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Abstract. Differential privacy is a mathematical concept that provides an information-
theoretic security guarantee. While differential privacy has emerged as a de facto standard
for guaranteeing privacy in data sharing, the known mechanisms to achieve it come with
some serious limitations. Utility guarantees are usually provided only for a fixed, a priori
specified set of queries. Moreover, there are no utility guarantees for more complex—but
very common—machine learning tasks such as clustering or classification. In this paper we
overcome some of these limitations. Working with metric privacy, a powerful generalization
of differential privacy, we develop a polynomial-time algorithm that creates a private measure
from a data set. This private measure allows us to efficiently construct private synthetic
data that are accurate for a wide range of statistical analysis tools. Moreover, we prove
an asymptotically sharp min-max result for private measures and synthetic data for general
compact metric spaces. A key ingredient in our construction is a new superregular random
walk, whose joint distribution of steps is as regular as that of independent random variables,
yet which deviates from the origin logarithmicaly slowly.

1. Introduction

1.1. Motivation. The right to privacy is enshrined in the Universal Declaration of Human
Rights [7]. However, as artificial intelligence is more and more permeating our daily lives,
data sharing is increasingly locking horns with data privacy concerns. Differential privacy
(DP), a probabilistic mechanism that provides an information-theoretic privacy guarantee,
has emerged as a de facto standard for implementing privacy in data sharing [23]. For
instance, DP has been adopted by several tech companies [21] and will also be used in
connection with the release of the Census 2020 data [3, 2].

Yet, current embodiments of DP come with some serious limitations [18, 26, 52]:

(i) Utility guarantees are usually provided only for a fixed set of queries. This means that
either DP has to be used in an interactive scenario or the queries have to specified in
advance.

(ii) There are no utility guarantees for more complex—but very common—machine learning
tasks such as clustering or classification.

(iii) DP can suffer from a poor privacy-utility tradeoff, leading to either insufficient privacy
protection or to data sets of rather low utility, thereby making DP of limited use in
many applications [18].

Another approach to enable privacy in data sharing is based on the concept of synthetic
data [9]. The goal of synthetic data is to create a dataset that maintains the statistical
properties of the original data while not exposing sensitive information. The combination
of differential privacy with synthetic data has been suggested as a best-of-both-world solu-
tions [24, 9, 31, 35, 13]. While combining DP with synthetic data can indeed provide more
flexibility and thereby partially address some of the issues in (i), in and of itself it is not a
panacea for the aforementioned problems.
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One possibility to construct differentially private synthetic datasets that are not tailored
to a priori specified queries is to simply add independent Laplacian noise to each data point.
However, the amount noise that has to be added to achieve sufficient DP is too large with
respect to maintaining satisfactory utility even for basic counting queries [53], not to mention
more sophisticated machine learning tasks.

This raises the fundamental question whether it is even possible to construct in a nu-
merically efficient manner differentially private synthetic data that come with rigorous utility
guarantees for a wide range of (possibly complex) queries, while achieving a favorable privacy-
utility tradeoff? In this paper we will answer this question to the affirmative.

1.2. A private measure. A main objective of this paper is to construct a private measure
on a given metric space (T, ρ). Namely, we design an algorithm that transforms a probability
measure µ on T into another probability measure ν on T , and such that this transformation
is both private and accurate.

For clarity, let us first consider the special case of empirical measures, where our goal can be
understood as creating differentially private synthetic data. Specifically, we are looking for a
computationally tractable algorithm that transforms true input data X = (X1, . . . , Xn) ∈ Tn
into synthetic output data Y = (Y1, . . . , Ym) ∈ Tm for some m, and which is ε-differentially
private (see Definition 2.1) and such that the empirical measures

µX =
1

n

n∑
i=1

δXi and µY =
1

m

m∑
i=1

δYi

are close to each other in the Wasserstein 1-metric (recalled in Section 2.2.2):

EW1 (µX , µY ) ≤ γ, (1.1)

where γ > 0 is as small as possible. In other words, our goal is to create synthetic data
Y from the true data X by adding noise of average magnitude γ, just not necessarily i.i.d.
noise.

The main result of this paper is a computationally effective private algorithm whose ac-
curacy γ that is expressed in terms of the multiscale geometry of the metric space (T, ρ).
A consequence of this result, Theorem 9.7, states that if the metric space has Minkowski
dimension d ≥ 1, then, ignoring the dependence on ε and lower-order terms in the exponent,
we have

EW1 (µX , µY ) ∼ n−1/d (1.2)

The dependence on n is optimal and quite intuitive. Indeed, if the true data X consists of
n i.i.d. random points chosen uniformly from the unit cube T = [0, 1]d, then the average

spacing between these points is of the order n−1/d. So our result shows that privacy can
be achieved by a microscopic perturbation, one whose magnitude is roughly the same as the
average spacing between the points.

Our more general result, Theorem 7.2, holds for arbitrary compact metric spaces (T, ρ)
and, more importantly, for general input measures (not just empirical ones). To be able to
work in such generality, we employ the notion of metric privacy which reduces to differential
privacy when we specialize to empirical measures (Section 2.1).

1.3. Uniform accuracy over Lipschitz statistics. The choice of the Wasserstein 1-metric
to quantify accuracy ensures that all Lipschitz statistics are preserved uniformly. Indeed, by
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the Kantorovich-Rubinstein duality theorem, (1.1) yields

E sup
f

∣∣∣ 1
n

n∑
i=1

f(Xi)−
1

m

m∑
i=1

f(Yi)
∣∣∣ ≤ γ (1.3)

where the supremum is over all 1-Lipschitz functions f : T → R.
Standard private synthetic data generation methods that come with rigorous accuracy

guarantees do so with respect to a predefined set of linear queries, such as low-dimensional
marginals, see e.g. [8, 44, 22, 13]. While this may suffice in some cases, there is no assurance
that the synthetic data behave in the same way as the original data under more complex,
but frequently employed, machine learning techniques. For instance, if we want to apply a
clustering method to the synthetic data, we cannot be sure that the results we get are close to
those for the true data. This can drastically limit effective and reliable analysis of synthetic
data.

In contrast, since the synthetic data constructed via our proposed method satisfy a uniform
bound (1.3), this provides data analysts with a vastly increased toolbox of machine learning
methods for which one can expect outcomes that are similar for the original data and the
synthetic data.

As concrete examples let us look at two of the most common tasks in machine learn-
ing, namely clustering and classification. While not every clustering method will satisfy a
Lipschitz property, there do exist Lipschitz clustering functions that achieve state-of-the-art
results, see e.g. [32, 55]. Similarly, there is distinct interest in Lipschitz function based clas-
sifiers, since they are more robust and less susceptible to adversarial attacks. This includes
conventional classification methods such as support vector machines [51] as well as classi-
fiers based on Lipschitz neural networks [50, 10]. These are just a few examples of complex
machine learning tools that can be reliably applied to the synthetic data constructed via
our private measure algorithm. Moreover, since our results hold for general compact metric
spaces, this paves the way for creating private synthetic data for a wide range of data types.
We will present a detailed algorithmic and numerical investigation of the proposed method
in a forthcoming paper.

1.4. A superregular random walk. The most popular way to achieve privacy is by adding
random noise, typically either by adding an appropriate amount of Laplacian noise or Gauss-
ian noise (these methods are aptly referred to as Laplacian mechanism and Gaussian mech-
anism, respectively [23]). We, too, can try to make a probability measure µ on T private by
discretizing T (replacing it with a finite set of points) and then adding random noise to the
weights of the points. Going this route, however, yields suboptimal results. For example, it is
not difficult to check that if T is the interval [0, 1], the accuracy of the Laplacian mechanism

cannot be better than n−1/2, which is suboptimal compared to optimal accuracy n−1 in (1.2).
This loss of accuracy is caused by the accumulation of additive noise. Indeed, adding n

independent random variables of unit variance produces noise of the order n1/2. This prompts
a basic probabilistic question: can we construct n random variables that are “close” to being
independent, but whose partial sums cancel more perfectly than those of independent random
variables? We answer this question affirmatively in Theorem 3.1, where we construct random
variables Z1, . . . , Zn whose joint distribution is as regular as that of i.i.d. Laplacian random
variables, yet whose partial sums grow logarithmically as opposed to n1/2:

max
1≤k≤n

E
(
Z1 + · · ·+ Zk

)2
= O(log3 n).
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One can think of this as a random walk that is locally similar to the one with i.i.d. steps,
but is globally much more bounded. Our construction is a nontrivial modification of Lévy’s
construction of Brownian motion. It may be interesting and useful beyond applications to
privacy.

1.5. Comparison to existing work. The numerically efficient construction of accurate
differentially private synthetic data is highly non-trivial. As case in point, Ullman and Vad-
han [45] showed (under standard cryptographic assumptions) that in general it is NP-hard
to make private synthetic Boolean data which approximately preserve all two-dimensional
marginals. There exists a substantial body of work for generating privacy-preserving syn-
thetic data, cf. e.g. [4, 15, 1, 17, 36], but—unlike our work—without providing any rigorous
privacy or accuracy guarantees. Those papers on synthetic data that do provide rigorous
guarantees are limited to accuracy bounds for a finite set of a priori specified queries, see for
example [8, 12, 44, 22, 13, 14], see also the tutorial [46]. As discussed before, this may suffice
for specific purposes, but in general severely limits the impact and usefulness of synthetic
data. In contrast, the present work provides accuracy guarantees for a wide range of machine
learning techniques. Furthermore, our our results hold for general compact metric spaces, as
we establish metric privacy instead of just differential privacy.

A special example of the topic investigated in this paper is the publication of differentially
private histograms, which is a well studied problem in the privacy literature, see e.g. [27, 40,
37, 54, 53, 38, 56, 2] and Chapter 4 in [34]. In the specific context of histograms, the Haar
function based approach to construct a superregular random walk proposed in our paper
is related to the wavelet-based method [53] and to other hierarchical histogram partitioning
methods [27, 40, 56]. Like our approach, [27, 53] obtain consistency of counting queries across
the hierarchical levels, owing to the specific way that noise is added. Also, the accuracy
bounds obtained in [27, 53] are similar to ours, as they are also polylogarithmic (although we
are able to obtain a smaller exponent). There are, however, several key differences. While
our approach gives a convenient way to generate accurate and differentially private synthetic
data Y from true data X, the methods of the aforementioned papers are not suited to create
synthetic data. Instead, these methods release answers to queries. Moreover, accuracy is
proven for just a single given range query and not simultaneously for all queries like we do.
This limitation makes it impossible to create accurate synthetic data with the algorithms
in [27, 53]. Moreover, unlike the aforementioned papers, our work allows the data to be quite
general, since we prove metric privacy and not just differential privacy. Furthermore, our
results apply to multi-dimensional data, and are not limited to the one-dimensional setting.

