 8: a = 5, b = 2 (d = 3.5, SNR ≈ 0.64)
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