There exist several papers on the private estimation of density and other statistical quan-
tities [28, 19], and sampling from distributions in a private manner is the topic of [41]. While
definitely interesting, that line of work is not concerned with synthetic data, and thus there
is little overlap with this work.

1.6. The architecture of the paper. The remainder of this paper is organized as follows.
We introduce some background material and notation in Section 2, such as the concept of
metric privacy which generalizes differential privacy. In Section 3 we construct a superregular
random walk (Theorem 3.1). We analyze metric privacy in more detail in Section 4, where
we also provide a link from the general private measure problem to private synthetic data
(Lemma 4.1). In Section 5 we use the superregular random walk to construct a private
measure on the interval [0, 1] (Theorem 5.4). In Section 6 we use a link between the Traveling
Salesman Problem and minimum spanning trees to devise a folding technique, which we apply
in Section 7 to “fold” the interval into a space-filling curve to construct a private measure on
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a general metric space (Theorem 7.2). Postprocessing the private measure with quantization
and splitting, we then generate private synthetic data in a general metric space (Corollary 7.4).
In Section 8 we turn to lower bounds for private measures (Theorem 8.5) and synthetic data
(Theorem 8.6) on a general metric space. We do this by employing a technique of Hardt and
Talwar, which we present in a Proposition 8.1 that identifies general limitations for synthetic
data. In Section 9 we illustrate our general results on a specific example of a metric space: the
Boolean cube [0, 1]d. We construct a private measure (Corollary 9.1) and private synthetic
data (Corollary 9.2) on the cube, and show near optimality of these results in Corollary 9.3
and Corollary 9.4, respectively. Results similar to the ones for the d-dimensional cube hold
for arbitrary metric space of Minkowski dimension d. For any such space, we prove an
asymptotically sharp min-max results for private measures (Theorem 9.6) and synthetic data
(Theorem 9.7).

2. Background and Notation

The motivation behind the concept of differential privacy is the desire to protect an in-
dividual’s data, while publishing aggregate information about the database [23]. Adding or
removing the data of one individual should have a negligible effect on the query outcome, as
formalized in the following definition.

Definition 2.1 (Differential Privacy [23]). A randomized algorithm M gives ε-differential
privacy if for any input databases D and D′ differing on at most one element, and any
measurable subset S ⊆ range(M), we have

P
{
M(D) ∈ S

}
P
{
M(D′) ∈ S

} ≤ exp(ε),

where the probability is with respect to the randomness of M.

2.1. Defining metric privacy. While differential privacy is a concept of the discrete world
(where datasets can differ in a single element), it is often desirable to have more freedom
in the choice of input data. The following general notion (which seems to be known under
slightly different, and somewhat less general, versions, see e.g. [5] and the references therein)
extends the classical concept of differential privacy.

Definition 2.2 (Metric privacy). Let (T, ρ) be a compact metric space and E be a measurable
space. A randomized algorithm A : T → E is called α-metrically private if, for any inputs
x, x′ ∈ T and any measurable subset S ⊂ E, we have

P
{
A(x) ∈ S

}
P
{
A(x′) ∈ S

} ≤ exp
(
αρ(x, x′)

)
. (2.1)

To see how this metric privacy encompasses differential privacy, consider a product space
T = X n and equip it with the Hamming distance

ρH(x, x′) =
∣∣{i ∈ [n] : xi 6= x′i}

∣∣ . (2.2)

The α-differentially privacy of an algorithm A : X n → E can be expressed as

P
{
A(x) ∈ S

}
P
{
A(x′) ∈ S

} ≤ exp (α) whenever ρH(x, x′) ≤ 1. (2.3)

Note that (2.3) is equivalent to (2.1) for ρ = ρH . Obviously, (2.1) implies (2.3). The converse
implication can be proved by replacing one coordinate of x by the corresponding coordinate
of x′ and applying (2.3) ρH(x, x′) times, then telescoping. Let us summarize:
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Lemma 2.3 (MP vs. DP). Let X be an arbitrary set. Then an algorithm A : X n → E is
α-differentially private if an only if A is α-metrically private with respect to the Hamming
distance (2.2) on X n.

Unlike differential privacy, metric privacy goes beyond product spaces, and thus allows the
data to be quite general. In this paper, for example, the input data are probability measures.
Moreover, metric privacy does away with the assumption that the data sets D,D′ be different
in a single element. This assumption is sometimes too restrictive: general measures, for
example, do not break down into natural single elements.

2.2. Distances between measures. This paper will use three classical notions of distance
between measures.

2.2.1. Total variation. The total variation (TV) norm [20, Section III.1] of a signed measure
µ on a measurable space (Ω,F) is defined as1

‖µ‖TV =
1

2
sup

Ω=∪iAi

∑
i

∣∣µ(Ai)
∣∣ (2.4)

where the supremum is over all partitions Ω into countably many parts Ai ∈ F . If Ω is
countable, we have

‖µ‖TV =
1

2

∑
ω∈Ω

∣∣µ({ω})
∣∣ . (2.5)

The TV distance between two probability measures µ and ν is defined as the TV norm of
the signed measure µ− ν. Equivalently,

‖µ− ν‖TV = sup
A∈F

∣∣µ(A)− ν(A)
∣∣ .

2.2.2. Wasserstein distance. Let (Ω, ρ) be a bounded metric space. We define the Wasser-
stein 1-distance (henceforth simply referred to as Wasserstein distance) between probability
measures µ and ν on Ω as [49]

W1(µ, ν) = inf
γ

∫
Ω×Ω

ρ(x, y) dγ(x, y) (2.6)

where the infimum is over all couplings γ of µ and ν, or probability measures on Ω×Ω whose
marginals on the first and second coordinates are µ and ν, respectively. In other words,
W1(ν, µ) minimizes the transportation cost between the “piles of earth” µ and ν.

The Kantorovich-Rubinstein duality theorem [49] gives an equivalent representation:

W1(µ, ν) = sup
‖h‖Lip≤1

(∫
h dµ−

∫
h dν

)
where the supremum is over all continuous, 1-Lipschitz functions h : Ω→ R.

For probability measures µ and ν on R, the Wasserstein distance has the following repre-
sentation, according to Vallender [47]:

W1(µ, ν) =
∥∥Fµ − Fν∥∥L1(R)

. (2.7)

Here Fµ(x) = µ
(
(−∞, x]

)
is the cumulative distribution function of µ, and similarly for

Fν(x).

1The factor 2 is chosen for convenience.
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Vallender’s identity (2.7) can be used to define Wasserstein distance for signed measures
on R. Moreover, for signed measures on [0, 1], the Wasserstein distance defined this way is
always finite, and it defines a pseudometric.

3. A superregular random walk

The classical random walk with independent steps of unit variance is not bounded: it
deviates from the origin at the expected rate ∼ n1/2. Surprisingly, there exists a random
walk whose joint distribution of steps is as regular as that of independent Laplacians, yet
that deviates from the origin logarithmically slowly.

Theorem 3.1 (A superregular random walk). For every n ∈ N, there exists a probability

density of the form f(z) = 1
β e
−V (z) on Rn that satisfies the following two properties.

(i) (Regularity): the potential V is 1-Lipschitz in the `1 norm, i.e.∣∣V (x)− V (y)
∣∣ ≤‖x− y‖1 for all x, y ∈ Rn. (3.1)

(ii) (Boundedness): a random vector Z = (Z1, . . . , Zn) distributed according to the density
f satisfies

E(Z1 + · · ·+ Zk)
2 ≤ C log3 n for all 1 ≤ k ≤ n, (3.2)

where C > 0 is a universal constant.

3.1. Heuristics. We will define a superregular random walk by modifying the Lévy’s con-
struction of the Brownian motion. In this construction, the path of a Brownian motion on
[0, 1] is defined as a random Gaussian series with respect to the Faber-Schauder basis of the
space of continuous functions, see [11, Section IX.1]. We will replace Gaussian weights by
Laplacian weights with smaller variances, and truncate the series.

To that end, recall the definition of the Faber-Schauder system of “hat functions” φ1, φ2, . . .
on the interval [0, 1]. First, we set

φ1(t) = t.

Next, for each level ` ∈ N and each k ∈ {1, . . . , 2`−1}, we define φ2`−1+k(t) as the function on
[0, 1] that takes value 0 outside the interval

(a`,k, b`,k) :=

(
k − 1

2`−1
,

k

2`−1

)
, (3.3)

takes value 1 at the midpoint ck := (2k − 1)/2` of the interval, and interpolates linearly in
between. The Faber-Schauder system forms a Shcauder basis in the Banach space C0[0, 1] of
continuous functions that take zero value at the origin.

The Faber-Schauder system is conveniently organized by levels ` = 0, 1, 2, . . . We place
a single function φ1(t) = t is on level ` = 0, and each subsequent level ` ≥ 1 contains
2`−1 functions φj supported on disjoint intervals (a`,k, b`,k) of length 1/2`−1. Throughout
this section, `(j) will denote the level the function φj belongs to, e.g. `(1) = 0, `(2) = 1,
`(3) = `(4) = 2, `(5) = `(6) = `(7) = `(8) = 3, etc. See Figure 1 for an illustration of these
functions.

Lévy’s definition of the standard Brownian motion on the interval [0, 1] is

Bn(t) =

∞∑
j=1

Gjφj(t), (3.4)
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Level 0: φ1 Level 1: φ2 Level 2: φ3, φ4 Level 3: φ5, . . . , φ8

Figure 1. Faber-Schauder system

where Gj are independent normal random variables, namely

G1 ∼ N(0, 1); Gj ∼ N
(
0, 2−`(j)−1

)
, j = 2, 3, . . . .

To construct a superregular random walk, we replace the Gaussian weights Gj by Lapla-
cian2 weights Λj ∼ Lap(log n). and we truncate the series at n. Thus, we set

Wn(t) =
n∑
j=1

Λjφj(t). (3.5)

The superregular random walk could then be defined as

Z1 + · · ·+ Zk = Wn(k/n), k = 1, . . . , n. (3.6)

3.2. Formal construction. First observe that the regularity property (3.1) of a probability
distribution on Rn passes on to the marginal distributions. For example, regularity of a
random vector (X1, X2) ∈ R2 means that

f(X1,X2)(x1, x2) ≤ exp(−|x1 − y1| −|x2 − y2|) f(X1,X2)(y1, y2),

for all (x1, y1), (x2, y2) ∈ R2. In particular,

f(X1,X2)(x1, x2) ≤ exp(−|x2 − y2|) f(X1,X2)(x1, y2).

Taking integral with respect to x1 on both sides yields

fX2(x2) ≤ exp(−|x2 − y2|) fX2(y2),

which is equivalent to the regularity of the random vector X2 ∈ R1. The same argument
works in higher dimensions.

Thus, by dropping at most n/2 terms if necessary, we can assume without loss of generality
that

n = 2L for some L ∈ N, (3.7)

Thus, the Faber-Schauder functions φ1, . . . , φn are partitioned in L+ 1 full levels 0, 1, . . . , L.
Consider i.i.d. random variables

Λ1, . . . ,Λn ∼ Lap(2L+ 1), (3.8)

define the random processWn(t) by equation (3.5), and define the random variables Z1, . . . , Zk
by equation (3.6).

The construction is complete. It remains to check boundedness and regularity.

2A Laplacian random variable X ∼ Lap(λ) is defined by P
{
|X| > t

}
= exp(−t/λ), t ≥ 0. The Laplacian

distribution has density (1/2λ) exp(−|x| /λ) on R. The mean equals zero and the variance equals 2λ2.
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3.3. Boundedness. Fix k ∈ [n]. We have

E(Z1 + · · ·+ Zk)
2 = E

 n∑
j=1

Λj φj(k/n)

2

(by definition)

=
n∑
j=1

E[Λ2
j ]φj(k/n)2 (by independence and mean zero) (3.9)

= 2(2L+ 1)2
n∑
j=1

φj(k/n)2 (by (3.8)).

By construction, the Faber-Schauder functions φj on each given level have disjoint support.
Thus, on each level there can be be at most one function that makes the value φj(k/n)2

nonzero. By construction, this value is bounded by 1. Adding these values for the L + 1
levels, we conclude that

∑n
j=1 φj(k/n)2 is bounded by L+ 1. Hence

E(Z1 + · · ·+ Zk)
2 ≤ 2(2L+ 1)2(L+ 1) . log3 n

where we used (3.7) in the last step.

3.4. Regularity. By definition (3.5) and (3.6), we have

Zk = Wn

(
k

n

)
−Wn

(
k − 1

n

)
=

n∑
j=1

Λjψj(k)

where

ψj(k) = φj

(
k

n

)
− φj

(
k − 1

n

)
, k = 1, . . . , n.

The discrete functions ψj can be thought as (discrete) derivatives of the Faber-Schauder
functions φj , and they are known as (discrete, rescaled) Haar system, cf. [42, 11]. The Haar
basis is illustrated in Figure 2.

Level 0: φ1 Level 1: φ2 Level 2: φ3, φ4 Level 3: φ5, . . . , φ8

Figure 2. Haar system

The Haar system ψ1, . . . , ψn form an orthogonal basis of `2[n], see [11]. Thus, every function
x ∈ `2[n] admits the orthogonal decomposition

x =
n∑
j=1

λ(x)j ψj where λ(x)j =
〈ψj , x〉
‖ψj‖22

,

where 〈 , 〉 and ‖ ‖2 are the standard inner product and norm on `2[n].
The key property of the coefficient vector λ(x) is its approximate sparsity, which we can

express via the `1 norm.
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Lemma 3.2 (Sparsity). For any function x ∈ `2[n], the coefficient vector λ(x) satisfies∥∥λ(x)
∥∥

1
≤ (2L+ 1)‖x‖1 .

Proof. First, let us prove the lemma for the indicator of any single point k ∈ [n], i.e. for
x = 1{k}. Here we have

λ(x)j =
ψj(k)

‖ψj‖22
.

First, consider j = 1, the only index on level ` = 0. The function ψ1(t) = 1/n trivially

satisfies ψ1(k) = 1/n and ‖ψj‖22 = 1/n, so we have λ(x)1 = 1.
Next, consider an index j on some level ` ≥ 1. By construction, any function ψj on that

level can takes on three values: 0 and ±2`/n. Moreover, ψj is supported on an interval of

length n/2`−1, see (3.3). Hence ‖ψj‖22 = 2`+1/n, so
∣∣λ(x)j

∣∣ ≤ 2.
Moreover, the functions ψj on any given level have disjoint support. So among all such

functions on each level, at most one can make the value ψj(k) and thus λ(x)j nonzero. As
we just showed, for level 0 this value is 1, and for each subsequent level ` ∈ {1, . . . , L}, this
value is bounded by 2. Summing over all levels, we conclude that

∥∥λ(x)
∥∥

1
≤ 2L+ 1.

To extend this bound to a general function x ∈ `2[n], decompose it as x =
∑n

k=1 x(k)1{k}.

Then, by linearity, λ(x) =
∑n

k=1 x(k)λ(1{k}), so∥∥λ(x)
∥∥

1
≤

n∑
k=1

∣∣x(k)
∣∣ ∥∥λ(1{k})

∥∥
1
.

The bound
∥∥λ(1{k})

∥∥
1
≤ 2L + 1 from the first part of the argument completes the proof of

the lemma. �

We are ready to prove regularity. Consider the random function Z =
∑n

j=1 Λjψj con-

structed in Subsection 3.2. In our new notation, the coefficient vector of Z is λ(Z) =
(Λ1, . . . ,Λn) =: Λ. We have for any x, y ∈ `2[n]:

r(x, y) :=
densX(x)

densX(y)
=

densΛ(λ(x))

densΛ(λ(y))
. (3.10)

To see this, recall that the map x 7→ λ(x) is a linear bijection on `2[n]. Hence for any ε > 0
and for the unit ball B of `2[n], we have

P
{
X ∈ x+ εB

}
P
{
X ∈ y + εB

} =
P
{

Λ ∈ λ(x) + ελ(B)
}

P
{

Λ ∈ λ(y) + ελ(B)
} .

Taking the limit on both sides as ε→ 0+ and applying the Lebesgue differentiation theorem
yield (3.10).

By construction, the coefficients Λi of the random vector Λ ∈ Rn are Lap(2L + 1) i.i.d.
random variables. Hence

densΛ(z) =
1(

2(2L+ 1)
)n exp

(
−
‖z‖1

2L+ 1

)
, z ∈ Rn.

Thus,

r(x, y) = exp

(∥∥λ(y)
∥∥

1
−
∥∥λ(x)

∥∥
1

2L+ 1

)
.

By the triangle inequality and Lemma 3.2, we have∥∥λ(y)
∥∥

1
−
∥∥λ(x)

∥∥
1
≤
∥∥λ(x)− λ(y)

∥∥
1
≤ (2L+ 1)‖x− y‖1 .
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Thus
r(x, y) ≤ exp(‖x− y‖1).

If we express the density in the form densX(x) = 1
β e
−V , the bound we proved can be

written as
exp

(
V (y)− V (x)

)
≤ exp(‖x− y‖1),

or V (y) − V (x) ≤‖x− y‖1. Swapping x with y yields
∣∣V (x)− V (y)

∣∣ ≤‖x− y‖1. The proof
of Theorem 3.1 is complete. �

Remark 3.3 (Boundedness of paths). One can easily upgrade the bound (3.2), which holds in
expectation, into a concentration bound that holds with high probability. To do so, instead
of applying the additivity of variance in (3.9), one can use a concentration inequality for
sums of independent random variables, e.g. Bernstein’s. Moreover, combining the resulting
high-probability bound with a union bound, one can obtain boundedness of the entire paths
of the random walk, showing that

E max
1≤k≤n

(
Z1 + · · ·+ Zk

)2 ≤ C log4 n.

Since we do not need this result for our application, we leave it to the interested reader.

3.5. Beyond the `1 norm? One may wonder why specifically the `1 norm appears in the
regularity property of Theorem 3.1. As we will see shortly, the regularity with respect to
the `1 norm is exactly what is needed in our applications to privacy. However, it might be
interesting to see if there are natural extensions of Theorem 3.1 for general `p norms. The
lemma below rules out one such avenue, showing that if a potential V is Lipschitz with respect
to the `p norm for some p > 1, the corresponding random walk deviates at least polynomially
fast (as opposed to logarithmically fast).

Proposition 3.4 (No boundedness for `p-regular potentials). Let n ∈ N and consider a

probability density of the form f(z) = 1
β e
−V (z) on Rn. Assume that the potential V is 1-

Lipschitz in the `p-norm. Then a random vector Z = (Z1, . . . , Zn) distributed according to
the density f satisfies

E|Z1 + · · ·+ Zn| ≥
1

4
n

1− 1
p .

Proof. We can write Z1 + · · · + Zn = 〈Z, u〉 where u = (1, . . . , 1)T. Since ‖n−
1
pu‖p = 1 and

V is 1-Lipschitz in the `p norm, the densities of the random vectors Z + n
− 1

pu and Z differ
by a multiplicative factor of at most e pointwise. Therefore,

E
∣∣〈Z, u〉∣∣ ≥ e−1 E

∣∣〈Z + n
− 1

pu, u〉
∣∣

≥ e−1
(∣∣〈n− 1

pu, u〉
∣∣− E

∣∣〈Z, u〉∣∣ ) (by triangle inequality)

= e−1
(
n

1− 1
p − E

∣∣〈Z, u〉∣∣ ).
Rearranging the terms, we deduce that

E
∣∣〈Z, u〉∣∣ ≥ e−1

1 + e−1
n

1− 1
p ≥ 1

4
n

1− 1
p ,

which completes the proof. �

In light of Theorem 3.1 and Proposition 3.4 it might be interesting to see if an obstacle
remains for the density f(z) = 1

β e
−V (z)p for p > 1.
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4. Metric privacy

4.1. Private measures. The superregular random walk we just constructed will become
the main tool in solving the following private measure problem. We are looking for a private
and accurate algorithm A that transforms a probability measure µ on a metric space (T, ρ)
into another finitely-supported probability measure A(µ) on (T, ρ).

We need to specify what we mean by privacy and accuracy here. Metric privacy offers
a natural framework for our problem. Namely, we consider Definition 2.2 for the space
(M(T ),TV) of all probability measures on T equipped with the TV metric (recalled in
Section 2.2.1). Thus, for any pair of input measures µ and µ′ on T that are close in the TV
metric, we would like the distributions of the (random) output measures A(µ) and A(µ′) to
be close:

P
{
A(µ) ∈ S

}
P
{
A(µ′) ∈ S

} ≤ exp
(
α ‖µ− µ′‖TV

)
. (4.1)

The accuracy will be measured via the Wasserstein distance (recalled in Section 2.2.2). We
hope to make W1(A(µ), µ) as small as possible. The reason for choosing W1 as distance is
that it allows us to derive accuracy guarantees for general Lipschitz statistics, as outlined
below.

4.2. Synthetic data. The private measure problem has an immediate application for dif-
ferentially private synthetic data. Let (T, ρ) be a compact metric space. We hope to find
an algorithm B that transforms the true data X = (X1, . . . , Xn) ∈ Tn into synthetic data
Y = (Y1, . . . , Ym) ∈ Tm for some m such that the empirical measures

µX =
1

n

n∑
i=1

δXi and µY =
1

m

m∑
i=1

δYi

are close in the Wasserstein distance, i.e. we hope to make W1(µX , µY ) small. This would
imply that synthetic data accurately preserves all Lipschitz statistics, i.e.

1

n

n∑
i=1

f(Xi) ≈
1

m

m∑
i=1

f(Yi)

for any Lipschitz function f : T → R.
This goal can be immediately achieved if we solve a version of the private measure problem,

described in Section 4.1, with the additional requirement that A(µ) be an empirical measure.
Indeed, define the algorithm B by feeding the empirical measure µX into A, i.e. set B(X) =
A(µX). The accuracy follows, and the differential privacy of B can be seen as follows.

For any pair X,X ′ of input data that differ in a single element, the corresponding empirical
measures differ by at most 1/n with respect to the TV distance, i.e.

‖µX − µX′‖TV ≤
1

n
.

Then, for any subset S in the output space, we can use (4.1) to get

P
{
B(X) ∈ S

}
P
{
B(X ′) ∈ S

} =
P
{
A(µX) ∈ S

}
P
{
A(µX′) ∈ S

} ≤ exp
(
α ‖µ− µ′‖TV

)
≤ exp(α/n).

Thus, if α = εn, the algorithm B is ε-differentially private. Let us record this observation
formally.
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Lemma 4.1 (Private measure yields private synthetic data). Let (T, ρ) be a compact metric
space. Let A be an algorithm that inputs a probability measure on T , and outputs something.
Define the algorithm B that takes data X = (X1, . . . , Xn) ∈ Tn as an input, creates the
empirical measure µX and feeds it into the algorithm A, i.e. set B(X) = A(µX). If A is
α-metrically private in the TV metric and α = εn, then B is ε-differentially private.

Thus, our main focus from now on will be on solving the private measure problem; private
synthetic data will follows as a consequence.

5. A private measure on the line

In this section, we construct a private measure on the interval [0, 1]. Later we will extend
this construction to general metric spaces.

5.1. Discrete input space. Let us start with a somewhat restricted goal, and then work
toward wider generality. In this subsection, we will (a) assume that the input measure µ is
always supported on some fixed finite subset

Ω = {ω1, . . . , ωn} where 0 ≤ ω1 ≤ · · · ≤ ωn ≤ 1

and (b) allow the output A(µ) to be a signed measure. We will measure accuracy with the
Wasserstein distance.

5.1.1. Perturbing a measure by a superregular random walk. Apply the Superregular Ran-
dom Walk Theorem 3.1 and rescale the random variables Zi by setting Ui = (2/α)Zi. The
regularity property of the random vector U = (U1, . . . , Un) takes the form

densU (x)

densU (y)
≤ exp

(
α

2
‖x− y‖1

)
for all x, y ∈ Rn, (5.1)

and the boundedness property implies that

max
1≤k≤n

E|U1 + · · ·+ Uk| ≤
C log

3
2 n

α
. (5.2)

Let us make the algorithm A perturb the measure µ on Ω by the weights Ui, i.e. we set

A(µ)(ωi) = µ({ωi}) + Ui, i = 1, . . . , n. (5.3)

5.1.2. Privacy. Any measure ν on Ω can be identified with the vector ν̄ ∈ Rn by setting
ν̄i = ν({ωi}). Then, for any measure η on Ω, we have

densA(µ)(η) = densµ̄+U (η̄) = densU (η̄ − µ̄). (5.4)

Fix two measures µ and µ′ on Ω. By above, we have

densA(µ)(η)

densA(µ′)(η)
=

densU (η̄ − µ̄)

densU (η̄ − µ̄′)
(by (5.4))

≤ exp

(
α

2

∥∥µ̄− µ̄′∥∥
1

)
(by (5.1))

= exp
(
α
∥∥µ− µ′∥∥

TV

)
(by (2.5)).

This shows that the algorithm A is α-metrically private in the TV metric.
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5.1.3. Accuracy. By definition definition (2.7) of Wasserstein distance for signed measures,
we have

EW1(A(µ), µ) =

∫ 1

0
E
∣∣∣(A(µ)− µ

)(
[0, x]

)∣∣∣ dx (using linearity of expectation)

=

∫ 1

0
E
∣∣∣∣ ∑
j:ωj≤x

(
A(µ)− µ

)
(ωj)

∣∣∣∣ dx (measures are supported on points ωj)

=

∫ 1

0
E
∣∣∣∣k(x)∑
j=1

Uj

∣∣∣∣ dx (by (5.3), where we set k(x) =
∣∣{j : ωj ≤ x}

∣∣)
≤ max

1≤k≤n
E
∣∣∣∣ k∑
j=1

Uj

∣∣∣∣ ≤ C log
3
2 n

α
(by (5.2)).

The following result summarizes what we have proved.

Proposition 5.1 (Input in discrete space, output signed measure). Let Ω be finite subset
of [0, 1] and let n = |Ω|. Let α > 0. There exists a randomized algorithm A that takes a
probability measure µ on Ω as an input and returns a signed measure ν on Ω as an output,
and with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output signed measure

ν in the Wasserstein distance is

EW1(ν, µ) ≤ C log
3
2 n

α
.

Let ν be the signed measure obtained in Proposition 5.1. Let ν̂ be a probability measure on
Ω that minimizes W1(ν̂, ν). In view of (2.7), finding ν̂ can be cast as convex problem, although
the minimizer may not be unique. By minimality, W1(ν̂, ν) ≤ W1(µ, ν). So W1(ν̂, µ) ≤
W1(ν̂, ν) + W1(ν, µ) ≤ 2W1(µ, ν). Thus, we can upgrade the previous result, making the
output a measure (as opposed to signed measure):

Proposition 5.2 (Private measure on a finite subset of the interval). Let Ω be finite subset
of [0, 1] and let n = |Ω|. Let α > 0. There exists a randomized algorithm B that takes
a probability measure µ on Ω as an input and returns a probability measure ν on Ω as an
output, and with the following two properties.

(i) (Privacy): the algorithm B is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output measure ν in

the Wasserstein distance is

EW1(ν, µ) ≤ C log
3
2 n

α
.

5.2. Extending the input space to the interval. Next, we would like to extend our
framework to a continuous setting, and allow measures to be supported by the entire interval
[0, 1]. We can do this by quantization.

5.2.1. Quantization. Fix n ∈ N and let N = {ω1, . . . , ωn} be a (1/n)-net of [0, 1]. Consider
the proximity partition

[0, 1] = I1 ∪ · · · ∪ In
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where we put a point x ∈ [0, 1] into Ii if x is closer to ωi that to any other points in N . (We
break any ties arbitrarily.)

We can quantize any signed measure ν on [0, 1] by defining

νN
(
{ωi}

)
= ν(Ii), i = 1, . . . , n. (5.5)

Obviously, νN is a signed measure on N . Moreover, if ν is a measure, then so is νN . And if
ν is a probability measure, then so is νN . In the latter case, it follows from the construction
that

W1(ν, νN ) ≤ 1/n. (5.6)

(By definition of the net, transporting any point x to the closest point ωi covers distance at
most 1/n.)

Lemma 5.3 (Quantization is a contraction in TV metric). Any signed measure ν on [0, 1]
satisfies

‖νN ‖TV ≤‖ν‖TV .

Proof. Using (2.5), (5.5), and (2.4), we obtain

‖νN ‖TV =
1

2

n∑
i=1

∣∣νN ({ωi})
∣∣ =

1

2

n∑
i=1

∣∣ν(Ii)
∣∣ ≤‖ν‖TV .

The lemma is proved. �

5.2.2. A private measure on the interval.

Theorem 5.4 (Private measure on the interval). Let α ≥ 2. There exists a randomized
algorithm A that takes a probability measure µ on [0, 1] as an input and returns a finitely-
supported probability measure ν on [0, 1] as an output, and with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output measure ν in

the Wasserstein distance is

EW1 (ν, µ) ≤ C log
3
2 α

α
.

Proof. Take a measure µ on [0, 1], preprocess it by quantizing as in the previous subsection,
and feed the quantized measure µN into the algorithm B of Proposition 5.2 for Ω = N .

The contraction property (Lemma 5.3) ensures that∥∥µN − µ′N∥∥TV
≤
∥∥µ− µ′∥∥

TV
.

This and the privacy property of Proposition 5.2 for measures on N guarantee that quanti-
zation does not destroy privacy, i.e. the algorithm µ 7→ B(µN ) is still α-metrically private as
claimed.

As for the accuracy, Proposition 5.2 for the measure µN gives

EW1

(
B(µN ), µN

)
≤ C log

3
2 n

α
.

Moreover, the accuracy of quantization (5.6) states that W1(µ, µN ) ≤ 1/n. By triangle
inequality, we conclude that

EW1

(
B(µN ), µ

)
≤ 1

n
+
C log

3
2 n

α
.
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Taking n to be the largest integer less than or equal to α yields the conclusion of the theorem.
�

6. The Traveling Salesman Problem

In order to extend the construction of the private measure on the interval [0, 1] to a general
metric space (T, ρ), a natural approach would be to map the interval [0, 1] onto some space-
filling curve of T . Since a space filling curves usually are infinitely long, we should do this
on the discrete level, for some δ-net of T rather than T itself. In this section, we will bound
length of such discrete space-filling curve in terms of the metric geometry of T . In the next
section, we will see how this bound determines the accuracy of a private measure in T .

A natural framework for this step is related to Traveling Salesman Problem (TSP), which
is a central problem in optimization and computer science, and whose history goes back to
at least 1832 [6].

Let G = (V,E) be an undirected weighted connected graph. We occasionally refer to the
weights of the edges as lengths. A tour of G is a connected walk on the edges that visits
every vertex at least once, and returns to the starting vertex. The TSP is the problem of
finding a tour of G with the shortest length. Let us denote this length by TSP(G).

Although it is NP-hard to compute TSP(G), or even to approximate it within a factor
of 123/122 [30], an algorithm of Christofides and Serdyukov [16, 43] from 1976 gives a 3/2-
approximation for TSP, and it was shown recently that the factor 3/2 can be further improved
[29].

6.1. TSP in terms of the minimum spanning tree. Within a factor of 2, the traveling
salesman problem is equivalent to another key problem, namely the problem of finding the
minimum spanning tree (MST) of G. A spanning tree of G is a subgraph that is a tree and
which includes all vertices of G. It always exists and can be found in polynomial time [33, 39].
A spanning tree of G with the smallest length is called the minimum spanning tree of G; we
denote its length by MST(G). The following equivalence is a folklore.

Lemma 6.1. Any undirected weighted connected graph G satisfies

MST(G) ≤ TSP(G) ≤ 2 MST(G).

Proof. For the lower bound, it is enough to find a spanning tree of G of length bounded by
TSP(G). Consider the minimal tour of G of length TSP(G) as a subgraph of G. Let T be a
spanning tree of the tour. Since the tour contains all vertices of G, so does T , and thus T is
a spanning tree of G. Since T is obtained by removing some edges of the tour, the length of
T is bounded by of the tour, which is TSP(G). The lower bound is proved.

For the upper bound, note that dropping any edges of G can only increase the value of
TSP. Thus TSP of G is bounded by the TSP of its spanning tree T . Moreover, TSP of any
tree T equals twice the sum of lengths of the edges of T . This can be seen by considering the
depth-first search tour of T , which starts at the root and explores as deep as possible along
each branch before backtracking, see Figure 3. �

6.2. Metric TSP. Let (T, ρ) be a finite metric space. We can consider T as a complete
weighted graph, whose weights of edges are defined as the distances between the points. The
TSP for (T, ρ) is known as metric TSP.

Although a tour can visit the same vertex of T multiple times, this can be prevented by
skipping the vertices previously visited. The triangle inequality shows that skipping can only
decrease the length of the tour. Therefore, the shortest tour in a complete graph is always
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Figure 3. The depth-first search tour demonstrates that the TSP of a tree equals
twice the sum of lengths of its edges.

a Hamiltonian cycle, a walk that visits all vertices of T exactly once before returning to the
starting vertex. Let us record this observation:

Lemma 6.2. The TSP of a finite metric space (T, ρ) equals the smallest length of a Hamil-
tonian cycle of T .

6.3. A geometric bound on TSP. We would like to compute TSP(T ) in terms of the
geometry of the metric space (T, ρ). Here we will prove an upper bound on TSP(T ) in terms
of the covering numbers. Recall that the covering number N(T, ρ, ε) is defined as the smallest
cardinality of an ε-net of T , or equivalently the smallest number of closed balls with centers
in T and radii ε whose union covers T , see [48, Section 4.2].

Theorem 6.3 (TSP via covering numbers). For any finite metric space (T, ρ), we have

TSP(T ) ≤ 16

∫ ∞
0

(
N(T, ρ, x)− 1

)
dx.

Proof. Step 1: constructing a spanning tree. Let us construct a small spanning tree T0 of
T and use Lemma 6.1. Let εj = 2−j , j ∈ Z, and let Nj be εj-nets of T with cardinalities∣∣Nj∣∣ = N(T, ρ, εj). Since T is finite, we must have

∣∣Nj∣∣ = 1 for all sufficiently small j. Let j0
be the largest integer for which

∣∣Nj0∣∣ = 1.
At the root of T0, let us put a single point that forms the net Nj0 . At the next level,

put all the points of the net Nj0+1, and connect them to the root by edges. The weights of
these edges, which are defined as the distances of the points to the root, are all bounded by
εj0 . At the next level, put all points of the net Nj0+2, and connect each such point to the
closest point in the previous level Nj0+1. (Break any ties arbitrarily.) Since the latter set is
a εj0+1-net, the weights of all these edges are bounded by εj0+1. Repeat these steps until the
levels do not grow anymore, i.e. until the level contains all the points in T ; see Figure 4 for
illustration.

If all the nets Nj that make up the levels of the tree T0 are disjoint, then T0 is a spanning
tree of T . Assume that this is the case for time being.

Step 2: bounding the length of the tree. For each of the levels j = j0 + 1, j0 + 2, . . ., the
tree T0 has

∣∣Nj∣∣ edges connecting the points of level j to the level j − 1, and each such edge
has length (weight) bounded by εj−1. So MST(T ) is bounded by the sum of the lengths of
the edges of T0, i.e.

MST(T ) ≤
∞∑

j=j0+1

εj−1

∣∣Nj∣∣ .
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Figure 4. Chaining: construction of a spanning tree of a metric space.

Step 3: bounding the sum by the integral. Our choice εj = 2−j yields εj−1 = 4(εj − εj+1).
Moreover, our choice of j0 yields

∣∣Nj∣∣ ≥ 2 for all j ≥ j0 + 1, which implies
∣∣Nj∣∣ ≤ 2

(∣∣Nj∣∣− 1
)

for such j. Therefore

MST(T ) ≤ 8

∞∑
j=j0+1

(
εj − εj+1

) (∣∣Nj∣∣− 1
)

(6.1)

= 8
∞∑

j=j0+1

∫ εj

εj+1

(
N(T, ρ, εj)− 1

)
dx (since

∣∣Nj∣∣ = N(T, ρ, εj))

≤ 8

∫ ∞
0

(
N(T, ρ, x)− 1

)
dx.

An application of Lemma 6.1 completes the proof.

Step 4: splitting. The argument above assumes that all levels Nj of the tree T0 are disjoint.
This assumption can be enforced by splitting the points of T . If, for example, a point ω ∈ Nj
is also used in Nk for some k < j, add to T another a replica of ω – a point ω′ that has zero
distance to ω and the same distances to all other points as ω. Use ω in Nj and ω′ in Nk.
Preprocessing the metric space (T, ρ) by such splitting yields a pseudometric space (T ′, ρ) in
which all levels Nj are disjoint, and whose TSP is the same. �

Remark 6.4 (Integrating up to the diameter). Note that N(T, ρ, x) = 1 for any x > diam(T ),
since any single point makes an x-net of T for such x. Therefore, the integrand in Theorem 6.3
vanishes for such x, and we have

TSP(T ) ≤ 16

∫ diam(T )

0
N(T, ρ, x) dx. (6.2)

6.4. Folding. It is a simple observation that an interval of length TSP(T ) can be embedded,
or “folded”, into T :

Proposition 6.5 (Folding). For any finite metric space (T, ρ) there exists a finite subset Ω
of the interval [0,TSP(T )] and a 1-Lipschitz bijection F : Ω→ T .

Heuristically, the map F “folds” the interval [0,TSP(T )] into the shortest Hamiltonian
path of the metric space T , see Figure 5. We can think of this as a space-filling curve of T .

Proof. Let us exploit the heuristic idea of folding. Fix a Hamiltonian cycle in T of length
TSP(T ), whose existence is given by Lemma 6.2. Formally, this means that we can label the
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Figure 5. The map F folds an interval [0,TSP(M)] into a Hamiltonian path (a “space-
filling curve”) of the metric space T .

elements of the space as T = {z1, . . . , zn} in such a way that the lengths

δi = ρ (zi+1, zi) , i = 1, . . . , n− 1,

satisfy
∑n−1

i=1 δi ≤ TSP(T ). Define Ω = {x1, . . . , xn} by

x1 = 0; xk =
k−1∑
i=1

δi, k = 2, . . . , n.

Then all xk ≤ TSP(T ), so Ω ⊂ [0,TSP(T )] as claimed.
Note that for every k = 1, . . . , n− 1 we have

ρ (zk+1, zk) = δk = xk+1 − xk.
Then, for any integers 1 ≤ k ≤ k + j ≤ n, triangle inequality and telescoping give

ρ
(
zk+j , zk

)
≤ ρ

(
zk+j , zk+j−1

)
+ ρ

(
zk+j−1, zk+j−2

)
+ · · ·+ ρ (zk+1, zk)

=
(
xk+j − xk+j−1

)
+
(
xk+j−1 − xk+j−2

)
+ · · ·+ (xk+1 − xk)

= xk+j − xk.
This shows that the folding map F : xk 7→ zk is a bijection that satisfies

ρ
(
F (x), F (y)

)
≤|x− y| for all x, y ∈ Ω.

In other words, F is 1-Lipschitz. The proof is complete. �

7. A private measure on a metric space

We are ready to construct a private measure on an arbitrary compact metric space (T, ρ).
We do this as follows: (a) discretize T replacing it with a finite δ-net; (b) fold an interval of
length TSP(T ) onto T using Proposition 6.5; and (c) using this folding, pushforward onto T
the private measure on the interval constructed in Section 5. The accuracy of the resulting
private measure on T is determined by the length of the interval TSP(T ), which in turn can
be expressed using the covering numbers of T (Theorem 6.3).

7.1. Finite metric spaces. Let us start by extending Proposition 5.2 from a finite subset
on [0, 1] to a finite subset of (T, ρ).

Proposition 7.1 (Private measure on a finite metric space). Let (T, ρ) be a finite metric
space and let n = |T |. Let α > 0. There exists a randomized algorithm B that takes a
probability measure µ on T as an input and returns a probability measure ν on T as an
output, and with the following two properties.
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(i) (Privacy): the algorithm B is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output measure ν in

the Wasserstein distance is

EW1(ν, µ) ≤ C log
3
2 n

α
TSP(T ).

Proof. Applying Folding Proposition 6.5, we obtain an n-element subset Ω ⊂ [0,TSP(T )]
and a 1-Lipschitz bijection F : Ω→ T . Applying Proposition 5.2 and rescaling by the factor
TSP(T ), we obtain an α-metrically private algorithm B that transforms a probability measure
µ on Ω into a probability measure ν on Ω, and whose accuracy is

EW1(ν, µ) ≤ C log
3
2 n

α
TSP(T ). (7.1)

Define a new metric ρ̄ on Ω by ρ̄(x, y) = ρ
(
F (x), F (y)

)
. Since F is 1-Lipschitz, we

have ρ̄(x, y) ≤ |x− y|. Note that the Wasserstein distance can only become smaller if the
underlying metric is replaced by a smaller metric. Therefore, the bound (7.1), which holds
with respect to the usual metric |x− y| on Ω, automatically holds with respect to the smaller
metric ρ̄(x, y).

It remains to note that (Ω, ρ̄) is isometric to (T, ρ). So the accuracy result (7.1), which
as we saw holds in (Ω, ρ̄), automatically transfers to (T, ρ) (by considering the pushforward
measure). �

7.2. General metric spaces. Quantization allows us to pass from discrete metric spaces
to general spaces. A similar technique was used in Section 5.2 for the interval [0, 1]. We will
repeat it here for a general metric space.

7.2.1. Quantization. Fix δ > 0 and let N = {ω1, . . . , ωn} be a δ-net of T such that n = |N | =
N(T, ρ, δ). Consider the proximity partition

T = I1 ∪ · · · ∪ In

where we put a point x ∈ T into Ii if x is closer to ωi that to any other points in N . (We
break any ties arbitrarily.)

We can quantize any signed measure ν on T by defining

νN
(
{ωi}

)
= ν(Ii), i = 1, . . . , n.

Obviously, νN is a signed measure on N . Moreover, if ν is a measure, then so is νN . And if
ν is a probability measure, then so is νN . In the latter case, it follows from the construction
that

W1(ν, νN ) ≤ δ. (7.2)

(By definition of the net, transporting any point x to the closest point ωi covers distance at
most δ.) Furthermore, Lemma 5.3 easily generalizes and yields

‖νN ‖TV ≤‖ν‖TV . (7.3)

Finally, let us bound the TSP of the net N using Theorem 6.3. We trivially have
N(N , ρ, x) ≤ |N | = N(T, ρ, δ) for any x > 0. Moreover, since N ⊂ T , we also have
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N(N , ρ, x) ≤ N(T, ρ, x/2), see [48, Exercise 4.2.10]. Using the former bound for x < 2δ
and the latter bound for x ≥ 2δ and applying (6.2), we obtain

TSP(N ) .
∫ diam(N )

0
N(N , ρ, x) dx

≤ 2δN(T, ρ, δ) +

∫ diam(T )

2δ
N(T, ρ, x/2) dx

= 2

(
δN(T, ρ, δ) +

∫ diam(T )/2

δ
N(T, ρ, x) dx

)

≤ 2

(
2

∫ δ

δ/2
N(T, ρ, x) dx+

∫ diam(T )/2

δ
N(T, ρ, x) dx

)

≤ 4

∫ diam(T )/2

δ/2
N(T, ρ, x) dx. (7.4)

7.2.2. A private measure on a general metric space.

Theorem 7.2 (Private measure on a metric space). Let (T, ρ) be a compact metric space.
Let α, δ > 0. There exists a randomized algorithm A that takes a probability measure µ on
T as an input and returns a finitely-supported probability measure ν on T as an output, and
with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output measure ν in

the Wasserstein distance is

EW1(ν, µ) ≤ 2δ +
C

α
log

3
2
(
N(T, ρ, δ)

) ∫ diam(T )

δ
N(T, ρ, x) dx.

Proof. Preprocess the input measure µ by quantizing as in the previous subsection, and feed
the quantized measure µN into the algorithm B of Proposition 7.1 for the metric space (N , ρ).

The contraction property (7.3) ensures that∥∥µN − µ′N∥∥TV
≤
∥∥µ− µ′∥∥

TV

for any two input measures µ and µ′. This and the privacy property in Proposition 7.1
for measures on N guarantee that quantization does not destroy privacy, i.e. the algorithm
A : µ 7→ B(µN ) is still α-metrically private as claimed.

Next, the accuracy property in Proposition 7.1 for the measure µN on N gives

EW1

(
B(µN ), µN

)
≤ C

α
log

3
2 (N(T, ρ, δ)) TSP(N ).

Moreover, the accuracy of quantization (7.2) states that W1(µ, µN ) ≤ δ. By triangle inequal-
ity, we conclude that

EW1

(
B(µN ), µ

)
≤ δ +

C

α
log

3
2 (N(T, ρ, δ)) TSP(N ).

Thus, by (7.4),

EW1

(
B(µN ), µ

)
≤ δ +

C

α
log

3
2 (N(T, ρ, δ))

∫ diam(T )/2

δ/2
N(T, ρ, x) dx.

Since N(T, ρ, 2δ) ≤ N(T, ρ, δ), replacing δ by 2δ completes the proof of the theorem. �
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7.3. Private synthetic data. The output of the algorithm A in Theorem 7.2 is a finitely-
supported probability measure ν on T . Quantization allows to transform ν into an empirical
measure

µY =
1

m

m∑
i=1

δYi (7.5)

where Y1, . . . , Ym is some finite sequence of elements of T , in which repetitions are allowed.
In other words, we can make the output of our algorithm a synthetic data Y = (Y1, . . . , Ym).
Let us record this observation.

Corollary 7.3 (Outputting an empirical measure). Let (T, ρ) be a compact metric space.
Let α, δ > 0. There exists a randomized algorithm A that takes a probability measure µ on
T as an input and returns Y = (Y1, . . . , Ym) ∈ Tm for some m as an output, and with the
following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the empirical measure

µY in the Wasserstein distance is

EW1 (µY , µ) ≤ 3δ +
C

α
log

3
2
(
N(T, ρ, δ)

) ∫ diam(T )

δ
N(T, ρ, x) dx.

Proof. Since the output probability measure ν in Theorem 7.2 is finitely supported, it has
the form

ν =
r∑
i=1

wi δYi

for some natural number r, positive weights wi and elements Ri ∈ T .
Let us quantize the weights wi by the uniform quantizer with step 1/m where m is a large

integer. Namely, set

q(wi) :=
bmwic
m

.

Obviously, the total quantization error satisfies

κ :=
r∑
i=1

(
wi − q(wi)

)
∈ [0, r/m]. (7.6)

To make the quantized weights a probability measure, let us add the total quantization error
to any given weight, say the first. Thus, define

w′1 := q(w1) + κ and w′i := q(wi), i = 2, . . . , r

and set

ν ′ :=

r∑
i=1

w′i δYi .

Note the three key properties of ν ′. First, since the weights w′i sum to one, ν ′ is a probability
measure. Second, since ν ′ is obtained from ν by transporting a total mass of κ across the
metric space T , we have

W1(ν, ν ′) ≤ κ · diam(T ) ≤ r

m
· diam(T ) ≤ δ

where the second inequality follows from (7.6) and the last one by choosing m large enough.
Third, all quantized weights q(wi) belong to 1

mZ by definition. Thus, κ = 1−
∑r

i=1 q(wi) is
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also in 1
mZ. Therefore, all weights w′i are in 1

mZ, too. Hence, w′i = mi/m for some nonnegative
integers mi. In other words,

ν ′ =
1

m

r∑
i=1

mi δYi .

Since ν ′ is a probability measure, we must have
∑r

i=1mi = m. Redefine the sequence
Y1, . . . , Ym by repeating each element Yi of the sequence Y1, . . . , Yr exactly mi times. Thus
ν ′ = 1

m

∑m
i=1 δYi , as required. �

Corollary 7.3 allows us to transform any true data X = (X1, . . . , Xn) into a private syn-
thetic data Y = (Y1, . . . , Ym). To do this, feed the algorithm A with the empirical measure
on the true data µX = 1

n

∑n
i=1 δXi . Recall from Lemma 4.1 that if the algorithm A is α-

metrically private for α = εn, then the algorithm X 7→ Y = A(µX) yields ε-differential
private synthetic data. Let us record this observation:

Corollary 7.4 (Differentially private synthetic data). Let (T, ρ) be a compact metric space.
Let ε, δ > 0. There exists a randomized algorithm A that takes true data X = (X1, . . . , Xn) ∈
Tn as an input and returns synthetic data Y = (Y1, . . . , Ym) ∈ Tm for some m as an output,
and with the following two properties.

(i) (Privacy): the algorithm A is ε-differentially private.
(ii) (Accuracy): for any true data X, the expected accuracy of the synthetic data Y is

EW1 (µY , µX) ≤ 3δ +
C

εn
log

3
2
(
N(T, ρ, δ)

) ∫ diam(T )

δ
N(T, ρ, x) dx,

where µX and µY denote the corresponding empirical measures.

An interested reader may now skip to Section 9.1 where we illustrate Corollary 7.4 for a
specific example of the metric space, namely the d-dimensional cube T = [0, 1]d.

Remark 7.5 (A computationally effective algorithm). We will present a detailed discussion of
the algorithmic aspects of the proposed synthetic data generation method in a forthcoming
paper. Here, we only mention that our algorithm works in polynomial time3 with respect
to the cardinality of the dataset. To be more precise, assuming that the input measure µ is
given by an oracle for any set A, the oracle gives us µ(A) and we need a polynomial number
of calls to such an oracle.

8. A lower bound

This section is devoted to impossibility results, which yield lower bounds on the accuracy
of any private measure on a general metric space (T, ρ). While there may be a gap between
our upper and lower bounds for general metric spaces, we will see in Section 9 that this gap
vanishes asymptotically for spaces of Minkowski dimension d.

The proof of the lower bound uses the geometric method pioneered by Hardt and Talwar
[25]. A lower bound is more convenient to express in terms of packing rather than covering
numbers. Recall that the packing number Npack(T, ρ, ε) of a compact metric space (T, ρ) is
defined as the largest cardinality of an ε-separated subset of T . The covering and packing
numbers are equivalent up to a factor of 2:

Npack(T, ρ, 2ε) ≤ N(T, ρ, ε) ≤ Npack(T, ρ, ε), (8.1)

3under the stipulation that an ε-net (of polynomial cardinality) can be constructed in polynomial time
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see [48, Lemma 4.2.8]. Thus, in all results of this section, packing numbers can be replaced
by covering numbers at the cost of changing absolute constants.

8.1. A master lower bound. We first prove a general result that establishes limitations
of metric privacy. To understand this statement better, it may be helpful to assume that
M0 =M1 and ρ0 = ρ1 in the first reading.

Proposition 8.1 (A master lower bound). Let M0 ⊂ M1 be two subsets, and let ρi be a
metric on Mi, i = 0, 1. Assume that for some t, α > 0 we have

diam(M0, ρ0) ≤ 1 and Npack(M0, ρ1, t) > 2eα.

Then, for any randomized algorithm A :M0 →M1 that is α-metrically private with respect
to the metric ρ0, there exists x ∈M0 such that

E ρ1

(
A(x), x

)
> t/4.

Proof. For contradiction, assume that

E ρ1

(
A(x), x

)
≤ t/4, (8.2)

for all x ∈M0. Let N be a t-separated subset of the metric space (M0, ρ1) with cardinality

|N | > 2eα. (8.3)

The separation condition implies that the balls B(y, ρ1, t/2) centered at the points y ∈ N
and with radii t/2 are all disjoint.

Fix any reference point y ∈M0. The disjointness of the balls yields∑
x∈N

P
{
A(y) ∈ B(x, ρ1, t/2)

}
≤ 1. (8.4)

On the other hand, by the definition of α-metric privacy, for each x ∈ N we have:

P
{
A(y) ∈ B(x, ρ1, t/2)

}
≥ exp

[
−αρ0(x, y)

]
· P
{
A(x) ∈ B(x, ρ1, t/2)

}
.

The diameter assumption yields ρ0(x, y) ≤ 1. Furthermore, using the assumption (8.2) and
Markov’s inequality, we obtain

P
{
A(x) ∈ B(x, ρ1, t/2)

}
= P

{
ρ1

(
A(x), x

)
≤ t/2

}
≥ 1

2
.

Combining the two bounds gives

P
{
A(y) ∈ B(x, ρ1, t/2)

}
≥ 1

2eα
.

Substitute this into (8.4) to get ∑
x∈N

1

2eα
≤ 1.

In other words, we conclude that |N | ≤ 2eα, which contradicts (8.3). The proof is complete.
�
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8.2. Metric entropy of the space of probability measures. For a given compact metric
space (T, ρ), we denote by M(T ) the collection of all Borel probability measures on T . We
are going to apply Proposition 8.1 for M0 = M1 = M(T ), for ρ1 = Wasserstein metric
and ρ0 = TV metric. That proposition requires a lower bound on the packing number
Npack

(
M(T ),W1, t/3

)
. In the next lemma, we relate this packing number to that of (T, ρ).

Essentially, it says that if T is large, then there are a lot of probability measures on T .

Proposition 8.2 (Metric entropy of the space of probability measures). For any compact
metric space (T, ρ) and every t > 0, we have

Npack

(
M(T ),W1, t/3

)
≥ exp

(
cNpack(T, ρ, t)

)
,

where c > 0 is a universal constant.

The proof will use the following lemma.

Lemma 8.3 (A lower bound on the Wasserstein distance). Let (T, ρ) be a t-separated4 com-
pact metric space. Then, for any pair of probability measures µ, ν on T , we have

W1(µ, ν) ≥ µ(Bc) t where B = supp(ν).

Proof. Suppose that γ is a coupling of µ and ν. Since ν is supported on B, we have γ(Bc ×
Bc) ≤ γ(T ×Bc) = ν(Bc) = 0, which means that γ(Bc ×Bc) = 0. Therefore

γ(Bc ×B) = γ(Bc × T )− γ(Bc ×Bc) = µ(Bc).

Since the sets Bc and B are disjoint, the separation assumption implies that ρ(x, y) > t for
all pairs x ∈ Bc and y ∈ B. Thus,∫

T×T
ρ(x, y) dγ(x, y) ≥

∫
Bc×B

ρ(x, y) dγ(x, y) ≥ tγ(Bc ×B) = tµ(Bc).

Since this holds for all coupling γ of µ and ν, the result follows. �

Lemma 8.4 (Many different measures). Let (N , ρ) be a t-separated compact metric space,
and assume that |N | ≥ 2n for some n ∈ N. Then there exists a family of at least exp(cn) em-
pirical measures on n points of T that are pairwise t/3-separated in the Wasserstein distance,
where c > 0 is a universal constant.

Proof. Let µ = n−1
∑n

i=1 δXi and ν = n−1
∑n

i=1 δYi be two independent random empirical
measures on T . Let us condition on ν and denote B = supp(ν). Then

µ(Bc) =
1

n

n∑
i=1

1{Xi∈Bc}.

Now, 1{Xi∈Bc} are i.i.d. Bernoulli random variables that take value 1 with probability

P
{
Xi ∈ Bc

}
=
|Bc|
|N |

≥ 1

2
,

since by construction we have |B| ≤ n and by assumption |N | ≥ 2n. Then, applying Chernoff
inequality (see [48, Exercise 2.3.2]), we conclude that µ(Bc) > 1/3 with probability bigger
than 1− e−5cn, where c > 0 is a universal constant. Lemma 8.3 yields that W1(µ, ν) > t/3.

Now consider a sequence µ1, . . . , µK of independent random empirical measures on T .
Using the result above and taking a union bound we conclude that, with probability at
least 1 −

(
K
2

)
e−5cn, the inequality W1(µi, µj) > t/3 holds for all pairs of distinct indices

4This means that the distance between any two distinct points in T is larger than t.
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i, j ∈ {1, . . . ,K}. Choosing K = decne makes K between ecn (as claimed) and e2cn. Thus,
the success probability is more than 1− (e2cn)2e−5cn, which is positive. The existence of the
required family of measures follows. �

Proof of Proposition 8.2. LetN ⊂ T be a t-separated subset of cardinality|N | = Npack(T, ρ, t).
Lemma 8.4 implies the existence of a set of at least exp(c|N |) probability measures on T that is
(t/3)-separated in the Wasserstein distance. In other words, we haveNpack

(
M(T ),W1, t/3

)
≥

exp(c|N |). Proposition 8.2 is proved. �

8.3. Lower bounds for private measures and synthetic data. Now we are ready to
prove the two main lower bounds on the accuracy for (a) metrically private measures and (b)
differential private data.

Theorem 8.5 (Private measure: a lower bound). Let (T, ρ) be a compact metric space.
Assume that for some t > 0 and α ≥ 1 we have

Npack(T, ρ, t) > Cα.

Then, for any randomized algorithm A that takes a probability measure µ on T as an input
and returns a probability measure ν on T as an output and that is α-metrically private with
respect to the TV metric, there exists µ such that

EW1(ν, µ) > t/12.

Proof. The assumption on the packing number for a sufficiently large constant C and Propo-
sition 8.2 yield

Npack

(
M(T ),W1, t/3

)
≥ e2α > 2eα.

Next, apply Proposition 8.1 with t/3 instead of t, and for M0 = M1 = M(T ), setting ρ1

and ρ0 to be the Wasserstein and the TV metrics, respectively. The required conclusion
follows. �

Theorem 8.6 (Synthetic data: a lower bound). There exists an absolute constant n0 such
that the following holds. Let (T, ρ) be a compact metric space. Assume that for some t > 0
and and some integer n > n0 we have

Npack(T, ρ, t) > 2n.

Then, for any c-differentially private randomized algorithm A that takes true data X =
(X1, . . . , Xn) ∈ Tn as an input and returns synthetic data Y = (Y1, . . . , Ym) ∈ Tm for some
m as an output, there exists input data X such that

EW1(µY , µX) > t/12,

where µX and µY denote the empirical measures on X and Y .

Proof. First note that a version of Proposition 8.2 holds for empirical measures. Namely,
denote the set of all empirical measures on n points of T by Mn(T ). If Npack(T, ρ, t) > 2n
then we claim that

Npack

(
Mn(T ),W1, t/3

)
> 2ec1n. (8.5)

To see this, let N ⊂ T be a t-separated subset of cardinality |N | > 2n. Lemma 8.4 implies
the existence of a set of at least ecn ≥ 2ec1n members of Mn(T ) that is (t/3)-separated in
the Wasserstein distance. The claim (8.5) follows.
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In preparation to apply Proposition 8.1, consider the sets M0 := Tn and M1 := ∪∞k=1T
k.

Consider the normalized Hamming metric

ρ0(X,X ′) =
1

n

∣∣{i ∈ [n] : Xi 6= X ′i}
∣∣

on M0, and the Wasserstein metric

ρ1(X,X ′) = W1(µX , µX′)

onM1. Then we clearly have diam(M0, ρ0) ≤ 1, and (8.5) is equivalent toNpack(M0, ρ1, t/3) >
2ec1n.

If A :M0 →M1 is a c-differentially private algorithm, then A is (cn)-metrically private in
the metric ρ0 due to Lemma 2.3. Applying Proposition 8.1 with t/3 instead of t and α = c1n,
we obtain the required conclusion. �

9. Examples and asymptotics

9.1. A private measure on the unit cube. Let us work out the bound of Theorem 7.2 for
a concrete example: the d-dimensional unit cube equipped with the `∞ metric, i.e. (T, ρ) =
([0, 1]d, ‖·‖∞). The covering numbers satisfy

N(T,‖·‖∞ , x) ≤ (1/x)d, x > 0,

since the set xZd ∩ [0, 1)d forms an x-net of T . Thus the accuracy is

EW1(ν, µ) . δ +
log

3
2 (1/δ)

α

∫ 1

δ
(1/x)d dx . δ +

log
3
2 (1/δ)

α
· (1/δ)d−1

if d ≥ 2. Optimizing in δ yields

EW1(ν, µ) .
( log

3
2 α

α

)1/d
,

which wonderfully extends Theorem 5.4 for d = 1. Combining the two results, for d = 1 and
d ≥ 2, we obtain the following general result:

Corollary 9.1 (Private measure on the cube). Let d ∈ N and α ≥ 2. There exists a
randomized algorithm A that takes a probability measure µ on [0, 1]d as an input and returns
a finitely-supported probability measure ν on [0, 1]d as an output, and with the following two
properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure µ, the expected accuracy of the output measure ν in

the Wasserstein distance is

EW1(ν, µ) ≤ C
( log

3
2 α

α

)1/d
.

Similarly, by invoking Corollary 7.4, we obtain ε-differential privacy for synthetic data:

Corollary 9.2 (Private synthetic data in the cube). Let d, n ∈ N and ε > 0. There exists a
randomized algorithm A that takes true data X = (X1, . . . , Xn) ∈ ([0, 1]d)n as an input and
returns synthetic data Y = (Y1, . . . , Ym) ∈ ([0, 1]d)m for some m as an output, and with the
following two properties.

(i) (Privacy): the algorithm A is ε-differentially private.
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(ii) (Accuracy): for any true data X, the expected accuracy of the synthetic data Y is

EW1 (µY , µX) ≤ C
( log

3
2 (εn)

εn

)1/d
,

where µX and µY denote the corresponding empirical measures.

The two results above are nearly sharp. Indeed, let us work out the lower bound for the
cube, using Theorem 8.5. The covering numbers satisfy

Npack(T,‖·‖∞ , x) ≥ (c/x)d, x > 0,

which again can be seen by considering a rescaled integer grid. Setting t = c/(2Cα)1/d we
get N(T,‖·‖∞ , t) > Cα. Hence

EW1(ν, µ) > t/12 & (1/α)1/d,

which matches the upper bound in Corollary 9.1 up to a logarithmic factor. Let us record
this result.

Corollary 9.3 (Private measure on the cube: a lower bound). Let d ∈ N and α ≥ 2. Then,
for any randomized algorithm A that takes a probability measure µ on [0, 1]d as an input and
returns a probability measure ν on [0, 1]d as an output, and that is α-metrically private with
respect to the TV metric, there exists µ such that

EW1(ν, µ) > c
( 1

α

)1/d
.

In a similar way, by invoking the lower bound in Theorem 8.6, we obtain the following
nearly matching lower bound for Corollary 9.2:

Corollary 9.4 (Private synthetic data in the cube: a lower bound). Let d, n ∈ N. Then, for
any c-differentially private randomized algorithm A that takes true data X = (X1, . . . , Xn) ∈
([0, 1]d)n as an input and returns synthetic data Y = (Y1, . . . , Ym) ∈ ([0, 1]d)m for some m as
an output, there exists input data X such that

EW1(νY , µX) > c
( 1

n

)1/d
.

where µX and µY denotes the empirical measures on X and Y .

Remark 9.5 (Low dimensions). As we can see, the accuracy bound n−1/d gets worse with
increasing dimension d, and becomes constant for d� log n. Thus, results like Corollary 9.2
are only useful for low dimensions. This should not come as a surprise. As we know from
the previously mentioned no-go result by Ullman and Vadhan [45], it is computationally not
feasible to construct private synthetic data in high dimensions that accurately preserves even
two-way marginals, let alone all Lipschitz queries (which is what Wasserstein metric does).

9.2. Asymptotic result. The only property of the cube T = [0, 1]d we used in the previous
section is the behavior on its covering numbers,5 namely that

N(T, ρ, x) � (1/x)−d, x > 0. (9.1)

Therefore, the same results on private measures and synthetic data hold for any compact
metric space (T, ρ) whose covering numbers behave this way. In particular, it follows that

5The lower bound used packing numbers, but they are equivalent to covering numbers due to (8.1).
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any probability measure µ on T can be transformed into a α-metrically private measure ν on
T , with accuracy

EW (ν, µ) � (1/α)1/d. (9.2)

(ignoring logarithmic factors), and this result is nearly sharp. Similarly, any true data X ∈ Tn
can be transformed into ε-differentially private synthetic data Y ∈ Tm for some m, with
accuracy

EW (µY , µX) � (1/n)1/d. (9.3)

(ignoring logarithmic factors and dependence on ε), and this result is nearly sharp.
These intuitive observations can be formalized using the notion of Minkowski dimension.

By definition, the metric space (T, ρ) has Minkowski dimension d if

lim
x→0

logN(T, ρ, x)

log(1/x)
= d.

The following two asymptotic results combine upper and lower bounds, and essentially show
that (9.2) and (9.3) hold in any space of dimension d.

Theorem 9.6 (Private measure, asymptotically). Let (T, ρ) be a compact metric space of
Minkowski dimension d ≥ 1. Then

lim
α→∞

inf
A

sup
µ

log(EW1(A(µ), µ))

logα
= −1

d
.

Here the infimum is over randomized algorithms A that input and output a probability measure
on T and are α-metrically private with respect to the TV metric; the supremum is over all
probability measures µ on T .

Proof. We deduce the upper bound from Theorem 7.2 and the lower bound from Theorem 8.5.

Upper bound. By rescaling, we can assume without loss of generality that diam(T, ρ) = 1.
Fix any ε > 0. By definition of Minkowski dimension, there exists δ0 > 0 such that

N(T, ρ, x) ≤ (1/x)d+ε for all x ∈ (0, δ0). (9.4)

Then ∫ 1

δ
N(T, ρ, x) dx ≤

∫ δ0

δ
(1/x)d+ε dx+

∫ 1

δ0

N(T, ρ, x) dx ≤ K(1/δ)d+ε−1 + I(δ0)

where K = 1/(d+ ε− 1) and I(δ0) =
∫ 1
δ0
N(T, ρ, x) dx. The last step follows if we replace δ0

by infinity and compute the integral.
If we let δ ↓ 0, we see that K(1/δ)d+ε−1 →∞ while I(δ0) stays the same since it does not

depend on δ. Therefore, there exists δ1 > 0 such that I(δ0) ≤ K(1/δ)d+ε−1 for all δ ∈ (0, δ1).
Therefore, ∫ 1

δ
N(T, ρ, x) dx ≤ 2K(1/δ)d+ε−1 for all δ ∈ (0,min(δ0, δ1)).

Applying Theorem 7.2 for such δ and using (9.4), we get

inf
A

sup
µ

EW1(ν, µ) ≤ 2δ +
C

α
log

3
2

(
(1/δ)d+ε

)
· 2K(1/δ)d+ε−1. (9.5)

Optimizing in δ, we find that a good choice is

δ = δ(α) =

(
log

3
2 (Kα)

Kα

) 1
d+ε

.
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For any sufficiently large α, we have δ < min(δ0, δ1) as required, and substituting δ = δ(α)
into the bound in (9.5) we get after simplification:

inf
A

sup
µ

EW1(ν, µ) ≤ (1 + 2CK)δ(α).

Furthermore, recalling that K does not depend on α, it is clear that

lim
α→∞

log
(
(1 + 2CK)δ(α)

)
logα

= − 1

d+ ε
.

Thus

lim sup
α→∞

log(infA supµ EW1(ν, µ))

logα
≤ − 1

d+ ε
.

Since ε > 0 is arbitrary, it follows that

lim sup
α→∞

inf
A

sup
µ

log(EW1(A(µ), µ))

logα
≤ −1

d
. (9.6)

Lower bound. Fix any ε > 0. By definition of Minkowski dimension and the equivalence
(8.1), there exists δ0 > 0 such that

Npack(T, ρ, x) ≥ N(T, ρ, x) > (1/x)d−ε for all x ∈ (0, δ0).

Set

x(α) =

(
1

Cα

) 1
d−ε

.

Then, for any sufficiently large α, we have x ∈ (0, δ0) and

Npack(T, ρ, x(α)) > Cα.

Applying Theorem 8.5, we get

inf
A

sup
µ

EW1(ν, µ) ≥ x(α)/20.

It is easy to check that

lim
α→∞

log
(
x(α)/20

)
logα

= − 1

d− ε
.

Thus

lim inf
α→∞

log(infA supµ EW1(ν, µ))

logα
≥ − 1

d− ε
.

Since ε > 0 is arbitrary, it follows that

lim inf
α→∞

inf
A

sup
µ

log(EW1(A(µ), µ))

logα
≥ −1

d
.

Combining with the upper bound (9.6), we complete the proof. �

In a similar way, we can deduce the following asymptotic result for private synthetic data.
The argument is analogous; the upper bound follows from Corollary 7.4 and the lower bound
from Theorem 8.6.
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Theorem 9.7. Let (T, ρ) be a compact metric space of Minkowski dimension d ≥ 1. Then,
for every ε ∈ (0, c), we have

lim
n→∞

inf
A

sup
X

log(EW1(µY , µX))

log n
= −1

d
. (9.7)

Here the infimum is over ε-differentially private randomized algorithms A that take true data
X = (X1, . . . , Xn) ∈ Tn as an input and return synthetic data Y = A(X) = (Y1, . . . , Ym) ∈
Tm for some m as an output.

Remark 9.8 (Low-dimensional data in high dimensions?). This and other results proved here
show that the accuracy of private synthetic data must deteriorate quickly as the data di-
mension d increases. But does this mean that the proposed method is useless for any high-
dimensional data? In practice, this is not necessarily the case. Real-world high-dimensional
data often live in (or near) a low-dimensional smooth manifold. Since a smooth manifold
is metrizable and a smooth d-dimensional manifold in Rn has Minkowski dimension d, our
framework may still apply to the standard setting of high-dimensional statistics, where the
data lives in high dimension buts intrinsic geometry is low-dimensional. Thus, the general-
ization via Minkowski dimension presented in this section may not only be appealing from a
theoretical viewpoint, but carries a practical potential, which we hope to pursue in our future
work.

Acknowledgement

M.B. acknowledges support from NSF DMS-2140592. T.S. acknowledges support from
NIH R01HL16351, NSF DMS-2027248, NSF CCF-1934568 and a CeDAR Seed grant. R.V.
acknowledges support from NSF DMS-1954233, NSF DMS-2027299, U.S. Army 76649-CS,
and NSF+Simons Research Collaborations on the Mathematical and Scientific Foundations
of Deep Learning.

References

[1] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya Sweeney.
Privacy preserving synthetic data release using deep learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 510–526. Springer, 2018.

[2] John Abowd, Robert Ashmead, Garfinkel Simson, Daniel Kifer, Philip Leclerc, Ashwin Machanavajjhala,
and William Sexton. Census topdown: Differentially private data, incremental schemas, and consistency
with public knowledge. US Census Bureau, 2019.

[3] John M Abowd. The US Census Bureau adopts differential privacy. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2867–2867, 2018.

[4] John M Abowd and Simon D Woodcock. Disclosure limitation in longitudinal linked data. Confidentiality,
Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215277, 2001.

[5] Miguel E Andrés, Nicolás E Bordenabe, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 901–914, 2013.

[6] David L Applegate, Robert E Bixby, and William J Vašek Chvátal. Cook. the traveling salesman problem:
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